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Fragile X syndrome (FXS) is a debilitating genetic disorder with no cure and few
therapeutic options. Excessive signaling through metabotropic glutamate receptor 5 in FXS
leads to increased translation of numerous synaptic proteins and exaggerated long-term
depression. Two of the overexpressed proteins are amyloid-beta protein precursor (APP)
and its metabolite amyloid-beta, which have been well-studied in Alzheimer’s disease (AD).
Here we discus the possibility that pharmaceuticals under study for the modulation of
these proteins in AD might be viable therapeutic strategies for FXS. Specifically, a recently
identified acetyltransferase inhibitor that reduces the levels and activity of β-site APP
cleaving enzyme (BACE-1) has strong potential to attenuate BACE-1 activity and maintain
homeostatic levels APP catabolites in FXS.
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INTRODUCTION
Fragile X syndrome (FXS) is the most common form of inher-
ited intellectual disability and the leading known genetic cause
of autism (Wang et al., 2010). Clinical features include moder-
ate to severe intellectual disability, autistic-like behavior, anxiety,
seizures, and macroorchidism (Hagerman et al., 2009). Neu-
roanatomical features include an overabundance of long, thin
tortuous postsynaptic spines (Beckel-Mitchener and Greenough,
2004). In the majority of cases, FXS is caused by a trinucleotide
repeat expansion in the promoter region of the fragile X mental
retardation 1 (FMR1) gene, which leads to promoter methylation
and lack of translation of fragile X mental retardation protein
(FMRP). FMRP is an mRNA binding protein that regulates den-
dritic protein synthesis. Research spanning the past two decades
has identified metabotropic glutamate receptor 5 (mGluR5) as a
key member of a group of Gq-linked receptors that activate den-
dritic translation through a signaling cascade upstream of FMRP.
There has been an intense effort to identify the intermediate signal-
ing molecules in the cascade as well as downstream FMRP mRNA
targets (Bhakar et al., 2012). In aggregate, over 500 mRNA ligands
have been identified, many with potential to influence synaptic
structure and plasticity, but only about a dozen have been validated
as evidenced by association with FMRP, dendritic localization, or
synaptic synthesis, and regulation by group 1 mGluR (Bassell and
Warren, 2008). We validated App mRNA as a synaptic target that
is translationally regulated by FMRP and mGluR5 (Westmark and
Malter, 2007). App mRNA codes for a transmembrane protein
amyloid-beta protein precursor (APP), which is processed by β-
and γ-secretases to generate amyloid-beta (Aβ), the predominant
protein found in the senile plaques characteristic of Alzheimer’s
disease (AD) and Down syndrome. Fmr1KO mice, which lack the
translational repressor FMRP, exhibit elevated levels of brain APP

and Aβ, and the brains of FXS patients also appear to have elevated
Aβ (Westmark et al., 2011b). Importantly, downregulation of APP
and consequent reduction of Aβ can rescue many phenotypic
abnormalities of Fmr1KO mice (Westmark et al., 2011b). Thus,
it is our opinion that therapies directed at normalizing APP and
Aβ levels will benefit FXS. Our opinion is relevant and timely as
β-site APP cleaving enzyme (BACE-1) inhibitors are entering clin-
ical trials for the treatment of mild cognitive impairment and AD.
Positive results could be rapidly extrapolated to the treatment of
FXS, which is considered an orphan disease from the standpoint
of treatment development. Herein, we provide a framework for
preclinical studies validating APP and Aβ pathophysiology and
BACE-1 inhibitor efficacy in animal models of FXS.

THE mGluR THEORY OF FXS
“The mGluR Theory of Fragile X” proposed by Bear et al. (2004)
proposes that overactive signaling by group 1 mGluRs (mGluR1

and mGluR5) contributes to many of the psychiatric and neuro-
logical symptoms of FXS. The theory contends that FMRP binds
to synaptic mRNAs and represses their translation. Upon mGluR5

activation, FMRP is inactivated or dislodged from target mRNAs,
and rapid dendritic synthesis of new proteins leads to long-term
depression (LTD) at locally active synapses. In the absence of
FMRP, mGluR5-mediated translation is constitutive and unreg-
ulated. There has been an intense effort by the FXS community
to validate the central role of mGluR5 in FXS. A 50% genetic
reduction of mGluR5 levels in Fmr1KO mice rescues ocular dom-
inance plasticity, the density of dendritic spines, basal protein
synthesis, inhibitory avoidance extinction, audiogenic seizures,
and macroorchidism (Dolen et al., 2007); and pharmacologi-
cal treatment with mGluR5 antagonists rescues FXS phenotypes
in mouse (Mus musculus), fly (Drosophila melanogaster), and
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zebrafish (Danio rerio) disease models (McBride et al., 2005; Yan
et al., 2005; Tucker et al., 2006; de Vrij et al., 2008; Michalon et al.,
2012). In addition, numerous signaling molecules, convergent
signaling pathways and other membrane receptors have been iden-
tified that contribute to the abnormal synaptic plasticity observed
in FXS. Other interacting, and in some cases overlapping, theories
have emerged. “The cAMP Theory of FXS” suggests that alter-
ations in cAMP production contribute to FXS neuropathology
(Kelley et al., 2007). The “The GABAAR Hypothesis” postulates
that GABAAR is a potential therapeutic target because GABAergic
agonists rescue behavioral symptoms of FXS (Heulens et al., 2012).
Key FMRP ligands coding for “LTD proteins” have been identified
and are potential therapeutic targets (Luscher and Huber, 2010).

APP AT THE FXS SYNAPSE
We identified App mRNA as a synaptic target for mGluR5/FMRP
regulation (Westmark and Malter, 2007). FMRP binds to a
guanine-rich region in the coding region of App mRNA and
inhibits translation (Westmark and Malter, 2007; Lee et al.,
2010). Stimulation with the group 1 mGluR agonist (S)-3,5-
dihydroxyphenylglycine (DHPG) releases FMRP from the App
message resulting in increased APP production. In Fmr1KO synap-
toneurosomes and primary neurons, which lack FMRP, basal APP
levels are elevated (Westmark and Malter, 2007; Liao et al., 2008)
and do not change in response to DHPG. Consistent with these
findings, Aβ levels are elevated in the brain of Fmr1KO mice, and
several FXS phenotypes including mGluR-LTD can be rescued by
genetically reducing APP and Aβ levels (Fmr1KO/AppHET mice;
Westmark and Malter, 2007; Westmark et al., 2011b).

Amyloid-beta protein precursor functions in synapse and den-
dritic spine formation, synaptic transmission, and learning and
memory (Hoe et al., 2012). Expression is developmentally regu-
lated with maximal levels during synaptogenesis and subsequent
decline when mature connections are completed. Pathological
examination of brains from FXS patients shows an increased den-
sity of long and tortuous dendritic spines. Similarly, Fmr1KO mice
exhibit elevated spine protrusion length compared to wild type
(WT) littermates. During the first two postnatal weeks, imma-
ture filopodia are replaced by mushroom-shaped spines in WT
mice whereas Fmr1KO exhibit a developmental delay in the transi-
tion from immature to mature spines (Cruz-Martin et al., 2010).
Likewise, Aβ is strongly implicated in impaired synaptic function
(Koffie et al., 2011). Soluble Aβ oligomers facilitate LTD, similar
to the enhancement of LTD that occurs in the hippocampus of
Fmr1KO mice (Huber et al., 2002), and inhibit long-term potenti-
ation (LTP). Aβ is associated with increased hyperexcitability and
seizure activity in AD mice (Palop et al., 2007). Interstitial fluid lev-
els of Aβ vary diurnally in both WT and AD mouse models with
increased levels associated with wakefulness (Kang et al., 2009).
Thus, we predict that the dysregulated expression of APP and
its catabolites during FXS development contributes to aberrant
synapse formation leading to seizures and behavioral, cognitive
and sleep deficits.

A comparison of the AD and FXS literature demonstrates
that many of the identified receptor and signaling molecules
with established roles in FXS are regulated by APP and/or Aβ

(Figure 1). These findings support the contention that APP and

Aβ are key LTD proteins that contribute to FXS pathology, and that
therapeutics currently under study for the modulation of APP pro-
cessing and Aβ levels in AD may be applicable to FXS. A caveat to
this opinion is that there is no evidence of increased AD pathology
in older FXS individuals. Regardless if Aβ forms insoluble plaques
in FXS, increasing evidence suggests that soluble, oligomeric forms
of Aβ are the pathogenic form of the peptide (Ferreira and Klein,
2011).

MAINTAINING SYNAPTIC HOMEOSTASIS IN FXS
Deviations in either direction from the optimal level of synaptic
proteins can adversely affect plasticity (Kelleher and Bear, 2008).
Synaptic deficits in Tsc2 and Fmr1 mutant mice are corrected by
treatments that modulate mGluR5 in opposite directions and dis-
appear in mice that carry both mutations (Auerbach et al., 2011).
Similarly, “too much” or “too little” APP and Aβ in Fmr1KO mice
exacerbates audiogenic seizures (Westmark et al., 2010, 2013).
These data support the requirement for maintenance of home-
ostatic levels of key synaptic proteins in the treatment of FXS and
suggest that therapeutic dosages need to be tightly regulated. In
fact, it is likely that a cocktail of low dosage drugs will be required to
maintain synaptic homeostasis. The results of early-phase clinical
trials with targeted FXS therapeutics have been reviewed (Berry-
Kravis et al., 2011; Gross et al., 2012). Surprisingly, several of these
drugs may be effective in FXS due to off-site activities that modu-
late APP,Aβ, and/or BACE-1. Table 1 lists the drugs in clinical trials
for FXS, their known activities and their expected effects on APP,
Aβ, and BACE-1. Fenobam, lithium, memantine, and minocycline
modulate APP, Aβ, and/or BACE-1. The other listed drugs are
predicted to modulate these proteins based on their mechanism
of action [GABA agonist (Sun et al., 2012), mGluR5 antagonist
(Westmark and Malter, 2007), glycogen synthase kinase-3 (GSK3)
inhibitor (Yu et al., 2012), neurosteroid (Chen et al., 2011), statin
(Kojro et al., 2001), serotonin reuptake inhibitor (Cochet et al.,
2013), or antioxidants (Heo et al., 2013)].

Amyloid-beta protein precursor and Aβ are implicated in
both negative and positive feedback loops predicted to affect
synaptic homeostasis. Kamenetz et al. (2003) determined that
neuronal activity modulates the generation and secretion of
Aβ peptides from hippocampal neurons that overexpress APP.
Aβ in turn selectively depresses excitatory synaptic transmission
through N-methyl D-aspartate receptor (NMDAR) thus com-
pleting a negative feedback loop. Renner et al. (2010) showed
that Aβ oligomers cause dynamic redistribution of mGluR5 to
synapses and thus facilitate increased mGluR5 signaling. We
demonstrated that Aβ induces dendritic APP translation in pri-
mary cultured neurons through an mGluR5-dependent pathway
(Westmark et al., 2011b). Together these studies suggest a pos-
itive feedback loop whereby Aβ oligomers facilitate mGluR5

signaling leading to increased dendritic APP translation, which
provides more target for amyloidogenic processing and the gen-
eration of additional Aβ (Ferreira and Klein, 2011; Westmark,
2013).

SECRETASES MODULATE APP PROCESSING
Anti-Aβ therapies and secretase inhibitors are leading strategies for
reducing Aβ in AD. Aβ immunotherapy has proved very effective
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FIGURE 1 | Amyloid-beta protein precursor and Aβ are key regulators of

synaptic activity. APP is processed by α-, β-, and/or γ-secretases to produce
soluble N-terminal domains of APP (sAPPα and sAPPβ), Aβ and C-terminal
fragments. Aβ increases LTD, inhibits LTP (Koffie et al., 2011), induces
calcium-dependent synaptic vesicle depletion at the presynaptic membrane
(Parodi et al., 2010), binds to numerous postsynaptic surface proteins
including NMDAR (Danysz and Parsons, 2012), activates mGluR5 signaling
(Casley et al., 2009; Renner et al., 2010), induces Arc and APP expression
(Lacor et al., 2004; Westmark et al., 2011b) and interferes with normal
NMDAR and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid
receptor (AMPAR) trafficking by triggering receptor internalization (Hsieh
et al., 2006; Ma and Klann, 2012). Group 1 mGluRs are anchored to NMDAR
via a chain of scaffolding proteins including the long isoforms of Homer,
Shank, and postsynaptic density protein 95 (PSD95). Aβ induces disassembly
of Shank1 and Homer1b clusters (Roselli et al., 2009). Group 1 mGluRs are
upstream of two pivotal signaling pathways, PI3 kinase/Akt/mTOR
(mammalian target of rapamycin)/p70S6K and Ras/MAPK (mitogen-activated
protein kinase)/p90S6K. Both of these pathways regulate the phosphorylation
status of eIF4E, 4E-BPs, and ribosomal protein S6, which positively influence
protein synthesis. Aβ and sAPP activate MAPKERK (Young et al., 2009;
Chasseigneaux et al., 2011). Aβ both inhibits and activates mTOR signaling
(Ma et al., 2010; Caccamo et al., 2011), and activates GSK3β (Takashima et al.,
1996), a key regulator of numerous signaling pathways. APP, sAPP, and the
intracellular C-terminal fragments also affect synaptic homeostasis. APP
anchors cytoplasmic polyadenylation element binding factor (CPEB) to
membranes and promotes polyadenylation-induced translation (Cao et al.,
2005). sAPPα increases de novo protein synthesis (Claasen et al., 2009),
enhances LTP (Taylor et al., 2008), shifts the frequency-dependency for

induction of LTD (Ishida et al., 1997), and disrupts APP dimers at the plasma
membrane (Gralle et al., 2009). While there is only a 17-amino acid difference
between the differentially processed N-terminal fragments, sAPPα possesses
synaptotrophic and neuroprotective activities while sAPPβ can be toxic
(Zheng and Koo, 2011). The C-terminal fragment generated after
amyloidogenic processing of APP is also neurotoxic and activates GSK3 (Ryan
and Pimplikar, 2005). The 104 amino acid C-terminal fragment containing Aβ

impairs LTP (Nalbantoglu et al., 1997). The levels of many synaptic proteins
corresponding to a number of FMRP target mRNAs are constitutively
elevated in the Fmr1KO mouse. A few examples that are regulated by
mGluR5 are illustrated [ARC (activity-regulated cytoskeleton-associated
protein), FMRP, PSD95, MAP1B (microtubule-associated protein 1B),
striatal-enriched protein tyrosine phosphatase (STEP), and APP; Bassell and
Warren, 2008; Goebel-Goody et al., 2012]. Overall, these data strongly
suggest that APP and Aβ are among key LTD proteins whose over-expression
during development play an important role in FXS pathogenesis. Key: major
cellular processes (glutamate release, mGluR5 signaling, AMPAR
endocytosis, translation, LTD, LTP, and APP processing) are boxed. Receptors
(mGluR5, NMDAR, and GABABR) are inserted into the membrane and
differentially colored. Scaffolding (Shank, Homer, Caveolin, and Pike),
signaling molecules (MAPK, mToR, and GSK3), and translated proteins
(ARC, FMRP, PSD95, and MAP1B) are oval-shaped and differentially
colored. APP is colored fuchsia with the Aβ portion in light pink for
amyloidogenic processing (β- and γ-secretase cleavage) and white for
non-amyloidogenic processing (α-secretase cleavage). Secretases are
denoted by the scissors symbols. Sharp arrowheads denote activation
of a protein or process and rounded arrowheads denote inhibition of a
protein or process.
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in reducing soluble Aβ, amyloid plaque and soluble tau as well
as associated cognitive decline in AD mouse models; however,
there are safety questions (Morgan, 2011). An alternative approach
is modulation of secretase activity. β- and γ-secretase inhibitors
are currently in the preclinical stage of investigation for AD and
could provide a means to reduce amyloidogenic processing in
FXS. BACE-1 is a type I transmembrane aspartyl protease that
functions as the rate limiting step in the generation of Aβ. A
BACE-1 inhibitor significantly reduces plasma and brain Aβ in
AD model mice (Ghosh et al., 2008, 2012; Chang et al., 2011). The
potential advantage of BACE-1 inhibitors over mGluR5 antago-
nists and anti-Aβ immunotherapy is that the latter therapies can
reduce APP and soluble APPalpha (sAPPα) through translational
repression and immunodepletion, respectively. APP has normal
physiological functions related to synapse formation so it would
be advantageous to reduce Aβ while maintaining APP and sAPPα

levels. We observed exacerbation of FXS phenotypes in Fmr1KO

mice treated with a high dose of anti-Aβ or genetically null for APP
(Fmr1KO/AppKO mice) suggesting that over-reduction of APP or
a catabolite (presumably Aβ) is as toxic as over-expression likely
due to the loss of neuroprotective sAPPα. α- and γ-secretases
are additional drug targets for reducing Aβ levels. Activation of
α-secretases, which cleave within the Aβ transmembrane region,
would increase the production of the neuroprotective sAPPα frag-
ment and decrease Aβ. The problem associated with the use of
α- or γ-secretase drugs is that they modulate proteolytic pro-
cessing of other proteins that are critical for cellular function
(Vincent and Govitrapong, 2011; Wolfe, 2012). Thus, in our

opinion inhibition of BACE-1 is a plausible therapeutic strategy to
reduce Aβ and rescue ensuing phenotypes in Fmr1KO mice while
maintaining APP and sAPPα levels. Unfortunately, the design of
BACE-1 inhibitors has proven challenging due to the large size
of the catalytic pocket of the enzyme (Gravitz, 2011). As a result,
currently identified BACE-1 inhibitors are largely excluded from
reaching the central nervous system. BACE-1 inhibitors currently
in trials, although able to cross the brain–blood barrier (BBB),
display limited brain bioavailability. Therefore, approaches that
affect BACE-1 expression levels rather than catalytic activity are
being actively sought.

ER-BASED ACETYLTRANSFERASES REGULATE BACE-1
LEVELS AND ACTIVITY
As part of our AD-related research, we discovered a novel form
of post-translational regulation of membrane proteins that has
a dramatic impact on BACE-1 metabolism. Specifically, nascent
BACE-1 is acetylated in the lumen of the endoplasmic reticulum
(ER). The acetylated intermediates are able to reach the Golgi
apparatus and complete maturation whereas non-acetylated inter-
mediates are retained in the ER/Golgi intermediate compartment
(ERGIC) and degraded (Costantini et al., 2007; Jonas et al., 2008;
Pehar and Puglielli, 2013). We identified two novel acetyltrans-
ferases (ATases), ATase1 and ATase2, which acetylate BACE-1 and
thus regulate its levels and activity (Costantini et al., 2007; Ko
and Puglielli, 2009). Both ATases are associated with ER and
ERGIC membranes, have one single membrane domain, have
a highly conserved catalytic domain that faces the lumen of the

Table 1 | Expected effects of drugs in clinical trials for FXS on APP, Aβ, and/or BACE-1.

Drug (clinical trial sponsor) Drug activity Expected effect Reference

Acamprosate (Indiana University) GABA(A and B) agonist ↓ Aβ endocytosis Erickson et al. (2010)

AFQ056 (Novartis Pharmaceuticals) mGluR5 antagonist ↓ APP and Aβ Levenga et al. (2011)

Donepezil (Stanford University) Acetylcholinesterase inhibitor,

GSK3 inhibitor

↓ BACE-1 and Aβ Noh et al. (2009), Sahu et al. (2012)

Fenobam (Neuropharm Ltd; FRAXA) mGluR5 antagonist ↓ APP and Aβ Berry-Kravis et al. (2009), Malter et al. (2010)

Ganaxolone (Marinus Pharmaceuticals) Neurosteroid ↓ Aβ Heulens et al. (2012)

Lithium (FRAXA) GSK3 inhibitor ↓ BACE-1 and Aβ Berry-Kravis et al. (2008), Mines and Jope

(2011), Yu et al. (2012)

Lovastatin (FRAXA) Statin ↓ Aβ and ↑ sAPPα Kojro et al. (2001), Asai et al. (2010),

Osterweil et al. (2013)

Memantine (Indiana University) NMDAR antagonist ↓ APP and Aβ Erickson et al. (2009), Ray et al. (2010)

Minocycline (UC-Davis; FRAXA) Antibiotic (tetracycline

derivative)

↓ BACE-1, ↑ sAPPα

and ↓ Aβ

Paribello et al. (2010), Siopi et al. (2011),

Ferretti et al. (2012)

R04917523 (Hoffmann-La Roche) mGluR5 antagonist ↓ APP and Aβ –

Sertraline (UC-Davis) Serotonin reuptake inhibitor ↑ ADAM10 and sAPPα Indah Winarni et al. (2012)

STX107 (Seaside Therapeutics) mGluR5 antagonist ↓ APP and Aβ –

STX209/Arbaclofen (Seaside Therapeutics) GABA(B) agonist ↓ Aβ endocytosis Berry-Kravis et al. (2012)

Vitamins C and E (MIABHR1) Antioxidants ↓ Aβ –

1The Mediterranean Institute for the Advance of Biotechnology and Health Research
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organelle (Ko and Puglielli, 2009), are expressed in neurons, and
are upregulated in AD brain (Ding et al., 2012). We also identified
two novel biochemical compounds, compound 9 (6-chloro-5H-
benzo[a]phenoxazin-5-one) and compound 19 (2-chloro-3-(2-
ethoxyanilino)-1,4-dihydronaphthalene-1,4-dione), that target
ATase-1 and ATase-2 with high specificity and no apparent off-
site effects (Ding et al., 2012). In cellular (Ding et al., 2012) and
animal models of AD, these compounds dramatically reduce Aβ.
Importantly, preliminary studies show that pharmacologic inhi-
bition of ATase1 and ATase2 rescues synaptic deficits and extends
the lifespan of APP overexpressing mice without evident toxicity.
ATase1 and ATase2 display important structural differences from
other classes of ATases (Pehar and Puglielli, 2013), which could
explain why widespread off-site effects were not observed when
ATase inhibitors were administered to cellular systems (Ding et al.,
2012). Importantly, a single-nucleotide polymorphism that inacti-
vates ATase1 has been identified in <2% of the general population.
Since no disease association has been reported, we speculate that
ATases are viable targets for therapeutic intervention. Thus, the
identification of ATase1 and ATase2 has opened a new field of
research and sparked interest in manipulating this pathway for
therapeutic benefits in AD. While our results were obtained in
AD-relevant settings, we propose to extend these findings to FXS.

BACE-1: A BENCH-TO-BEDSIDE TRANSLATION PLAN
FOR FXS
The prospect that FXS phenotypes can be reduced by targeting
APP processing is stimulating and deserves close attention. The
central hypothesis driving our translation plan is that biochem-
ical inhibition of BACE-1 activity will rescue critical aspects of
FXS pathology by reducing amyloidogenic processing of APP.
We propose a three-step plan for validating the pathophysiol-
ogy of APP, Aβ, and BACE-1 in FXS and the efficacy of the
ATase inhibitors in attenuating disease phenotypes. Our ulti-
mate goal is to generate the necessary preclinical data for a
BACE-1 inhibitor trial in FXS. Inhibition of BACE-1 with ATase
inhibitors potentially offers several advantages in the treatment of
amyloidogenic disorders including substrate specificity and BBB
penetrance.

In Step 1, we propose to assess BACE-1 knockdown in
Fmr1KO mice on established FXS phenotypes. The creation of
tetracycline-inducible Cre/Fmr1KO/iBACEHET mice would allow
for genetic knockdown of BACE-1 at varied points in develop-
ment (gestational, postnatal, and adult) prior to assessing rescue
of phenotypes (seizures, electrophysiology, behavior, sleep, den-
dritic spine, and biomarker expression). The timing of BACE-1
knockdown with Cre technology could provide valuable data
regarding the optimal subject age for therapeutic treatments.
Chronic pharmacological inhibition of mGluR5 reversed estab-
lished FXS phenotypes in adult Fmr1KO mice (Michalon et al.,
2012), and a single dose, open-label clinical trial of the mGluR5

antagonist fenobam improved prepulse inhibition in adult FXS
patients (Berry-Kravis et al., 2009); however, earlier intervention
may show improved efficacy. Results with the Fmr1KO/BACE-1HET

mice could then be used as an efficacy standard for pharmaco-
logical BACE-1 interventions. Of note, BACE-1 knockdown in
Fmr1KO mice is expected to reduce Aβ and rescue hyperexcitability

and seizures; however, these phenotypes are exacerbated in BACE-
1KO mice (Hu et al., 2010). Thus, we propose to reduce, not
obliterate, BACE-1 activity as some Aβ is required for synaptic
homeostasis.

In Step 2, we propose to study the pathophysiology of APP
and Aβ in dfmr flies. Drosophila melanogaster contain both the
dfmr and APPL genes, which are closely related to the mammalian
FMR1 and APP genes, and share many of the same disease-
related phenotypes. Flies are a less expensive, well-established
FXS model (Bushey et al., 2011; McBride et al., 2012; Tessier and
Broadie, 2012) and genetic crosses have the potential to elucidate
the roles of APP and Aβ in learning, memory, sleep/wake cycles,
and biomarker expression.

In Step 3, we propose to inhibit ATase1 with compound 9
in FXS mouse, fly, and human models. Compound 9 efficacy
can be compared with BACE-1 knockdown mice, other BACE-
1 inhibitors, and anti-Aβ therapies. In addition, the effect of
compound 9 on APP processing can be assessed in peripheral
blood mononuclear cells (PBMC) isolated from FXS patients.
Preliminary studies from our laboratory indicate that Aβ is
a potential blood-based biomarker for FXS (Westmark et al.,
2011a,b); thus, it is important to understand the effects of BACE-1
inhibitors on both brain and systemic Aβ levels in FXS. Over-
all, these complementary but distinct approaches to study the
biology of APP, Aβ, and BACE-1 in FXS and to rescue dis-
ease phenotypes in response to compound 9 could provide solid
preclinical data to support testing BACE-1 inhibitors in FXS
clinical trials.

CONCLUDING REMARKS
Due to the inordinate cost of bringing a drug to market, it is highly
unlikely that disease-specific drug screens can be performed for
more than a couple dozen genetic diseases, leaving the vast major-
ity out of the pharmacological lottery. For these patients and their
families, the best hope is repurposing drugs developed for other
diseases. Even for single gene diseases with clear etiologies such as
FXS, it is unlikely that a single intervention will overcome most
of the molecular defects. For example, pharmacological inter-
ventions of the well-studied mGluR5 pathway in FXS have been
successful in overcoming certain (learning deficits and propensity
toward audiogenic seizures), but not other (circadian and sleep
problems), aspects of the disease in fly and rodent models. This
initial research already suggests that “cocktails” of pharmacologi-
cal treatments will be needed to treat the likely multiple pathways
that are affected. From these two perspectives, a cogent case can
be made that the identification of “common molecular targets”
in different diseases is both economically and scientifically sound.
We have identified APP and Aβ as common molecular targets in
AD and FXS and we hypothesize that BACE-1 inhibitors, as devel-
oped for the treatment of AD, will benefit FXS patients. Herein,
we have provided a framework for how APP and Aβ could disturb
synaptic homeostasis as well as future directions for generating
the necessary preclinical data to justify a pilot clinical trial with a
BACE-1 inhibitor in FXS.
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