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The distal structural/functional domains of the neuron, to include the axon and presynaptic
nerve terminal, contain a large, heterogeneous population of mRNAs and an active protein
synthetic system. These local components of the genetic expression machinery play a
critical role in the development, function, and long-term viability of the neuron. In addition
to the local mRNA populations these presynaptic domains contain a significant number of
non-coding RNAs that regulate gene expression post-transcriptionally. Here, we review a
small, but rapidly evolving literature on the composition and function of microRNAs that
regulate gene expression locally in the axon and nerve terminal. In this capacity, these
small regulatory RNAs have a profound effect on axonal protein synthesis, local energy
metabolism, and the modulation of axonal outgrowth and branching.
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INTRODUCTION
The distal structural/functional domains of the neuron (i.e., axon,
presynaptic nerve terminal, and dendrite) are well known to con-
tain a highly diverse population of mRNAs and an active protein
synthetic system. In large, asymmetric neurons, these basic com-
ponents of the genetic machinery play an especially important role
in the development and maintenance of its cellular polarity, as well
as in its synaptic plasticity, regeneration, and repair (for review, see
Jung et al., 2012).

Initial estimates of the diversity of these mRNA populations,
as derived from invertebrate model systems, suggested the pres-
ence of 200–400 different mRNAs (Perrone-Capano et al., 1987;
Moccia et al., 2003). However, the study of mammalian neu-
rons and the resolution afforded by advanced gene profiling
methodology has revealed a remarkable complexity in the axonal
transcriptome (Willis et al., 2005; Taylor et al., 2009; Zivraj et al.,
2010; Gumy et al., 2011). These messengers encode a complex set
of proteins that can be organized into several functional categories
to include: cytoskeletal and scaffolding proteins, translation fac-
tors and ribosomal proteins, molecular motors and chaperones,
and metabolic enzymes.

In addition to these diverse mRNA populations, axons and
nerve terminals also contain numerous microRNAs (miRNAs).
These highly conserved, small, non-coding RNAs play a key role in
the post-transcriptional regulation of gene expression. In general
the bio-genesis and function of miRNAs in the nervous system
has been well reviewed (Schratt, 2009; Siegel et al., 2011; Olde
Loohuis et al., 2012). In this brief communication, attention will be
focused on those miRNAs that function to post-transcriptionally
regulate gene expression locally in the distal structural domains of
the neuron.

IDENTIFICATION OF miRNAs IN THE AXON
In a recent study, Natera-Naranjo et al. (2010) employed primary
sympathetic neurons cultured in compartmentalized Campenot
chambers to obtain a pure axonal RNA fraction to identify the
component miRNAs by microarray analysis. Surprisingly, this
study revealed considerable complexity in the miRNA population
present in this cellular compartment. The relative abundance of
several of these miRNAs was found to be highly enriched in the
axon as compared to the parental cell bodies, a finding that raised
the possibility that there could be a selective transport of these
molecules into the axon (see below).

Of course, estimation of the number of miRNAs present in
the axon, as derived from microarray profiling, is totally depen-
dent upon the numerical threshold used to determine a positive
signal (i.e., the signal to noise ratio). To address this issue, the
authors employed the convergence of the microarray data with
the results obtained from quantitative RT-PCR analyses. High
correlations between the microarray data and the results of quan-
titative RT-PCR were obtained for miRNAs with microarray signal
intensities greater than one standard deviation above median
background values. Hence, using this as a “cut-off” value it was
determined that there was approximately 137 different miRNAs
in the axons of rat superior cervical ganglion neurons (Natera-
Naranjo et al., 2010). It bears mention here that the cell culture
system used in these studies precludes one from distinguishing
between the axon and nerve terminal, and hence reference to
these two cellular compartments will be combined throughout the
review.

Bioinformatic search for putative mRNA targets of the axonally
abundant miRNAs revealed an enrichment of transcripts that
encode proteins that function in neuronal signaling, mRNA
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and protein transport, as well as, mRNA transcription and
translation. Interestingly, this analysis also identified a subset of
axonal miRNAs that potentially target multiple mRNAs involved
in related cellular functions. These observations suggest that
these small, non-coding RNAs in the axon could function to
integrate/orchestrate multiple functions in the axon.

Many miRNAs are expressed as clusters on a single polycistronic
transcript. Interestingly, the relative abundance of some miRNAs
derived from polycistronic transcripts differ markedly in the axon
as compared to their parental cell soma (Natera-Naranjo et al.,
2010). For example, the miRNA-17-92 cluster is comprised of
six individual miRNAs. The relative abundance of two of the
mature miRNAs were two- to fourfold greater in the axon than in
the corresponding cell bodies (Natera-Naranjo et al., 2010; Zhang
et al., 2013). After over-expression of the miRNA-17-92 cluster in
embryonic cortical neurons cultured in microfluidity chambers,
the relative abundance of miR-19b and miR-20a, two components
of the polycistronic transcript, were approximately 5- to 20-fold
greater in the axon compared to the cell soma (Zhang et al., 2013).
The mechanism underlying the differential or selective transport
of these miRNAs is currently unknown, but is eminently worthy
of future investigation.

ACTIVITY OF THE AXONAL PROTEIN SYNTHETIC SYSTEM IS
MODULATED BY miRNAs
One of the most abundant miRNAs present in the axons of
sympathetic neurons is miR-16. Results of a bioinformatics search
for mRNAs whose 3′untranslated regions (UTRs) contained miR-
16 binding sites revealed two mRNAs that encoded eukaryotic
translation initiation factors, eIF2B2 and eIF4G2 (Kar et al., 2013).
The cognate mRNAs for both these factors are present in the axon
and the local expression of eIF2B2 and eIF4G2 proteins can be
modulated by miR-16. The regulation of the expression of these
factors was shown to be effected through the binding of miR-16

to the 3′UTR with subsequent degradation of the mRNAs. The
transfection of the precursor miRNA directly into the axon greatly
reduced the levels of these factors and markedly inhibited the activ-
ity of the local protein synthetic system, as judged by metabolic
labeling studies. Similar effects on local protein synthesis and
axon growth were observed after small interfering RNA-mediated
knockdown of axonal eIF2B2 and eIF4G2 mRNA. Taken together,
these findings demonstrated that the expression of miRNAs in the
distal axon could modulate local protein synthesis by regulating
the expression of key components of the translation system.

miRNAs REGULATE ENERGY METABOLISM IN THE AXON
One surprising feature of all axons studied to date is the presence
of a large number of nuclear-encoded mitochondrial mRNAs. It
has been estimated that in large invertebrate axons and presynap-
tic nerve terminal nearly one-quarter of the newly synthesized
protein is destined for mitochondria, and that the membrane
potential and activity of this organelle is highly dependent
on the local synthesis of these rapidly turning over proteins
(Hillefors et al., 2007; Kaplan et al., 2009).

It is noteworthy that several of these nuclear-encoded mito-
chondrial mRNAs code for proteins that play a key role in oxidative
phosphorylation, a finding that suggests that their local synthesis
might contribute to the regulation of ATP production. At least two
of these mitochondrial mRNAs, cytochrome c-oxidase (CoxIV)
and ATP synthase (ATP5G1) contain a binding site for miR-338 in
their 3′UTRs. Both of these binding sites are situated in a hairpin-
loop structure that could facilitate miRNA accessibility (Figure 1).
Axonal transfection studies conducted with chimeric reporter gene
constructs containing these putative binding sites established that
they were bona fide targets of miR-338 (Aschrafi et al., 2008, 2012).
Consistent with these findings, the over-expression of miR-338
in the axon greatly reduced the levels of endogenous CoxIV and
ATP5G1 mRNA and protein in the axon, and resulted in marked

FIGURE 1 | miR-338 binding sites in nuclear-encoded mitochondrial

mRNAs present in the axon. The secondary structure of the 3′UTRs of
CoxIV and ATP5G1 mRNAs were predicted by Mfold analyses. The

miR-338 binding site present in a 38-nucleotide stem-loop structure is
indicated in gray. Nucleotides comprising the microRNA targeting
sequence are bolded. Modified from Aschrafi et al. (2012).
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reduction in local ATP levels and elevation in the production of
reactive oxygen species (ROS). In contrast, inhibition of endoge-
nous miR-338 function had the opposite effects on axonal ATP
levels and ROS generation.

To delineate the impact of the modulation of local levels of
miR-338 on the metabolic rate and function of axons of noradren-
ergic sympathetic neurons, mitochondrial oxygen consumption,
as estimated by reduction of the redox dye Alamar Blue, as
well as norepinephrine uptake into the axon was assessed after
introducing precursor miR-338 or anti-miR-338 directly into
the axon. Under the cell culture conditions employed in these
experiments, modulation of the local levels of miR-338 had a
profound effect on the metabolic rate and function of the axon
(Aschrafi et al., 2008).

LOCAL EXPRESSION OF miRNAs EFFECT AXONAL GROWTH
AND BRANCHING
In light of the fact that miRNAs can influence the activity of
the intra-axonal protein synthetic system, as well as local energy
metabolism, it is not surprising that the expression of these
small regulatory RNAs could have profound effects on the growth
and branching of the axon. For example, elevation of the lev-
els of miR-338 or miR-16 in the axons of cultured primary
sympathetic neurons inhibits their rate of elongation (Aschrafi
et al., 2008, 2012; Kar et al., 2013). The attenuation in axonal
outgrowth could be attributed, at least in part, to the dys-
regulation of mitochondrial function with consequent elevation
in the production of ROS in the axon. In this regard, partial
restoration of axonal growth could be effected by the applica-
tion of anti-oxidants to the culture media (Natera-Naranjo et al.,
2012).

In a recent study, Zhang et al. (2013) reported the expression
of the components of the miR-17-92 cluster in the distal axons
of primary embryonic cortical neurons. Over-expression of this
cluster substantially increased axonal outgrowth, whereas the inhi-
bition of endogenous miR-19a, a key component of the cluster,
suppressed axonal growth. The local effects of this miRNA were
attributed to the modulation of phosphatase and tension homolog
(PTEN) protein levels by miR-19a.

In an elegant series of experiments, Dajas-Bailador et al.
(2012) demonstrated that inhibition of local miR-9 in primary
embryonic cortical neurons facilitated axonal outgrowth and
inhibited branching of the axon. Ostensibly, these effects were
mediated through the regulation of one of its targets, microtubule-
associated protein 1b (MAP1B). Interestingly, although miR-9 was
detected in dendrites, the over-expression of this miRNA had no
effect on their length, a finding which could reflect the preferential
localization of Map1b mRNA to the developing axon.

To assess the role of miR-9 in vivo, Dajas-Bailador et al. (2012)
introduced a specific miR-9 inhibitor into the cerebral cortex of
14.5 day mouse embryos. The inhibition of endogenous miR-9
activity resulted in a severe disruption of neuronal migration and
differentiation.

Taken together, these findings indicate that miRNAs play an
important role in the function and development of the axon
through the post-transcriptional modulation of the expression of
key constituents of the local mRNA population.

DISCUSSION
Recent research has revealed the presence of a diverse population
of miRNAs in the axon and presynaptic nerve terminal. Nonethe-
less, only a few of these miRNAs and their target genes have been
characterized, and hence the function of the vast majority of these
non-coding RNAs remains unknown. Some of these miRNAs are
expressed specifically in brain and the relative abundance of oth-
ers differs markedly in the various cellular compartments of the
neuron. These observations suggest a unique regulatory role for
these RNAs in the development, maintenance and function of the
distal regions of this highly polarized cell.

One remarkable feature of miRNAs is that they can co-
ordinately regulate the expression of multiple mRNAs that encode
proteins with related cellular functions. In this regard, miRNAs
might be envisaged as “master regulators” of the expression of
batteries of genes which comprise functional networks and/or
pathways (for review, see Olde Loohuis et al., 2012). One case
in point, is miR-338 which targets several mRNAs that code for
proteins that are key components of the enzymatic complexes that
comprise the oxidative phosphorylation chain. It is important to
note here, that the effects of miR-338 on CoxIV and ATP5G1
expression are additive and hence, this miRNA could serve to
“fine-tune” the local production of ATP in response to neuronal
activity.

On a more global level, non-coding RNAs, such as miR-16, have
been shown to regulate the activity of the axonal protein synthetic
system, itself. This effect was mediated through the modulation
of the expression of two translation initiation factors (Figure 2).
Thus, through this mechanism, miR-16 could affect the local
expression of large numbers of gene products. One might spec-
ulate that some of these locally synthesized proteins are likely to
play an important role in the activity-dependent modulation of
the function of the axon and nerve terminal, as well as in synaptic
plasticity.

In view of the effects of miRNA on protein synthesis and local
energy metabolism, it is not surprising that these non-coding
RNAs could have a profound effect on the growth and devel-
opment of the axon. These findings support the hypothesis that
miRNAs play a central role in gene regulatory networks involved
in axon development, as well as the plasticity of the presynaptic
nerve terminal. These observations also raise the possibility that
dysregulation of miRNA function might play a role in the patho-
physiology of neurological and psychiatric disorders (for review,
see Qureshi and Mehler, 2012; Rege et al., 2013).

Despite the evidence for the existence of a host of miRNAs in
the axon, there is a dearth of knowledge regarding the mech-
anism(s) underlying the transport of these RNAs to the distal
regions of the neuron. Several models have been proposed for
the selective shuttling of miRNAs to the synapse (for example, see
Kosik, 2006). These working hypotheses include: co-delivery of
the miRNAs with their cognate mRNA targets via RNA granules;
mRNA-independent delivery of mature/functional miRNAs; and
the delivery of precursor miRNAs followed by their sequential local
processing to the mature, functional form of the non-coding RNA.
This last model is supported by several reports of the presence of
miRNA processing machinery in mammalian axons (Hengst et al.,
2006; Aschrafi et al., 2008; Zhang et al., 2013). In addition, the
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FIGURE 2 | Model for miRNA-mediated regulation of neuronal function.

In the neuron, protein synthesis occurs in multiple compartments that
include the cell body, dendrite, axon, and presynaptic nerve terminal. A
subset of mRNAs transcribed in the nucleus are packaged into stable
messenger ribonucleoproteins complexes (mRNPs) and are selectively
and rapidly transported to the distal structural/functional domains of the
neuron. The selective translation of these localized mRNAs plays key roles
in neuronal development, axon growth and maintenance, and synaptic
plasticity. Neuronal miRNAs function at multiple levels within the neuronal
gene expression system to modulate neuronal activity and function. It has
been shown that miRNAs regulate the local post-transcriptional gene

expression of specific target mRNAs that encode factors affecting
mitochondrial activity (see inset) as well as axonal growth and branching.
In addition, miRNAs can also modulate translation of multiple mRNAs
in the axon and nerve terminal by regulating local expression of eukaryotic
translation factors (see inset). It is also conceivable that miRNAs might
regulate the local synthesis and retrograde transport of transcription factors
in response to growth factors or neural injury and hence influence gene
transcription in the parental soma. Last, miRNA control of the local
synthesis of cytoskeletal and/or motor proteins might facilitate the
regulation of their own anterograde transport to their ultimate sites of
function.

introduction of precursor miRNAs directly into the axon results
in a marked increase in the levels of the mature, functional forms
of the molecule within hours (Aschrafi et al., 2008). These obser-
vations clearly indicate that axons have the capability to process
precursor miRNAs to mature forms of the molecule. One inter-
esting question for future research is whether synaptic activity
could regulate axonal miRNA trafficking or alternatively regu-
late the retrograde transport of protein(s) that could influence
miRNA transcription in their parental neurons (Figure 2). In
this regard, it is well known that transcription factors can be
locally synthesized in the axon and retrogradely transported to the
neuronal cell nucleus, especially in response to neurotrophic sig-
naling and/ or neuronal injury (Cox et al., 2008; Gumy et al., 2010;
Ben-Yaakov et al., 2012). However, to date, no studies have inves-
tigated the role that miRNAs might play in the local regulation of
axon regeneration.

Future characterization of the axonal miRNA regulatory
landscape will generate further insights into the molecular
basis of axonal activity, maintenance, and neuronal function.
Moreover, recent studies have delineated the functional sig-
nificance of miRNAs in the regulation of local translation
in developing axons, dysregulation of which might ultimately
underlie the etiology of neurodevelopmental disorders and mental
illness.
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