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Serotonin, in its function as neurotransmitter, is well-known for its role in
depression, autism and other neuropsychiatric disorders, however, less known as
a neurodevelopmental factor. The serotonergic system is one of the earliest to
develop during embryogenesis and early changes in serotonin levels can have large
consequences for the correct development of specific brain areas. The regulation
and functioning of serotonin is influenced by genetic risk factors, such as the
serotonin transporter polymorphism in humans. This polymorphism is associated with
anxiety-related symptoms, changes in social behavior, and cortical gray and white matter
changes also seen in patients suffering from autism spectrum disorders (ASD). The
human polymorphism can be mimicked by the knockout of the serotonin transporter in
rodents, which are as a model system therefore vital to explore the precise neurobiological
mechanisms. Moreover, there are pharmacological challenges influencing serotonin in
early life, like prenatal/neonatal exposure to selective serotonin reuptake inhibitors (SSRI)
in depressed pregnant women. There is accumulating evidence that this dysregulation of
serotonin during critical phases of brain development can lead to ASD-related symptoms
in children, and reduced social behavior and increased anxiety in rodents. Furthermore,
prenatal valproic acid (VPA) exposure, a mood stabilizing drug which is also thought to
interfere with serotonin levels, has the potency to induce ASD-like symptoms and to
affect the development of the serotonergic system. Here, we review and compare the
neurodevelopmental and behavioral consequences of serotonin transporter gene variation,
and prenatal SSRI and VPA exposure in the context of ASD.
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INTRODUCTION
Accumulating evidence suggests an important role for the sero-
tonergic system in the onset of mental illnesses in general and
autism spectrum disorders in particular (ASD; Box 1). Because of
serotonin’s (5-HT) ability to modulate developmental processes
(Gaspar et al., 2003; Homberg et al., 2010), a modification of
the serotonergic system is seen as a crucial factor in the occur-
rence of dysfunctional developmental programming leading to
abnormal behavior in adult life. Therefore, studying the behav-
ioral consequences of early life alterations in the serotonergic
system is of major importance to increase our knowledge and
understanding of these mental illnesses. There are several pos-
sibilities for genetic as well as pharmacological manipulation of
the serotonergic system which are of great use to unravel the
complex function of 5-HT. Regulation of 5-HT levels can be
influenced by genetic factors such as genetic variance in the 5-HT
transporter (5-HTT) gene. The most widely studied 5-HTT poly-
morphism in humans is the 5-HTT Length Polymorphic Region
(5-HTTLPR), which involves genetic variance in the promoter

region of the 5-HTT gene (Lesch et al., 1996; section The Human
5-HTT Polymorphism) In rodents, this genetic variance is mod-
eled by a mutation of the 5-HTT gene (5-HTT−/−) (Kalueff et al.,
2010). Although the latter mutation is not promoter specific,
the behavioral consequences are very similar compared to those
associated with the 5-HTTLPR in humans, including increased
anxiety, depression-related behavior in the context of stress,
prosocial behavior, and increased behavioral flexibility (Kalueff
et al., 2010). There are also pharmacological factors influencing
early developmental 5-HT levels, such as selective serotonin reup-
take inhibitors (SSRIs). These antidepressant drugs are commonly
prescribed to depressed pregnant women and are able to cross the
placenta (Homberg et al., 2010; Olivier et al., 2011). SSRIs block
the 5-HTT, and thereby give rise to high 5-HT levels not only
in the mother but also in the developing fetus. Another agent
that may affect 5-HT levels during development is valproic acid
(VPA). This drug is used as mood stabilizer and when taken dur-
ing pregnancy, affects the 5-HT system of the developing brain
(Markram et al., 2007). What is particularly interesting is that
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Box 1 | Autism Spectrum Disorder (ASD) endophenotypes.

ASD is a neurodevelopmental disorder manifesting within the first 3 years after birth and progressively worsening in the course of life.
Core symptoms of ASD are impairments in sociability (no interest in interaction with others, dysfunction in managing complex social
interactions), communicative skills and imagination (absence of spoken language or mild language impairments), and repetitive behavioral
patterns (stereotype, preference for sameness, complex rituals (American Psychiatric Association, 1994). Additionally, ASD patients show
abnormalities in perception, attention and memory (Ben Shalom, 2003; Dakin and Frith, 2005), as well as increased anxiety (potentially
as a result of the repetitive behaviors). These symptoms may well arise from hyper-functioning of microcircuits (see section Prenatal
Valproic Acid Exposure in Rats), and hypo-functioning of macrocircuits (as reflected by decreased white matter and connectivity in brains
of ASD patients (Kana et al., 2011). The hyper-function of microcircuits may contribute to hyper-perception, hyper-attention, hyper-memory
and hyper-emotionality. These symptoms may on their turn contribute to the progression of the disease, as overly strong reactions to
experiences may become more and more extreme with each new experience especially when these experiences are emotionally charged.
This may lead to obsessively detailed information processing. Due to hypo-functioning of macrocircuits this information is fragmented,
leading to an inability to place the information in a broader context. Hence, the autistic patient is trapped into a limited but highly secure
internal world with minimal extremes and surprises (Markram and Markram, 2010), as expressed by the DSM IV ASD core symptoms.

these genetic and pharmacological factors are all associated with
common structural phenotypes in the brain and behavioral man-
ifestations (Figure 1). Hence, comparing the different conditions
associated with high 5-HT levels during development (genetic 5-
HTT down-regulation, prenatal SSRI and prenatal VPA exposure)
may lead to insights relevant for prevention, diagnosis, and/or
treatment of ASD, as well as our fundamental understanding of
the role of 5-HT in brain development. It is our aim to discuss
these three conditions associated with increased 5-HT levels dur-
ing development in human subjects as well as rodents, and discuss
the possible mechanisms underlying the similarities.

THE DEVELOPMENT OF THE SEROTONERGIC SYSTEM
THE PLACENTA AS EXOGENOUS SOURCE OF SEROTONIN
Serotonergic neurons appear early during brain development,
already releasing 5-HT before the establishment of conventional
synapses as most of the axonal network maturation is achieved
after birth in rodents. The function of this 5-HT release is to
amplify its own synthesis and increase axon outgrowth (De
Vitry et al., 1986; Witteveen et al., submitted). However, the
influence of 5-HT is effective even before its neurons are born
in the raphe nucleus. This suggests the need of an exogenous
source of 5-HT at least during the early developmental stages.
Synthesis of 5-HT requires two tryptophan hydroxylase (TPH)
enzymes; TPH1 which is located in the pineal gland and gut
enterochromaffin cells, and TPH2 which is restricted to the
raphe nuclei and enteric nervous system. During development,
expression of the transcripts starts at embryonic day (E) 10.5
for TPH2 and at E12.5 for TPH1 (Cote et al., 2007). Before
this stage, serotonergic signaling molecules, like the 5-HT2B
receptor and plasmalemmal 5-HTT (E8–9) are already present
(Buznikov et al., 2001). So the influence of 5-HT precedes that of
its production. Since sites of earlier serotonin synthesis have not
been found, the main source during that period has been shown
to be maternal as the placenta is a source of serotonin (Cote et al.,
2007; Bonnin et al., 2011; see Velasquez et al., 2013). Indeed, the
essential amino acid tryptophan, which is the precursor of 5-HT,
is present in placental tissue during E10.5–E14.5, which gives
the placenta the necessary machinery to synthesize 5-HT. The
capacity for placental 5-HT synthesis peaks at E14.5, suggesting
that the placental source of 5-HT is of most importance in the
period of early development (Bonnin et al., 2011), especially the

forebrain. The mid/hindbrain, on the other hand, solely receives
5-HT input from the serotonergic neurons that arise at E10.5 in
the dorsal raphe nuclei (for review and figures see van’t Hooft
and Smidt, submitted), which suggests a smaller importance
of placental 5-HT for the development of the mid/hindbrain
(Bonnin and Levitt, 2011). Hence, alterations in placental 5-HT
likely will affect the early development of the forebrain, whereas
genetic alterations in serotonergic genes are expected to affect the
mid/hindbrain, as well as the forebrain in later developmental
stages.

THE SEROTONIN TRANSPORTER (5-HTT)
A central position in the functioning of the serotonergic system
is the 5-HTT. The 5-HTT is located in the plasma membrane
of presynaptic nerve terminals from which 5-HT is released. It
clears 5-HT from the extracellular space by reuptake mechanisms
and thereby regulates serotonergic neurotransmission (Haenisch
and Bonisch, 2011). There is only one gene encoding the 5-
HTT, which is found in the central nervous system as well as
peripheral tissue (Homberg et al., 2010). Expression of the 5-
HTT gene starts in the serotonergic neurons of the mouse dorsal
raphe nucleus at E11. By E16–E20 5-HTT is expressed in a mul-
titude of brain regions including non-serotonergic ones such as
the ganglionic eminence, thalamus, olfactory bulb, and cortex
(Zhou et al., 2000). Around the second postnatal week in rodents,
when neural circuits are pruned, 5-HTT expression declines in
these non-serotonergic areas (Homberg et al., 2010), while it is
maintained in the dorsal raphe nucleus throughout lifetime. The
transient expression in various brain areas exclusively during their
critical phase of development suggests that the 5-HTT plays an
essential role in the establishment of brain circuits.

5-HTT GENE VARIANCE IN HUMANS AND RODENTS
THE HUMAN 5-HTT POLYMORPHISM
Abnormalities in 5-HTT function are implicated in ASD (BOX 1)
by studies reporting reduced 5-HTT density in the frontal cortex
of ASD patients (Makkonen et al., 2008; Nakamura et al., 2010)
but see (Azmitia et al., 2011). The risk of abnormal functioning of
5-HTT can be increased by the genetic background of an individ-
ual. The most commonly studied genetic aberration of the 5-HTT
is the 44-base pair insertion/deletion polymorphism in the pro-
moter region of the gene (5-HTTLPR) (Champoux et al., 2002).
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FIGURE 1 | The relationship between serotonergic genetic and pharmacological manipulations with common effects on brain wiring and behavior.

The short (s) allelic variant of 5-HTTLPR is associated with a
decrease in 5-HTT transcription (Heils et al., 1997), which pre-
sumably leads to decreased expression and function of 5-HTT.
Since the 5-HTT is responsible for the reuptake of 5-HT, reduced
availability of 5-HTT may lead to increased extracellular 5-HT
levels. This, however, cannot be directly investigated in the human
brain with the currently available methodologies (Holmes et al.,
2003a; Homberg and Lesch, 2011). Regardless of whether or not
the 5-HTTLPR s-allele is associated with increased 5-HT levels
in the brain, the 5-HTTLPR s-allele has been associated with
anxiety-related traits like neuroticism (Munafo et al., 2009). A
recent meta-analysis revealed that the 5-HTTLPR s-allele is asso-
ciated with a bias toward negative environmental stimuli (Kwang
et al., 2010; Thomason et al., 2010; Fox et al., 2011; Pergamin-
Hight et al., 2012), which may explain the association between
the s-allele and anxiety-related traits. There are several indica-
tions that the 5-HTTLPR s-allele is indeed a strong genetic risk
factor for ASD. For instance, the s/s genotype was found to be
highly significantly associated with ASD (Devlin et al., 2005),
albeit this association was dependent on the nature of ethnic
populations (Huang and Santangelo, 2008; Arieff et al., 2010).
It has also been demonstrated that the 5-HTTLPR s-allele is
specifically associated with the failure to use non-verbal commu-
nication to regulate social interactions in ASD patients (Brune
et al., 2006). Furthermore, the increased platelet serotonin level
as has been consistently found in a fraction of autistic patients

is linked to 5-HTTLPR genotype (Coutinho et al., 2004) but see
(Betancur et al., 2002). Yet, recently it was reported that according
to mothers’ ratings children with the 5-HTTLPR l/l genotype had
more severe ASD social deficits than 5-HTTLPR s-allele carriers
(Gadow et al., 2013). It is possible that factors like ethnic back-
ground, scoring method, read-outs and age, contribute to such
inconsistent findings.

Presumably, the presence of the 5-HTTLPR s-allele affects the
structure and function of the early brain in such a way that it is
more sensitive to adverse environmental stimuli like stress and/or
that connectivity between brain regions is altered. It has been
well-established that the 5-HTTLPR s-allele is associated with
heightened reactivity of the amygdala in response to emotional
stimuli (Hariri et al., 2002; Thomason et al., 2010). The amygdala
plays a central role in emotional vigilance, particularly toward
stimuli with a negative valence. Yet, the amygdala is also essential
in social interactions and indeed, it plays a critical role in ori-
enting gaze and attention to socially salient stimuli (Birmingham
et al., 2011). Furthermore, ASD patients show increased amygdala
activity during face processing (Monk et al., 2010; Kliemann et al.,
2012). Hence, amygdala hyper-reactivity in association with the
5-HTTLPR s-allele may relate to both heightened emotional pro-
cessing and social impairments, although it remains to be inves-
tigated whether these processes are based on similar mechanisms.
Another neuronal phenotype associated with the 5-HTTLPR s-
allele is a structural (Pacheco et al., 2009) and functional (Pezawas
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et al., 2005) uncoupling between the prefrontal cortex (PFC) and
amygdala. Given that the PFC exerts an inhibitory control over
the amygdala, a reduction in this inhibitory control is hypothe-
sized to contribute to impaired emotion regulation in 5-HTTLPR
s-allele carriers (Pezawas et al., 2005; Hariri and Holmes, 2006;
Canli and Lesch, 2007; Homberg and Lesch, 2011), and thereby
anxiety-related traits. Interestingly, independent from the 5-
HTTLPR s-allele genotype, studies also revealed an association
between altered prefrontal-amygdala connectivity and ASD. More
specifically, in the so-called salience network there was a reduced
connectivity between the insula and amygdala, which are con-
sidered as social brain regions (von dem Hagen et al., 2012).
Furthermore, a social network involving the middle temporal
gyrus, fusiform gyrus, amygdala, mPFC, and inferior frontal
gyrus displayed reduced effective connectivity in ASD patients
when exposed to facial expression (Sato et al., 2012). The 5-
HTTLPR s-allele is also associated with increased cerebral cortical
gray matter volumes in young male children with ASD (Wassink
et al., 2007), for which the functional implications are unfor-
tunately unclear. Finally, a core structural phenotype associated
with ASD is decreased cortico-cortical connectivity, due to corpus
callosum abnormalities. Indeed, ASD has consistently been linked
with significantly less white matter density in the (anterior part of
the) corpus callosum (Frazier and Hardan, 2009; Shukla et al.,
2010; Hong et al., 2011; Schipul et al., 2012), suggesting aber-
rant long-range corticocortical connectivity. As to whether also
the 5-HTTLPR s-allele is directly associated with corpus callo-
sum changes remains to be determined. Given that there is active
5-HT uptake in the corpus callosum (Reyes-Haro et al., 2003),
it is well-conceivable that the 5-HTTLPR affects corpus callosum
connectivity.

5-HTT KNOCKOUT MICE AND RATS
Human studies have significantly advanced our understanding
of the neural and behavioral phenotypes associated with the
5-HTTLPR, and thereby the possible role of 5-HT in neurodevel-
opment. However, detailed understanding of the neural correlates
of the behavioral manifestations is limited due to inaccessibility
of the human brain. As mentioned before, the 5-HTTLPR s-allele
can be mimicked by a targeted reduction of the serotonin trans-
porter gene in rodents (5-HTT−/−) (Holmes et al., 2003a). These
animals exhibit high extracellular 5-HT levels due to impaired 5-
HT clearance in the presynaptic nerve terminal (Mathews et al.,
2004), and due to reduced 5-HT reuptake and limited 5-HT recy-
cling in the presynaptic nerve terminal, serotonin synthesis is
increased (Kim et al., 2005; Haenisch and Bonisch, 2011). Dorsal
raphe neurons in 5-HTT−/− mice show a reduced firing rate as
well as desensitization and down-regulation of somatodendritic
5-HT1A receptors, which exert an inhibitory control over raphe
action potential firing activity (Lira et al., 2003). Postsynaptic 5-
HT1A receptors expressed in target regions of the dorsal raphe
neurons, such as the frontal cortex, amygdala, septum, and
hypothalamus, are decreased as well (Holmes et al., 2003a,b).
These changes are likely compensatory adaptations in response
to high extracellular 5-HT levels. Finally, there is convincing
evidence that BDNF (brain-derived-neurotrophic factor) mRNA
and protein levels are decreased in the PFC and hippocampus of

5-HTT−/− rats (Molteni et al., 2010), which may correspond to
the lower serum BDNF levels as observed in children with ASD
(Correia et al., 2010; Al-Ayadhi, 2012). Given the role of BDNF in
neuroplasticity, the lower availability of BDNF may contribute to
the structural and functional changes in corticolimbic structures
and white matter tracks in 5-HTTLPR s-allele carriers (sec-
tion The Human 5-HTT Polymorphism) and 5-HTT−/−rodents
(this section).

At the behavioral level, 5-HTT−/− rodents show striking sim-
ilarities with phenotypes observed in 5-HTTLPR s-allele carriers.
For instance, 5-HTT−/− mice show a reduction in exploratory
locomotion in a light/dark exploration and in the homecage
emergence test, as well as reduced open arm exploration in the
elevated plus maze test (Haenisch and Bonisch, 2011). Since the
reduction in activity is not due to impaired motor function,
these results suggest an increase in anxiety-like behavior in 5-
HTT−/− mice (Holmes et al., 2003b). Also 5-HTT−/− rats show
anxiety-related symptoms in these behavioral tests, but without
hypoactivity (Olivier et al., 2008). Whereas these behavioral tests
are species specific, the finding that 5-HTT−/− mice and rats, as
well as human 5-HTTLPR s-allele carriers show impaired fear
extinction (recall) (Garpenstrand et al., 2001; Wellman et al.,
2007; Narayanan et al., 2011; Nonkes et al., 2012) implies that
the role of 5-HTT in emotional control is highly conserved across
species. Also striking is the finding that 5-HTT−/− rodents con-
sistently show a reduction in social interactions, which fit well
with the pro-social behaviors reported for 5-HTTLPR s-allele
carriers (Kiser et al., 2012). Furthermore, in line with the repeti-
tive behaviors displayed by ASD patients (Pierce and Courchesne,
2001), 5-HTT knockout mice displayed higher frequencies of self-
grooming than their wild-type littermates (Kalueff et al., 2010;
Lewejohann et al., 2010). In the domain of communication,
which is affected in ASD, it has been reported that wild-type mice
show more ultrasonic vocalizations (USVs) within the 20–40 kHz
range than prenatally stressed animals of both 5-HTT+/+ and 5-
HTT+/− genotypes, as well as non-stressed 5-HTT+/− animals
(Jones et al., 2010). Furthermore, 5-HTT−/− rats show reduced
prepulse inhibition (Page et al., 2009), implying the sensorimo-
tor integration is impaired in these animals, such that they are
unable to efficiently select sensory information from the exter-
nal world. 5-HTT−/− mice also show a reduced performance
in the gap test measuring the functioning of the whiskers (Pang
et al., 2011). These mice reach a smaller gap distance in this
task, suggesting that their vibrissa related tactile perception is
less sensitive compared to those of control animals. Finally, 5-
HTT knockout mice display reduced inflammatory (Palm et al.,
2008) and thermal (Vogel et al., 2003) pain. Given that ASD
is characterized by impairments in social interaction, percep-
tual changes, as well as anxiety, one may argue that 5-HTT−/−
rodents very well-model a variety of phenotypes relevant for
ASD. Notably, the interpretation of the (endo)phenotypes of
5-HTT knockout rats in the context of ASD is mainly based
on face validity (Homberg, 2013). Furthermore, there are many
factors like gender, age, gene × environment that influence behav-
ior and have not and currently cannot be taken into account
because of limited available information (Kas et al., 2011).
Nonetheless, because the similarities between 5-HTT knockout
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(endo)phenotypes and those of the VPA ASD rat model (see
section Prenatal Valproic Acid Exposure in Humans) is striking
(Markram et al., 2007).

Although fMRI studies in rodents are hampered by the need
for anesthetics in the MRI scanner, ex vivo immunostaining
experiments have revealed morphological alterations in pre-
frontal regions and the amygdala of 5-HTT−/− animals. For
instance, excitatory pyramidal neurons in the amygdala and
PFC of 5-HTT−/− mice showed increased dendritic branching
and an increased number of spines (Wellman et al., 2007). The
early guidance and innervation of the mPFC pyramidal neu-
rons by 5-HT projections from the raphe seem to be affected
as well in 5-HTT−/− rats as was shown by Witteveen et al.
(submitted). It has also been reported that 5-HTT−/− mice dis-
play increased cell density in the neocortex (Altamura et al.,
2007), which may correspond to the increased gray matter found
in s-allele ASD patients (Wassink et al., 2007). Furthermore,
corpus callosum connectivity is reduced in 5-HTT−/− rats, as
measured by Diffusion Tensor Imaging (DTI) (Van der Marel
et al., 2013) (Figure 2). This was noted at the level of the

genu of the corpus callosum, which connects the prefrontal cor-
tices, as has also been observed in ASD patients (Hardan et al.,
2000; Vidal et al., 2006). Perhaps the most distinct morpho-
logical and functional alterations that have been reported in
5-HTT−/− rodents involve the barrel cortex, which is part of
the primary somatosensory cortex representing the whiskers. 5-
HTT−/− rats and mice show a distorted or nearly absent barrel
pattern in cortical layer IV (Persico et al., 2000) (Miceli et al.,
submitted). Furthermore, Esaki et al. (2004) demonstrated that
glucose uptake in the barrel cortex is significantly reduced in
these mice, implying that the barrel cortex is also functionally
impaired (Esaki et al., 2004). These changes may be related to
altered (netrin-1-dependent) guidance of thalamocortical affer-
ents (TCAs), which project to the barrels [see section The
Serotonin Transporter (5-HTT)]. These TCAs appear less mature
and less topologically organized in 5-HTT−/− mice and rats
(Cases et al., 1998). Given that ASD (Marco et al., 2012) and
potentially depression (Kundermann et al., 2009) are associated
with blunted (somato)sensory responses (section Perinatal SSRI
Exposure in Humans) these 5-HTT−/− findings are of great value

FIGURE 2 | A gross overview of the neural changes associated

with increased neurodevelopmental serotonin levels across the

5-HTT, SSRI and VPA conditions (termed as “compromised”).

BLA, basolateral amygdala; DR, dorsal raphe nucleus; MnR,

median raphe nucleus; S1, somatosensory cortex; mPFC, medial
prefrontal cortex. The interaction between the DR and MnR is
based on findings in 5-HTT knockout rats by Witteveen et al.,
submitted.
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to increase our understanding of the pathophysiology of these
psychiatric conditions.

ANTIDEPRESSANT (SSRI) EXPOSURE
PERINATAL SSRI EXPOSURE IN HUMANS
SSRIs are the most frequently prescribed antidepressants to help
overcome depression and anxiety-related disorders. Their main
target is the 5-HTT, which is inhibited by SSRI, leading to a
pharmacologically induced increase in 5-HT levels in the extra-
cellular space. During pregnancy women have an increased risk
to develop depression-like disorders, with reports of depressed
pregnant women ranging between 9 and 16% (Nonacs et al.,
2005; Ververs et al., 2006; Field, 2010; Gentile and Galbally,
2011). Given that depression is associated with an increased
risk of preterm delivery, low birth weight, operative delivery,
and admission of the newborn to the neonatal intensive care
unit (Chung, 2001; Bonari et al., 2004; Field, 2010), antide-
pressant treatment is mandatory. With only few side effects
reported in adults, and therefore regarded safe, SSRIs are the
drug of choice for the treatment of depression during preg-
nancy. As such, around 25% of the depressed women continue
SSRI use, and another 0.5% start using them during preg-
nancy (Ververs et al., 2006). However, SSRIs cross the placenta
(Rampono et al., 2004) with SSRI transfers ranging between a
ratio of 52 and 72% (Rampono et al., 2004). After birth, expo-
sure of the offspring to SSRIs also occurs through breast milk
during the neonatal period of breast feeding (Homberg et al.,
2010; Capello et al., 2011). This is problematic, because SSRI-
induced rises in 5-HT levels can affect neurodevelopmental pro-
gramming. Clinical data have already emphasized the potential
hazards of prenatal SSRI exposure [for review see (Alwan and
Friedman, 2009; Gentile and Galbally, 2011)]. The symptoms
that have been noted in SSRI exposed newborns of depressed
mothers compared to non-exposed newborns of depressed moth-
ers include tremor, hypoglycemia, sudden infant death, pul-
monary hypertension, rigidity, low Apgar scores, startles, tremors,
back-arching, and hypertonic reflexes (Laine et al., 2003; Moses-
Kolko et al., 2005; Chambers et al., 2006; Salisbury et al., 2011;
Colvin et al., 2012), lower birth weights and preterm births
(Lee, 2009; Oberlander et al., 2009; Grzeskowiak et al., 2012),
poor feeding, weaker or absent cry, tachypnea and an increase
in motor activity (Zeskind and Stephens, 2004). Additionally,
it has been reported that infants show blunted somatosensory
responses upon prenatal SSRI exposure(Oberlander et al., 2005),
poorer psychomotor development (Casper et al., 2003, 2011),
an increased risk for ASD symptoms (Croen et al., 2011), and
early death (Colvin et al., 2012). Furthermore, children exposed
in utero to SSRIs that developed a neonatal abstinence syn-
drome were at an increased risk for social-behavioral abnor-
malities (Klinger et al., 2011). Given that 5-HTT−/− rodents
display an impaired whisker dependent tactile perception and
reduced social interactions (a core symptom of ASD) (see Box 1),
there appears to be a striking resemblance between the neu-
rodevelopmental consequences of prenatal SSRI exposure and
genetic 5-HTT down-regulation. This is further supported by
rodent perinatal SSRI exposure studies, as discussed in detail
below.

PERINATAL SSRI EXPOSURE IN RODENTS
Whereas human studies are hampered by ethical and time-related
limitations, rodents are well-suited to obtain insight in the long-
term consequences of prenatal SSRI exposure. Notably, it has been
reported that the placental transfer of fluoxetine is 70–80% in
rodents, and thereby comparable to values reported in humans
(Noorlander et al., 2008; Olivier et al., 2011). This has been shown
to have profound consequences for the structural and functional
organization of the developing brain of the fetus. In rats prena-
tal SSRI exposure does not only block 5-HTT activity but also
reduces its expression. Furthermore, 5-HT2A and 5-HT2C recep-
tor density is reduced, indicating an overall decrease of 5-HT
activity. In addition, the expression of Tph2, which is crucial
for the synthesis of 5-HT, is reduced in the raphe nuclei after
neonatal SSRI treatment (Maciag et al., 2006). Also the number of
5-HTT and TpH2 density is reduced in the raphe nuclei of peri-
natally SSRI exposed rats (Simpson et al., 2011). Autistic children
show decreases of α-methyl-l-tryptophan, which is an analogue
to the 5-HT precursor tryptophan, in the left cortical hemisphere
and exhibit a higher prevalence of severe language impairment,
whereas those with decreases in the right cortical hemisphere
more frequently display left and mixed handedness (Chandana
et al., 2005). Additionally, depletion of tryptophan, the precursor
of 5-HT, has been found to increase various stereotyped behaviors
in autistic children (McDougle et al., 1996). Yet, early-life fluoxe-
tine exposure resulted in the long-term up-regulation of BDNF
expression in adult mice, which seemingly contrast the BDNF
down-regulation in 5-HTT−/− rats (section 5-HTT Knockout
Mice and Rats) and ASD patients (Correia et al., 2010; Al-Ayadhi,
2012).

Also comparable to the human situation is the finding that rats
treated with fluoxetine during pregnancy delivered smaller pups
(Vorhees et al., 1994). It is well-known that weight loss is a side-
effect of fluoxetine in non-pregnant women and in men; therefore
these results could be related to lowered maternal weight gain,
which in turn could limit fetal growth. Furthermore, Noorlander
and colleagues (2008) found that the majority of the mouse pups
that were exposed to fluoxetine during pregnancy died postna-
tally of severe heart failure caused by dilated cardiomyopathy.
Similar effects were found in rats that were exposed to parox-
etine treatment during the last week of gestation, which led to
a shortened gestational length, reduced birth weight and a 10-
fold rise in neonatal mortality (Van den Hove et al., 2008). These
findings may match the increased risk for mortality in prenatally
SSRI exposed children (Colvin et al., 2012). Taking advantage
of the relative short life time of rodents, it has been demon-
strated that prenatal or early postnatal (P4-P21) SSRI treatment
leads to anxiety- (Ansorge et al., 2004; Smit-Rigter et al., 2012)
and depression-related (Hansen et al., 1997; Popa et al., 2008)
phenotypes during adulthood. Furthermore, in correspondence
with the repetitive behavior phenotype of ASD, prenatal SSRI
exposure has been reported to increase grooming and digging
behavior (Rodriguez Echandia et al., 1988), as was reported in 5-
HTT−/− mice (section 5-HTT Knockout Mice and Rats). Besides,
evidence is now accumulating showing that prenatal SSRI treat-
ment leads to blunted somatosensory responses and decreases in
social behavior, as reported for 5-HTT−/− rats. Regarding the
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somatosensory responses, (Lee, 2009) showed that postnatal SSRI
(fluoxetine) treatment from P0-P7 decreased performance in the
whisker-dependent gap test. This effect could be mimicked by
clipping the wishers, and matches the decreased gap test per-
formance reported in 5-HTT−/− mice (Pang et al., 2011). Also
prepulse inhibition was reduced in prenatally fluoxetine exposed
rats (Olivier et al., 2011), indicative for an impairment in sensori-
motor integration. Finally, prenatal (E11-delivery) and perinatal
(P4/8-P21) SSRI treatment have been demonstrated to decrease
social play behavior in juvenile rats (Olivier et al., 2011; Simpson
et al., 2011), aggressive behavior (Manhaes de Castro et al., 2001),
and sexual behavior (Maciag et al., 2006). Again, the reduction
in social behavior across ages is consistent with findings in 5-
HTT−/− rodents, as well as the effects of prenatal SSRI exposure
in humans.

These robust behavioral alterations due to developmental SSRI
exposure must be reflected by changes in the wiring of the brain.
To provide a link with the blunted functioning of the whisker
related somatosensory system, the structure and physiological
properties of the barrel cortex and its afferent thalamocortical
connections have been in the focus of several studies. Fluoxetine,
when applied to rats during PND 0–6, leads to a reduction in
the complexity of TCA projections into the barrel cortex. On
the intracortical target side, excitatory spiny stellate cells within
the layer IV barrel structures possess a reduced dendritic span
and arborization (Lee, 2009). Comparable findings were obtained
by Xu and coworkers (2004), who found that exposure to the
SSRI paroxetine in rats from PND 0 till PND 8 affected the
refinement, but not the formation, of dense clusters of the TCA’s
in the layer IV of the barrel cortex (Xu et al., 2004). Thus,
developmental increases in 5-HT levels lead to substantial alter-
ations in the somatosensory system and most likely explain the
blunted tactile perception as reported in postnatal SSRI treated
rats (Lee, 2009). Of further interest, it has been demonstrated that
postnatal SSRI treatment in rat pups altered the myelination of
axons in the corpus callosum and interfered with oligodendrocyte
(OL) soma morphology. OLs showed hypo- and hypermyelina-
tion (Simpson et al., 2011), and the processes of OL progenitor
cells were shortened, distorted, and/or polarized. Because the
corpus callosum connects hemispheres, it was also investigated
whether the aberrant morphology of OLs affected cortico-cortical
connectivity. Retrograde tracer studies revealed a reduction in
the connectivity between the primary somatosensory cortices
across the hemispheres. This was more pronounced for layers
II/III than for layer IV (barrel cortex) (Simpson et al., 2011).
Although this connectivity has not been investigated in human
5-HTTLPR-s allele carriers, 5-HTT−/− rats, and ASD patients,
the decrease in corpus callosum connectivity found in 5-HTT−/−
rats and ASD patients (see section 5-HTT Knockout Mice and
Rats) may suggest that developmental increases in 5-HT levels
affects myelination, and thereby long-distance connectivity in the
brain. Moreover, the structural uncoupling between the PFC and
amygdala in 5-HTTLPR s-allele carriers (Pacheco et al., 2009;
section 5-HTT Gene Variance in Humans and Rodents) implies
that besides the corpus callosum other white matter tracks are
altered by high developmental 5-HT levels, too. Because complex
behaviors like social behavior requires the correct integration of

information derived from several brain regions, it is conceivable
that alterations in myelination and thereby the long ranging con-
nectivity between hemispheres and brain regions contribute to
the behavioral deficits seen in ASD.

PRENATAL VALPROIC ACID EXPOSURE
PRENATAL VALPROIC ACID EXPOSURE IN HUMANS
Besides prenatal SSRI exposure, prenatal exposure to VPA leads
to ASD-related symptoms in humans and rats. VPA is a mood
stabilizing drug primarily used in the treatment of bipolar disor-
der and epilepsy (Markram et al., 2007). It inhibits the enzyme
histone deacetylase, which mediates epigenetic processes through
acetylation of histone proteins. A decrease in histone acetylation,
as may be induced by VPA treatment, makes the DNA less acces-
sible to the transcriptional machinery and is hypothesized to be
associated with a decrease in gene expression (Yildirim et al.,
2003). Depending on the timing of decreased histone acetylation,
this leads to a cascade of neuropathologies including ASD. Indeed,
case studies have shown that prenatal VPA exposure is likely to
induce ASD (Christianson et al., 1994; Williams and Hersh, 1997;
Williams et al., 2001). An increased incidence of ASD is specifi-
cally found following fetal exposure to the agent around the time
of neural tube closure. It is worth mentioning that this finding has
led to the hypothesis that ASD may be caused by brainstem injury
during embryonic development (Rodier et al., 1996; Arndt et al.,
2005). Given that the raphe nuclei are located in the brainstem
and start to develop at the time of neural tube closure, the sero-
tonergic system is one possible target of VPA-mediated alterations
in gene expression.

PRENATAL VALPROIC ACID EXPOSURE IN RATS
Based on the human case studies, the VPA rat model for ASD
has been established. In rats, the neural tube closes at E9. A
single dose of VPA (350 mg/kg) administered to pregnant dams
on E12.5 results in a decrease in social interactions, increase in
repetitive behavior, enhanced anxiety, impaired fear extinction,
and impaired pre-pulse inhibition (Schneider and Przewlocki,
2005; Schneider et al., 2006, 2007; Markram and Markram,
2010). Remarkably, these behavioral manifestations resemble
those found in 5-HTT knockout (section 5-HTT Knockout Mice
and Rats) and prenatally SSRI exposed (section Perinatal SSRI
Exposure in Rodents) rodents. It has also been reported that pre-
natally VPA exposed rats failed to emit the characteristic 70 kHz
USV preceding mating, and that pups show a reduction in distress
calls (Gandal et al., 2010). Possibly this matches the finding that
5-HTT+/− mice show decreased ultrasonic vocalization (section
5-HTT Knockout Mice and Rats). However, results are diverse
since Felix-Ortiz and coworkers observed an increase of three spe-
cific forms of USVs on PND5 of VPA treated mice (Felix-Ortiz
and Febo, 2012). Furthermore, VPA exposed rats show reduced
pain sensitivity (Schneider et al., 2001; Schneider and Przewlocki,
2005), which may match the reduced pain perception observed in
5-HTT knockout mice (section 5-HTT Knockout Mice and Rats)
as well as the blunted somatosensory responses as reported in pre-
natally SSRI exposed infants (section Perinatal SSRI Exposure in
Humans) and rats (section Perinatal SSRI Exposure in Rodents)
and 5-HTT knockout rats (section 5-HTT Knockout Mice and
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Rats). Recent studies provided direct evidence for VPA interfering
with the serotonergic system. Kuwagata et al. (2009) showed that
a VPA challenge at E11 was associated with abnormal migration
of serotonergic neurons at the level of the pons, which coin-
cidences with the appearance of serotonergic neurons at E10.5.
Yet, others reported that the serotonergic system was pertubated
after administration of VPA at E9, thus at an earlier develop-
mental time point. It was found that VPA exposure at E9 was
associated with an increase in 5-HT levels in the blood as well as
the frontal cortex, hippocampus and cerebellum (Miyazaki et al.,
2005; Dufour-Rainfray et al., 2010). VPA exposure in rats does
not alter the number of serotonergic neurons, but their location
is shifted more caudally within the dorsal raphe nucleus, proba-
bly caused by abnormal serotonergic neuronal differentiation and
migration (Miyazaki et al., 2005; Tsujino et al., 2007). Finally,
in situ hybridization experiments revealed lower cortical expres-
sion of BDNF mRNA in VPA exposed rats (Roullet et al., 2010),
like 5-HTT−/− rats (section 5-HTT Knockout Mice and Rats). In
sum, the VPA rat model shares phenotypic similarities with the
prenatal SSRI and 5-HTT knockout models, and possibly these
models even share 5-HT-mediated structural changes (Figure 2).

From a mechanistic point of view it is striking that both 5-
HTT knockout rats and VPA exposed rats show hyper-reactivity
in cortical layers II/III, as revealed by electrophysiological record-
ings using multi electrode arrays (Rinaldi et al., 2007; Miceli
et al., submitted). This can be caused by increased synaptic effi-
ciency, hyper-connectivity, lack of proper inhibitory control, or by
alterations in neuron density and morphology. Hyper-reactivity
was also found in layers II/III of VPA exposed rats, as reflected
by enhanced long-term potentiation (reflecting altered synaptic
plasticity). Besides the cortex, amygdala hyper-connectivity and
hyper-reactivity have been noted in VPA exposed rats. That is,
neurons in the lateral amygdala were found to be hyper-reactive
when electrically stimulated using the multi electrode array tech-
nology. It was also found that this was due to a reduction in
inhibition (Markram et al., 2007). Furthermore, like in the cor-
tex, long-term potentiation was increased in the amygdala of VPA
exposed rats, indicative for hyper-plasticity. It is well-possible
that this explains the enhanced fear memories (as reflected by
impaired fear extinction) in VPA exposed rats. Although 5-HTT
knockout mice show increased dendritic complexity of pyramidal
neurons in the amygdala (Wellman et al., 2007) and increased cell
density in the neocortex (Altamura et al., 2007), whether there are
similarities at either of these levels in the 5-HTT knockout and
VPA exposed rats remains to be established. Vice versa, the cor-
pus callosum abnormalities reported in perinatally SSRI exposed
rats (Simpson et al., 2011); section Perinatal SSRI Exposure in
Rodents) and reduced corpus callosum connectivity found in 5-
HTT rats (Van der Marel et al., 2013; section 5-HTT Knockout
Mice and Rats) remain to be investigated in the VPA rat model.

As proposed by Markram et al. (2007), autism may be associ-
ated with excessive neuronal information processing and storage
in (cortical) microcircuits. This may lead to hyper-perception,
hyper-attention, and hyper-memory. Simultaneously, autism is
associated with reduced long-distance cortical and subcortical
connections, impairing the integration of different pieces of infor-
mation, and thereby complex cognitive and social functions

(Kana et al., 2011). In other words, autistic patients may expe-
rience the world intensely but fragmented. The impairments in
social behavior may also arise from this fragmented intense world
syndrome, as ASD patients may experience social cues overly
intense while being unable to integrate these social cues as is
needed for a proper understanding. This may lead to avoidance
of eye and social contact. Of interest, we have suggested these
behavioral manifestations also for 5-HTTLPR s-allele carriers,
by using the term “hypervigilance” (Homberg and Lesch, 2011).
We used this term—based on amygdala and prefrontal hyper-
reactivity in fMRI studies—to explain why these individuals are
supersensitive to adverse as well as rewarding environmental
influences. 5-HTT knockout rats show stimulus-bound habitual-
like behavioral responses (e.g., impaired goal-directed behavior
in the reward devaluation task) (Nonkes et al., 2010, 2011, 2012),
which also may be the consequence of a fragmented world: If
the world is perceived as fragmented, it may be very effective to
use conditioned cues as a hand-tight to behaviorally perform in
a world consisting of a “chaos” of intense stimuli. The conse-
quence, however, may be that this leads to behavioral persistence
or repetitive behavior. In both 5-HTT knockout rodents and VPA
exposed rats this for instance may be reflected by fear extinction
failures. Also the lack of goal-directed behavior in 5-HTT knock-
out rats (Nonkes et al., 2010) implies that these animals are unable
to update a previously acquired conditioned response. Possibly,
this matches impairments in goal-directed behavior observed in
ASD patients (Poljac and Bekkering, 2012). It would be intrigu-
ing to assess whether VPA exposed rats show similar phenotypes.
There is, however, one paradox: Whereas the hypervigilance in
5-HTTLPR s-allele carriers (Jedema et al., 2010) and 5-HTT
knockout rodents (Brigman et al., 2010; Nonkes et al., 2011)
conveys increases behavioral flexibility, no changes in behav-
ioral flexibility has been noted in prenatally SSRI treated animals
(Ishiwata et al., 2005). Furthermore, VPA treatment during ges-
tation caused a reduction in behavioral flexibility, (Stanton et al.,
2007). Possibly, non-serotoninergic systems may be involved in
the behavioral inflexibility observed in VPA exposed rats.

DISCUSSION
As we reviewed in this article, there is strong evidence that
5-HT plays a major role in the etiology of mood disor-
ders and particularly ASD. Exposure to elevated levels of 5-
HT over a long time period during crucial periods of brain
development, or a fetal SSRI/VPA challenge during a critical
developmental stage, causes alterations in the wiring of the
brain, both at the microcircuit and macrocircuit level. This
leads to rather consistent behavioral manifestations (Table 1),
including decreased social interactions, increased anxiety-
like behavior, and blunted (somato) sensory perception. The
brain areas that mediate, at least in part, these behavioral
manifestations include the (prefrontal/somatosensory) cortex
and the amygdala. More specifically, it is likely that amyg-
dala hyper-reactivity contributes to anxiety, enhanced fear
memories, and social impairments in 5-HTTLPR s-allele car-
riers, 5-HTT knockout rodents, prenatally SSRI exposed ani-
mals and VPA exposed rats. Indeed, the amygdala is strongly
implicated in signaling the emotional value or salience of
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environmental stimuli, including social stimuli (Adolphs, 2010).
Furthermore, ASD is characterized by amygdala hyper-reactivity
in response to adverse stimuli (Kleinhans et al., 2010; Weng et al.,
2011). Changes in the organization of the “labeled line” of the
somatosensory system are responsible for the alterations in sen-
sory performance of 5-HTT knockout rodents, prenatally SSRI
exposed animals, and possibly also in VPA exposed rats. Given
that social behavior is strongly dependent on how social stim-
uli are perceived, for instance through the whiskers in rodents,
hyper-reactivity in the somatosensory cortex may contribute to
the social impairments in these models as well. Yet, it appears
counterintuitively that cortical hyper-reactivity would contribute
to blunted somatosensory responses and reduced social inter-
actions, unless it represents a compensatory mechanism for
reduced or diffuse sensory input, as described by Miceli et al.
(submitted) based on neuroanatomical findings in 5-HTT knock-
out rats. As speculated (section Prenatal Valproic Acid Exposure
in Rats), if environmental stimuli are perceived overly intense,
these responses are driven by avoidance or withdrawal, as a
self-protective mechanism.

To increase our understanding of the role of 5-HT in brain
development, with important implications for ASD, it would be
essential to fill in the “gaps” in Table 1, and to link structural phe-
notypes to behavior. To this end, new in vivo technologies like

optogenetics will significantly increase the understanding of the
physiological properties of specific cell-types in relation to behav-
ior. E.g., if cortical layer II/III neurons show hyper-connectivity,
optogenetically-mediated modulation in firing of specific excita-
tory or inhibitory neuron classes upon their activation in response
to specific environmental stimuli (e.g., whisker stimulation) may
help to remediate the somatosensory part of the intense world
syndrome. Furthermore, using in utero electroporation, a tech-
nique that allows region specific gene manipulation in embryo’s
(Kolk et al., 2011), we might be able to understand through which
5-HT receptors 5-HT mediates its developmental effects. This
information may eventually lead to pharmacological targets to
steer the structural and behavioral consequences of high 5-HT
levels during embryonic development.

In sum, comparing distinctive human conditions and ani-
mal models characterized by early life perturbations of the
serotonergic system is a powerful approach to unravel the
structural and behavioral consequences of high 5-HT levels
during development. Indeed, similarities in brain and behav-
ior in human subjects and animal models characterized by
high 5-HT levels during development will strengthen the value
of experimental findings and bring us closer to the answer
how 5-HT during development contributes to ASD-related
symptoms.
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