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K+ channels are important determinants of seizure susceptibility. These membrane
proteins, encoded by more than 70 genes, make the largest group of ion channels that
fine-tune the electrical activity of neuronal and non-neuronal cells in the brain. Their
ubiquity and extremely high genetic and functional diversity, unmatched by any other ion
channel type, place KT channels as primary targets of genetic variations or perturbations
in KT-dependent homeostasis, even in the absence of a primary channel defect. It is
therefore not surprising that numerous inherited or acquired Kt channels dysfunctions
have been associated with several neurologic syndromes, including epilepsy, which often
generate confusion in the classification of the associated diseases. Therefore, we propose
to name the KT channels defects underlying distinct epilepsies as “K* channelepsies,”
and introduce a new nomenclature (e.g., Kx.y-channelepsy), following the widely used K+
channel classification, which could be also adopted to easily identify other channelopathies
involving Na* (e.g., Nayx.y-phenotype), Ca?* (e.g., Cayx.y-phenotype), and ClI~ channels.
Furthermore, we discuss novel genetic defects in KT channels and associated proteins
that underlie distinct epileptic phenotypes in humans, and analyze critically the recent
progress in the neurobiology of this disease that has also been provided by investigations
on valuable animal models of epilepsy. The abundant and varied lines of evidence
discussed here strongly foster assessments for variations in genes encoding for K+t
channels and associated proteins in patients with idiopathic epilepsy, provide new avenues
for future investigations, and highlight these proteins as critical pharmacological targets.

Keywords: Potassium channels: [Kv1, Kv2, Kv3, Kv4, Kv8, Kv11(HERG), Kca1.1, KvB1, Kvf2, KChIP LGI1, Kir1-Kir7
(GIRK, Karp)l, temporal lobe epilepsy, autism—epilepsy, channelopathies

INTRODUCTION

Epilepsy is a brain disorder due to abnormal firing of neu-
ronal networks in the brain that often causes convulsions, muscle
spasms, and loss of consciousness. Seizures sometimes cause
brain damage, particularly if they are severe. More than 2 million
people in the United States—about 1 percent—have experienced
an unprovoked seizure or been diagnosed with epilepsy. For about
80 percent of those diagnosed with epilepsy, seizures can be
controlled pharmacologically, or treated surgically. However, the
rest of people with epilepsy—intractable epilepsy—will continue
to experience seizures even with the best available treatment.
Although the causes of epilepsy are numerous, the fundamental
disorder is secondary to abnormal synchronous discharges of a
network of neurons, either due to neuronal membrane instabil-
ity, or an imbalance between excitatory and inhibitory influences.
Neurons store and convey information in the form of electri-
cal impulses generated by ion channels. Neuronal excitability
can be controlled by both the intrinsic activity of K™ channels
and the receptors-mediated modulation of their activity (Pessia
et al., 1994; Imbrici et al., 2000; Pessia, 2004; D’Adamo et al.,

2013). Their opening and resulting outward K* flux dampen
neuronal excitability and therefore they are viewed as inhibitory
channels. However, contrary to this general notion, increased
K™ channel activity may also result in enhanced cell excitabil-
ity. Hence, K+ channels are critical for neuronal excitability, as
they control the resting membrane potentials and enable rapid
repolarization of the action potentials. Moreover, they are essen-
tial effectors of neurotransmitter-mediated signaling, regulator of
Ca’* homeostasis and cell survival. To fulfill these pivotal func-
tions efficiently, K™ channels are found in virtually every cell
of the human body, are distinguished by being the largest and
most diverse class of ion channels, and are encoded by more
than 70 genes (http://www.genenames.org/genefamily/kcn.php).
An additional reason for their large diversity resides in the fact
that they form macromolecular complexes, involving several pro-
teins. The need for such a large number of K* channels remains
unclear.

In the past few years, several types of epilepsies have
been associated to dysfunction of K™ channels, resulting from
mutations in their encoding genes (Table 1), which appear prime

Frontiers in Cellular Neuroscience

www.frontiersin.org

September 2013 | Volume 7 | Article 134 | 1


http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/about
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/Cellular_Neuroscience/10.3389/fncel.2013.00134/abstract
http://community.frontiersin.org/people/LuigiCatacuzzeno/108197
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=GiuseppeDi_Giovanni_1&UID=60645
http://community.frontiersin.org/people/FabioFranciolini/108205
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MauroPessia&UID=65380
mailto:maria.dadamo@unipg.it; mauro.pessia@unipg.it
http://www.genenames.org/genefamily/kcn.php
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive

D’Adamo et al.

Potassium channelepsies

elements potentially underlying idiopathic epilepsy. Indeed, the
extremely high molecular and functional diversity of K™ chan-
nels, unmatched by any other types of channels, places them
(by statistical probability alone) as primary targets of genetic
variations. Besides the intrinsic KT channels’ gene defects asso-
ciated with epilepsy, it is increasingly clear that also disrup-
tion/modification in K™ channel properties, even in the absence
of a primary channel defect, may underlie increased susceptibil-
ity to seizures. The association between Kt channel dysfunctions
and epileptic phenotypes is also confirmed by a multitude of
animal models of epilepsy, that is, animals carrying Kt channel
mutations or genetic manipulations and displaying spontaneous
seizures or increased susceptibility to stimulus-induced seizure
(Table 2). The extremely high diversity of K* channels and the
numerous variations identified in their genes often generate con-
fusion in the classification of the associated diseases. Therefore,
we propose to name the K™ channels defects underlying dis-
tinct epilepsies as “K™ channelepsies,” and offer a new classifica-
tion according to a widely used K* channel nomenclature (e.g.,
Kyx.y). Moreover, here we discuss the different aspects of K+
channels dysfunctions underlying distinct epileptic phenotypes
and describe the recent progress in the neurobiology of seizure
susceptibility in animal models of epilepsy. Comprehensive
knowledge of the neurobiological processes altered by K™ channel
defects is a pivotal step to identify original therapeutic solutions
for this devastating disease. Full understanding of how mutations
in K* channels give rise to distinct human and animal epilep-
tic phenotypes requires a basic knowledge of their molecular
features, expression pattern, and physiological roles. Thus, brief
overviews on these topics for each K™ channel subfamily have
been included.

VOLTAGE-GATED K+ CHANNELS AND CHANNELEPSY
Voltage-gated K channels (Kv) are generally closed at the rest-
ing membrane potential of nerve cells (ca—70mV) and open
following membrane depolarization. At a single channel level,
membrane depolarizations elicit channel opening and closing (a
process named gating) visible as upwards and downwards deflec-
tions of current trace (Pessia, 2004). The first Kv channel was
cloned from the Shaker mutant of Drosophila melanogaster in
1987 (Tempel et al., 1987). The human ortholog of Shaker Kt
channel is encoded by the gene KCNAI(Kvl.1). Since the first
cloning, several other genes encoding for Kv channels have been
identified from many different species. Based on sequence relat-
edness, Kv channels have been classified in subfamilies by using
the abbreviation Kvy.x (Chandy and Gutman, 1993). According
to this standardized nomenclature Shaker-related channels have
been classified in the subfamily Kvl.x and each member num-
bered Kvl.1 through Kv1.8. The same criteria have been used
to classify channels related to the Drosophila subfamilies Shab
(Kv2.1 and Kv2.2), Shaw (Kv3.1 to Kv3.4), and Shal (Kv4.1 to
Kv4.3). These channels may exist as homomers, whenever four
identical a-subunits are assembled. However, different types of
a-subunits may heteropolymerize to form channels with func-
tional and pharmacological properties that are different from the
parental homomeric channels (Isacoff et al., 1990; Ruppersberg
etal., 1990).

The predicted 496 amino acids of the Kvl.1 o subunit form
six transmembrane segments (TM) with the N- and C-termini
residing inside the cell. TM5, TM6, and the H5 loop linking them
contribute to the ion-conducting pore, and the GYG residues, that
reside within the loop, control the K™ selectivity of the channel.
The TM4 segment of each Kvl.1 a subunit is made of regularly
spaced positively charged arginines and lysines and embodies the
main voltage-sensor region that opens the channel by undergoing
a conformational rearrangement upon membrane depolarization
(Pessia, 2004). The full crystal structure, provided for a Kv chan-
nel, confirmed that this channel is composed of four homologous
pore-forming o subunits (Jiang et al., 2003a,b). The description
of the membrane-delimited Kv channel structure, T1 domain and
p subunits allowed elucidation of many biophysical mechanisms
controlling channel function. The Kv1 family members exhibit
diverse expression patterns in the central and peripheral nervous
system and are found tightly clustered within distinct neuronal
compartments (Trimmer and Rhodes, 2004). Kv channels reg-
ulate the duration of action potentials, modulate the release of
neurotransmitters, control the excitability, electrical properties,
and firing pattern of central and peripheral neurons (Pessia,
2004). Moreover, the activity of Kv channels can be dynami-
cally modulated by several events, including neurotransmitter-
stimulated biochemical cascades (Imbrici et al., 2000; D’Adamo
et al., 2013). Knowledge of their precise targeting and neuro-
physiological functions has important implications for defining
the roles played by each Kv channel type in the pathophysiology
of epilepsy.

Kv1.1 CHANNELEPSY

Episodic ataxia type 1 (EA1) [OMIM 160120] is a Shaker-like
K* channels disease characterized by constant myokymia and
dramatic episodes of spastic contractions of the skeletal muscles
of the head, arms, and legs with loss of both motor coordi-
nation and balance (D’Adamo et al., 2012). EAl was clearly
described during the mid ‘70s by van Dyke and colleagues who
first reported electroencephalographic (EEG) recordings charac-
terized by runs of paroxysmal slow waves and generalized motor
seizures in the proband’s mother (van Dyke et al., 1975). The sub-
sequent genetic analysis revealed that the individuals displaying
epilepsy carried the F184C mutation in their KCNAI gene that
profoundly altered the channel’s properties (Browne et al., 1994;
Adelman et al., 1995). Confirmations of an increased suscepti-
bility to seizures in EAl came from several subsequent studies
(Table 1). Isolated photosensitive generalized tonic—clonic seizure
(Imbrici et al., 2008) and abnormal EEGs have been observed
in individuals with EA1 (Zuberi et al., 1999). EEGs may be
characterized by intermittent and generalized slow activity, fre-
quently intermingled with spikes. Zuberi et al. (1999) described a
3-year-old boy who presented with an ictal EEG with rhythmical
slow-wave activity over the right hemisphere, becoming spike-
and-wave complexes that then spread to the left hemisphere.
Neuronal circuit dysfunctions within the hippocampus have been
postulated to play a role in seizures and cognitive dysfunctions
associated with EA1. Indeed, the hippocampus is a major brain
region of the limbic system which plays an important role in
the consolidation of information and in spatial memory, and it
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Table 1 | Human K* channelepsies.

Channel Gene/protein Expression in brain Epilepsy type Gene References
regions relevant to mutation/channel
epilepsy dysfunction
KCNAT/Kv1.1 (pore Axons/terminals of Generalized and partial Loss-of-function Assaf and Chung, 1984;
forming a subunit) hippocampal neurons seizures associated to mutations generally Browne et al., 1994;
(Shaffer collateral axons EA1 associated with Adelman et al., 1995;
and mossy fibers reduced current D’Adamo et al., 1998,
contacting CA3 amplitudes; positive 1999; Zuberi et al.,
neurons); hippocampal shift of the activation 1999; Geiger and
interneurons of hilus V1,2; increased Jonas, 2000; Cusimano
and CA1; neocortical sensitivity to ZnZ+ et al., 2004; Imbrici
pyramidal neurons inhibition et al., 2006, 2007,
2008; Guan et al., 2006
KCNAB2/KvB2 (B Widely expressed in Severe epilepsy Allele deletion/ Heilstedt et al., 2001
accessory subunit for cerebral cortex and including infantil haploinsufficiency
Kv1 channels) hippocampus spasms
LGI1 (Accessory Neocortex and Autosomal dominant E383A, frameshift Kalachikov et al., 2002,
protein for Kv1 hippocampus lateral temporal lobe with protein Morante-Redolat et al.,
channels) epilepsy truncation/Mutated 2002
LGI1 does not
” prevent KvB1-mediated
E: Kv1 channel
s inactivation, a function
] performed by the WT
t protein
K
- KCND2/Kv4.2 (I pore Dendrites of Temporal lobe epilepsy Truncated Kv4.2 Singh et al., 2006
g," forming a subunit) hippocampal neurons subunit/attenuated Ip
g current density
g Febrile and afebrile R7K, M285K/Reduction

KCNV2/Kv8.2 (silent
subunit associating
with Kv2 channels)

Pyramidal neurons and
principal excitatory
neurons of the
pyramidal cell layers
and the dentate gyrus;
cortex, with high levels
of transcript in Layers
2/3and 5

partial seizures;
epileptic
encephalopathy

of Kv2.1 mediated
current; M285K impairs
the voltage-
dependence of the
channel

Jorge et al., 2011

KCNQ2-3/ Kv7.2-3 (M
current pore forming a
subunit)

Widely expressed in
brain at neuronal cell
bodies

Benign familial neonatal
convulsions

Five-base pair insertion
deleting more than 300
amino acids from the
KCNQ2; missense
mutations in critical
regions for KCNQ3
channel function /
Reduced KCNQ current
amplitudes

Biervert et al., 1998;
Charlier et al., 1998;
Schroeder et al., 1998;
Singh et al., 1998

KCNHZ2/Kv11.2 (HERG
channel pore forming a
subunit)

Widely expressed in
brain

Epilepsy associated
with type 2 long QT
syndrome

Loss-of-function
mutations

Keller et al., 2009;
Omichi et al., 2010; Tu
etal., 2011,
Zamorano-Leon et al.,
2012

(Continued)
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Table 1| Continued

Channel Gene/protein Expression in brain Epilepsy type Gene References
regions relevant to mutation/channel
epilepsy dysfunction
KCNMA1/Kcar.1 (BK Axons and pre-synaptic Generalized epilepsy D434G/ Increase of Du et al., 2005;

Ca2*-dependent K* channels

channel pore forming a
subunit)

terminals of excitatory
neurons of cortex and
hippocampus

and paroxysmal
diskynesia

channel open
probability and calcium
dependence of Kcat 1
expressed alone or with
KCatH ' KCaﬁZr or KCaﬁA;
loss-of-function of
KCa1_q/Kcaﬁ3—mediated
currents

Diez-Sampedro et al.,
2006; Lee and Cui,
2009; Yang et al., 2010

KCNMB3/Kcaga
(accessory protein for
Kca1.1 channels)

Widely expressed at
low levels in brain

Idiopathic generalized
epilepsy

Loss-of-function of
Kcat.1/Kcapz-mediated
currents

Behrens et al., 2000;
Hu et al., 2003; Lorenz
etal., 2007

Inwardly-rectifying K* channels

KCNJ2/Kir2.1 (pore
forming a subunit)

Hippocampus, caudate,
putamen, nucleus
accumbens; to lower
levels in habenula and
amygdala

Seizures associated to
the Andersen Tawil
Syndrome (ATS)

Loss-of-function
mutations with
dominant-negative
effects

Haruna et al., 2007;
Chan et al., 2010

KCNJ10/Kir4.1 (pore
forming a subunit)

Oligodendrocytes and
astrocytes surrounding
synapses and blood
vessels, mainly in the
cortex, thalamus,
hippocampus, and
brainstem

Seizure susceptibility

R271C missense
variation; no alteration
in the biophysical
properties of the
channel when
heterologously
expressed

Buono et al., 2004;
Connors et al., 2004;
Shang et al., 2005

Epilepsy associated to
EAST syndrome

Loss-of-function
recessive mutations

Bockenhauer et al.,
2009; Scholl et al., 2009

Epilepsy associated to
autism spectrum
disorders (ASDs)

R18Q, V84M,
gain-of-function of
Kird.1 and
Kir4.1/Kir6.1-mediated
current

Sicca et al., 2011

KCNJ11/Kir6.2 (Karp
channel pore forming a
subunit)

ABCC8/SUR1 (Katp
channel accessory
regulatory subunit)

Hippocampus (principal
neurons, interneurons,
and glial cells);
neocortex, entorhinal
and piriform cortex

Developmental delay,
epilepsy and neonatal
diabetes mellitus
(DEND syndrome)

Gain-of-function
mutations leading to
decreased channel
inhibition by ATP, or
enhanced Mg?+-
nucleotide-induced
activation

Karschin et al., 1997;
Hattersley and Ashcroft,
2005

The table depicts the principal inherited human channelepsies caused by mutations in K¥ channel a subunits or associated accessory proteins. For each channelepsy,

information about the name of the mutated gene/protein, its expression in brain regions relevant to the pathology, type of epilepsy and association with other known

syndromes, and dysfunction in channel behavior caused by the mutations are reported.

is often the focus of epileptic seizures. In rodent hippocampus,
Kvl.1, Kv1.2, and Kvl.4 are found in Schaffer collateral axons
and are highly expressed in axons and terminals of the medial
perforant path in the middle third of the molecular layer of
the dentate gyrus. In particular, Kvl.1, Kv1.4, and Kvf1.1 sub-
units are expressed in mossy fiber boutons (swellings of mossy
fiber axons) that form en passant synapses with pyramidal neu-
rons in CA3. The macromolecular channel complex, composed

of these subunits, regulates the activity-dependent spike broad-
ening of hippocampal mossy fiber boutons and, consequently,
the amount of neurotransmitter released during high-frequency
stimuli (Geiger and Jonas, 2000). Mutations associated with EA1
profoundly alter the function of heteromeric channels composed
of Kvl.1, Kv1.2, Kv1.4, and KvB 1.1 subunits (D’Adamo et al., 1999;
Imbrici et al.,, 2006) that likely contributes to seizures suscep-
tibility and cognitive symptoms (Imbrici et al., 2006) in EAL.
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Table 2 | Animal models of K* channelepsies.

Channel

Gene/protein

Animal model/channel
disfunction

Epilepsy phenotype

Functional effects of
mutation on neurons
relevant to epilepsy

References

Voltage-gated K* channels

Kena1/Kv1.1 (pore
forming a subunit)

Kv1.1V408A/+ mice/ EA-1
mutation that alters the
biophysical properties of
the channel

unknown

Cf. Table 1 for WT
expression; unknown

Kv1.1=/~ knockout mice

Spontaneous seizures
resembling human
temporal lobe epilepsy

Hippocampus with
neural loss, astrocytosis,
and mossy fiber
sprouting; mossy fiber
stimulation mediates
long-latency epileptiform
burst discharges; mossy
fibers and medial
perforant path axons
were hyperexcitable and
produced greater pre-
and post-synaptic
responses with reduced
paired-pulse ratios

Smart et al., 1998; Rho
et al., 1999

Kv1.153097/+ rats/80%
smaller current
amplitudes with
dominant-negative
effects

neuromyotonia and
spontaneous convulsive
seizures aggravated by
stress

Cortical and hippocampal
EEG with aberrant large
spike activity associated
with falling-down
behavior, low-voltage fast
wave discharges during
the tonic stage,
spike-and-wave
discharges (2 Hz) during
the clonic convulsive
stage. Behavioral
phenotypes and
abnormal discharge
patterns similar to other
rodent models of
temporal lobe epilepsy

Ishida et al., 2012

mceph/mceph mice,
carrying a 11-basepair
deletion in the Kcnal
gene. The mutation
leads to a frame shift and
to a premature stop
codon

Running seizures,
complex partial seizures
and post-anesthetic
tonic-clonic seizures

Increased brain volume
and hypertrophic brain
cells; hippocampal
hyperexcitability
consistent with limbic
status epilepticus

Donahue et al., 1996;
Petersson et al., 2003

Adar2~/~ mice

Increased susceptibility
to epileptic seizure

Adenosine deaminase
(Adar2) acting on Kv1.1
mRNA and leading to a
gain-of-function of the
resulting current
(increased amplitude and
faster recovery from
inactivation). Adar2 also

edits the mRNA of AMPA

glutamate receptors

Higuchi et al., 2000;
Bhalla et al., 2004

(Continued)
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Table 2 | Continued

Channel Gene/protein

Animal model/channel
disfunction

Epilepsy type

Functional effects of
mutation on neurons
relevant to epilepsy

References

Kcna2/Kv1.2 (pore
forming a subunit)

Kv1.2=/~ knockout mice

Spontaneous generalized
seizures

WT Expression: mainly
overlapping with that of
Kv1.1 channels; fibers
and neuropil, but not
somata, neocortex;
synaptic terminals of
entorhinal afferents.
Strongly expressed in
axon initial segment,
where they partecipate
to action potential
generation

Brew et al., 2007

Kenab2/KvB2 (B subunit
for Kv1 channels)

Kvp2~/~ knockout mice/
B2 promotes the
trafficking of Kv1.1 and
Kv1.2 to the membrane
surface

Increased neuronal
excitability, occasional
seizures

Cf. Table 1 for WT
expression;

deficits in associative
learning and memory;
reduction in the slow
afterhyperpolarization
and concomitant
increase in excitability of
projection neurons in the
lateral nucleus of the
amygdala

McCormack et al., 2002;
Connor et al., 2005;
Perkowski and Murphy,
201

Kchip2 (Accessory
subunit for Kv4 channels)

Kchip2~/~ knockout
mice/ Reduced I current
density and slowed
recovery from
inactivation in
hyppocampal neurons

Increased susceptibility
to seizure induced by
kindling

WT Expression: apical
dendrities of
hyppocampal pyramidal
cells

Chronic hyperexcitability
of hyppocampal
pyramidal neurons

Wang et al., 2013

LgiT (Accessory protein
for Kv1 channels)

Lgi1=/= knockout mice/
Kvp1-mediated Kv1
channel inactivation is
not prevented, a function
performed in WT mice

Lethal epilepsy; the
heterozygous has a
lowered seizure
thresholds

Cf. Table 1 for WT
expression.

A lack of Lgi7 disrupts
synaptic protein
connection and
selectively reduces
AMPA receptor-mediated
synaptic transmission in
the hippocampus

Fukata et al., 2010

Kend2/Kv4.2 (15 pore
forming a subunit)

Kv4.2=/= knockout mice

Enhanced susceptibility
to kainate-induced

seizure, but see Hu et al.,

2006

Cf. Table 1 for WT
expression. Increased
epileptiform bursting in
area CA1

Hu et al., 2006;
Nerbonne et al., 2008;
Barnwell et al., 2009

Kenb4/KCaB4 (accessory
subunit for Kca 1.1
channels)

Ca?*-dependent
K* channels

K=/
Cap4d
mice/Gain-of-function of

Kca1.1-mediated current

Temporal cortex seizures

WT expression: axons
and presynaptic
terminals of shaffer
collaterals and CA3
hippocalpal neurons.
Higher firing rate of
dental gyrus neurons

Jin et al., 2000; Raffaelli
et al., 2004, Brenner

et al., 2005; Shruti et al.,
2008; Sheehan et al.,
2009

(Continued)
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Table 2 | Continued

Channel Gene/protein

Animal model/channel
disfunction

Epilepsy type

Functional effects of
mutation on neurons
relevant to epilepsy

References

Kenj6/Kir3.2 (GIRK2
channel pore forming a
subunit)

Kir3.2~/~ knockout mice

Spontaneous
convulsions and
increased propensity for
generalized seizures;
more susceptible to
pharmacologically-
induced

seizure

WT expression: cortex,
hippocampus, weaker
signal in thalamic nuclei
and amygdaloid nuclei;
reduced GIRK1
expression in brain

Signorini et al., 1997

Weaver (w/w) mice,
G156S/alteration of the
K+ selectivity of the
channel

epileptic seizures

Neurodegeneration;
calcium oveload within
cells, reduced GIRK1
expression in brain

Patil et al., 1995;
Slesinger et al., 1996

Kenj10/Kird. 1 (pore
forming a subunit)

Inwardly-rectifying K channels

Kir4.1=/= knockout mice

Stress-induced seizures

WT expression:
oligodendrocytes and
astrocytes sourronding
synapses and blood
vessels in cortex,
thalamus, hyppocampus,
braistem

No membrane
depolarization is
observed in astrocytes
following [K*], increase
by neuronal activity

Neusch et al., 2001;
Djukic et al., 2007

DBA/2 mouse strain,
T262S missense
variation resulting in a
barium-sensitive Kir
currents in astrocytes
substantially reduced; No
alteration in the
biophysical properties of
the channel

Greater susceptibility to
induced seizures
compared to the
C57BL/6 strain

Potassium and glutamate
buffering by cortical
astrocytes is impaired

Ferraro et al., 2004,
Inyushin et al., 2010

Kenj11/Kir6.2 (Karp
channel pore forming a
subunit)

Kir6.2~/~ knockout mice

High-voltage sharp-wave
bursts EEG

Cf. Table 1 for WT
expression;

Substantia nigra neurons
are depolarized by
hypoxia (WT neurons are
instead hyperpolarized)

Yamada et al., 2001

The table depicts the principal animal models of epilepsy caused by mutations in K+ channel o subunits or associated accessory proteins. For each animal model,

information about the name of the mutated gene/protein, type of epileptic phenotype, dysfunction in channel behavior caused by the mutation, and functional

effects of the mutation are reported.

Notably, epileptiform brain activity has also been associated with
intracranial administration of Zn%* salts, and changes in Zn?t
modulation of GABA receptors have been implicated in the eti-
ology of epilepsy. Zn?>* is released from mossy fiber terminals
in the hippocampus, and from the basket cell terminals of the
cerebellum (Assaf and Chung, 1984) where Kvl channel activ-
ity likely is subjected to Zn?* modulation. Indeed, homomeric
and heteromeric channels containing Kvl subunits are inhib-
ited by extracellular Zn?", and a distinct EA1 mutation increases

several folds the Zn?" sensitivity of these channels (Cusimano
et al., 2004; Imbrici et al., 2007). Whether Zn** plays a role in
triggering epilepsy-like symptoms in EAl remains an intriguing
hypothesis. A murine model that recapitulates the EA1 phenotype
(mKv1.1V#084/T) has been generated by inserting in the mouse
Kcnal(mKvl.1) a very conservative valine to alanine substitu-
tion (V408A) previously identified in patients (Herson et al.,
2003; Brunetti et al., 2012, Table2). Although data concern-
ing the mKvI.1V4084/% are not yet available, the role of Kv1.1
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channels in the neurobiology of epilepsy has been investigated
by using Kv1.1 knockout mice (mKvI.17/~). The hippocam-
pus of these animals displays morphological characteristics typ-
ical of epilepsy, with neural loss, astrocytosis, and mossy fiber
sprouting (Rho et al., 1999). Moreover, mKv1.1~/~ also exhibits
frequent spontaneous seizures throughout adult life, although
the intrinsic passive properties of CA3 pyramidal cells are nor-
mal (Table2). Antidromic action potentials were recruited at
lower thresholds in mKv1.17/~ slices, and mossy fiber stimu-
lation triggered synaptically-mediated long-latency epileptiform
burst discharges. These data indicate that loss of Kv1.1 results
in increased excitability in the CA3 recurrent axon collateral
system, perhaps contributing to the limbic and tonic—clonic com-
ponents of the observed epileptic phenotype of EA1 (Smart et al.,
1998). Recently, in vitro extracellular recordings were performed
by using a multielectrode array to characterize spontaneous
sharp waves and high frequency oscillations in mKv1.1~/~ hip-
pocampi. This study showed that the mossy fibers and medial
perforant path axons of mKv1.1~/~ were hyperexcitable and pro-
duced greater pre- and post-synaptic responses with reduced
paired-pulse ratios. Microdissection of mossy fibers and per-
forant path in mKv1.1~/~ hippocampal slices ameliorated the
abnormal oscillatory pattern and improved spike timing. In con-
trast, blockade of Kv1.1 channels with dendrotoxin-K reproduced
these effects in WT slices. These findings suggest that loss of
Kvl.1 enhances synaptic neurotransmitter release in the CA3
region, which reduces spike timing precision of individual neu-
rons, leading to disorganization of network oscillatory activity
and promoting the emergence of fast ripples (Simeone et al.,
2013).

N-ethyl-N-nitrosourea (ENU) mutagenesis has been widely
used to generate animal models of human diseases. An ENU-
mutagenized rat strain has been recently generated and named
“autosomal dominant myokymia and seizures” (ADMS) rats
(Ishida et al., 2012). Genetic analysis of these animals resulted
in the identification of the missense mutation S309T in the
voltage-sensor domain of Kv1.1 channels (rKv1.1539T/%), This
heterozygous mutation resulted in 80% smaller current ampli-
tudes with dominant-negative effects (Table 2). From 16 weeks
of age severe periodic seizures were observed, and by 30 weeks
of age, 84% of rKv1.15°T/* had died. Cooling induced severe
neuromyotonia, ataxia and aberrant spike-and-wave discharges
(2-3 Hz) associated with clonus behaviors. Spontaneous convul-
sive seizures from 10 to 16 weeks of age were aggravated by stress
(cage changing or animal handling). Cortical and hippocampal
EEG recordings identified aberrant large spike activity associ-
ated with falling-down behavior, low-voltage fast wave discharges
detected during the tonic stage, and spike-and-wave discharges
(2Hz) detected during the clonic convulsive stage (Ishida et al.,
2012). The behavioral phenotypes and abnormal discharge pat-
terns in rKv1.I15%T/* are similar to other rodent models of
temporal lobe epilepsy (TLE). Carbamazepine (CBZ) administra-
tion ameliorated seizures. The videos related to this animal model
of EA1 are available online at doi:10.1016/j.brainres.2011.11.023.

The megencephaly mice, mceph/mceph, are characterized by
increased brain volume, hypertrophic brain cells and slight
hippocampal astrocytosis. They display a complex behavioral

phenotype including running seizures, complex partial seizures
and postanaesthetic tonic-clonic seizures (Donahue et al., 1996,
Table 2). Remarkably, an 11-basepair deletion in the Kcnal gene
of mceph/mceph mice has been identified (Petersson et al., 2003).
The mutation leads to a frame shift and a premature stop codon
that was predicted to truncate the protein at amino acid 230 (out
of 495). Therefore, mceph/mceph mice express Kvl.l subunits
lacking the last five TMs and the C-terminal domain: The absence
of Kv1.1 channels with intact C-terminal domains was confirmed
by Western blotting analysis of whole protein extracts from brain.
Electrophysiological investigations from mceph/mceph brain slices
revealed hippocampal mceph/mceph brain slices revealed hip-
pocampal hyperexcitability consistent with limbic status epilep-
ticus (SE) C-teminal domain of Kvl.1 channels (R417stop) has
also been found in a EA1 proband displaying episodes of ataxia
precipitated by exercise, stress, startle or high temperature occur-
ring after a hot bath or when using a hairdryer but, absence of
epilepsy (Eunson et al., 2000).

Kv1.2 knockout mice display increased seizure susceptibility
(Brew et al., 2007, Table 2). It should be recalled that Kv1.1 and
Kv1.2 are closely coupled K™ channel subunits, as they form
heteromeric channels in several brain regions. Indeed, biochemi-
cal and electrophysiological studies have shown that Kv1.1/Kv1.2
channels control neuronal excitability, action potentials propaga-
tion and synaptic transmission. Notably, EA1 mutations alter the
function of heteromeric channels composed of Kv1.1 and Kv1.2
subunits (D’Adamo et al., 1999). In conclusion, these investiga-
tions with animal models of Kv1.1 channelepsy highlighted the
crucial brain regions that are likely the site of origin of abnormal
discharges in EA1 and the relevant mechanisms underlying their
susceptibility to seizures.

ROLE OF RNA EDITING IN Kv1.1 CHANNELEPSY

Kvl.1 mRNA is target for enzymatic deamination by adenosine
deaminase acting on RNA (ADAR2). Knockout mice for the
ADAR2 gene are prone to epileptic seizures and die within a few
weeks after birth (Higuchi et al., 2000, Table 2). Kv1.1 editing by
ADAR? results in channels with an 1400V exchange in the S6 seg-
ment (Kv1.1%V)_ In vitro, an increase in increase in Kv1.1400V
editing increases K outward current upon membrane depo-
larization and accelerates recovery from inactivation at negative
membrane potentials (Bhalla et al., 2004). Interestingly, increased
levels of Kv1.1M0V editing were found in chronic epileptic rats. It
has also been reported a reduced ability of 4-AP to trigger seizure-
like effects in brain slices dissected from a kainic acid rat model
of chronic epilepsy (Zahn et al., 2008; Streit et al., 2011). A sim-
ilar phenomenon was observed in human brain slices of patients
with pharmacoresistant TLE (Gabriel et al., 2004). The postulated
ictiogenic mechanism of 4-AP action is its ability to block KvI
and Kv3 channels, which results in increased transmitter release.
Kv1.1™90V editing results in 4-AP-insensitive homomeric Kv1.1
channels, and alters the pharmacology of heteromeric channels
(Decher et al.,, 2010; Streit et al.,, 2011). These findings sug-
gest that mRNA editing of Kv1.1 in chronic epilepsy may to the
reorganization of the entorhinal cortex and have anticonvulsive
effects. The editing of Kvl.1 mRNA could therefore represent a
compensatory mechanism in brain areas where epileptic seizures
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originate. TLE, namely spontaneous seizures involving the hip-
pocampal formation, is the most prevalent refractory epilepsy.
TLE can be sub-classified into mesial, lateral and neocortical.
Mesial TLE (MTLE) is defined by clinic-anatomical observa-
tions and characterized by seizures arising from the hippocampus
or parahippocampal structures, and frequent pharmacotherapy
resistance. A recent screening study identified a significant nega-
tive correlation between epilepsy duration in patients with MTLE
plus hippocampal sclerosis and the I/V editing site of Kv1.1 chan-
nels. This may be the result of the epileptic process itself, together
with the medication history of the patient, and may thus reflect
compensatory mechanisms to either of these factors (Krestel et al.,
2013).

Kv4 CHANNELEPSY

Kv4 channels underlie the main dendritic A-type Kv currents
in hippocampal neurons and play a critical role in regulating
the extent to which back-propagating action potentials invade
the dendritic tree. They also impact the propagation of synap-
tic potentials from the dendritic arbor to the soma (Jerng et al.,
2004). The relevance of Kv4.2 to epilepsy comes from the iden-
tification of a mutation in a patient with TLE, which results in
the expression of a truncated Kv4.2 subunit (Singh et al., 2006,
Table 1), and the observation that pharmacological blockade of
Kv4 channels is epileptogenic (Avoli, 2001). These studies sup-
port the concept that Kv4.2 deficiency may contribute to aberrant
network excitability and regulate seizure threshold. Intriguingly,
it has been reported that Kv4.2 knockout mice do not exhibit an
overt seizure phenotype (Hu et al., 2006), perhaps due to post-
translational up-regulation of other Kv currents (Nerbonne et al.,
2008). A more recent study, however, suggests that loss of Kv4.2
channels is associated with enhanced susceptibility to seizures
after kainate injection (Barnwell et al., 2009, Table 2).

Systemic administration of the muscarinic agonist pilocarpine
to rats recapitulates the features of human limbic seizures and
SE. The expression of a number of different K* channels, includ-
ing Kv (Monaghan et al., 2008) and K¢, (BK) channels (Pacheco
Otalora et al., 2008) is altered in response to pilocarpine-induced
SE. The amplitude of A-type currents in the dendrites of hip-
pocampal CA1l pyramidal neurons is reduced in response to
pilocarpine-induced seizures (Bernard et al., 2004). In addition
to Kv4.2, Kv4.3 and KChIP2 current decrease, pilocarpine-treated
rats exhibited staining changes for these proteins in the molecular
layer of the dentate gyrus from being uniformly distributed across
the molecular layer to become concentrated in just the outer two-
thirds (Monaghan et al., 2008). As a consequence, an increased
dendritic excitability was found in CA1 pyramidal cell dendrites
in response to the same pilocarpine model of TLE (Bernard
et al.,, 2004). In situ hybridization studies revealed that general-
ized seizures induced by pentylenetetrazol (Tsaur et al., 1992) or
kainic acid (Francis et al., 1997) also altered the regional hip-
pocampal gene expression of rat Kv4.2. A decrease of A-current
density in this proximal region of the granule cell dendrite—
a location that receives massive aberrant excitatory mossy fiber
input following induction of SE and as spontaneous seizures
develop—would lower the firing threshold and thus contribute
to the development of spontaneous recurrent seizures. On the

other hand, seizures in vivo and glutamate in vitro induce a
rapid surface recruitment of Kv4.2 channels in neurons. Thus,
seizure would induce dampening of phasic firing, generated by
glutamatergic synaptic transmission, by enhancing the surface
expression of Kv4.2 channels. Interestingly, mutant LGI1 blocks
this homeostatic neuronal response (Smith et al., 2012). Thus,
it seems that convulsants may affect Kv4 currents in different
ways and compensatory pathways may be recruited to dampen
hyper-excitability.

One of the most pronounced anatomical effects of TLE, exhib-
ited in the pilocarpine animal model, is mossy fiber sprouting.
The expansion of Kvl.4 staining in stratum lucidum of CA3
in pilocarpine-SE animals suggests that expansion of the mossy
fiber terminal field, due to SE-induced sprouting, is accompa-
nied by parallel increases in targeting of Kvl.4 to the newly
sprouted mossy fiber axons and terminals. Changes in Kvl1.4
immunoreactivity were observed also in the molecular layer of
the dentate gyrus. In conclusion, variations in A-type Kv1.4-
containing channels in mossy fiber presynaptic terminals, and
Kv4.2-containing channels in dentate granule cell and CAl
dendrites, represent important mechanisms intervening in the
acquisition of the permanent epileptic phenotype in this ani-
mal model of human TLE and attractive therapeutic targets.
Moreover, these studies highlighted the essential nature of Kv4.2
and the specific contributions of its auxiliary KChIP subunits
(see below) in regulating the seizure susceptibility associated with
epileptogenesis.

Kv7-M-CHANNELEPSY

Five members of the KCNQ gene family have been
identified (KCNQI-5) which form homomeric or het-
eromeric K channels. In many brain regions, heteromeric
KCNQ2(Kv7.2)/KCNQ3(Kv7.3) channels seem the major
determinant of “M” currents that are inhibited by several
neurotransmitters, including acetylcholine (ACh) through the
muscarinic receptors (Devaux et al., 2004; Pan et al.,, 2006).
Functionally, these slow-gating K™ channels that are open at
subthreshold voltages, contribute to setting the resting mem-
brane potential of neurons, prevent repetitive firing, and control
spike-frequency adaptation. Indeed, blockade of M-currents
is associated with depolarization of the resting membrane
potential, and generation of trains of action potentials (Brown
and Adams, 1980; Delmas and Brown, 2005). Mutations in
KCNQ2 or KCNQ3 cause a form of juvenile epilepsy called benign
familial neonatal convulsions (Biervert et al., 1998; Charlier et al.,
1998; Schroeder et al., 1998; Singh et al., 1998, Table 1). The
clinical features of KCNQ2-related benign familial neonatal
epilepsy (KCNQ2-BENE) are characterized by tonic or apneic
episodes, focal clonic activity, or autonomic changes that start
between the second and eighth day of life and spontaneously
disappear between the first and the sixth to 12" month. The
KCNQ2-related epileptic encephalopathy (KCNQ2-NEE) is
characterized by multiple daily seizures that begin the first week
of life, are mostly tonic, with motor and autonomic features,
and cease after 9 months to 4 years. Most affected individuals
are intellectually impaired (Bellini et al., 1993-2013). Just a 25%
decrease in M-current amplitude is sufficient to drive human
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neurons to epileptogenic levels, and causes neonatal epilepsy
(Schroeder et al., 1998). The clinical severity of the disease may be
related to the extent of mutation-induced functional K channel
impairment (Miceli et al., 2013). Drugs that enhance neuronal
M-currents, such as retigabine, represent a valuable therapeutic
treatment for certain hyperexcitatory diseases, including epilepsy
(Porter et al., 2012). Flupirtine, a structural analogue of reti-
gabine, which also activates channels formed by neuronal Kv7
subunits, has been shown to be effective in animal models of
neonatal convulsion (Raol et al., 2009). Kv7.1 (KCNQI) channels
are mainly expressed in the heart where they contribute to
termination of the action potential. Mutations in KCNQI(Kv7.1)
are responsible for one form of long QT syndrome (LQT1)
(Wang et al., 1996). However, Kv7.1 channels are also expressed
in the brain. Intriguingly, LQT1 patients exhibit an increased risk
of epilepsy, suggesting a relationship between these two diseases
(see below). Notably, M-channels are also highly sensitive to
intracellular Ca®* variations, being inhibited by Ca?* with an
IC50 of ~100 nM in sympathetic neurons (Selyanko and Brown,
1996; Gamper and Shapiro, 2003). Recently, it has been proposed
that abnormal [Ca’*]i transients induced by Kvl.1 channel
dysfunction may result in repetitive discharges in myelinated
nerves (Brunetti et al., 2012). This mechanism may underlie not
only the neuromyotonic/myokymic discharges typically observed
in EA1 individuals, but also their susceptibility to seizures.

The neuronal serum- and glucocorticoid-regulated kinase 1
(SGK1.1) appears to be a physiological M-current regulator, as
it enhances Kv7.2/3 current levels. Transgenic mice expressing
a constitutively active form of SGK1.1 are resistant to kainic
acid-induced seizures which occur mainly in the temporal lobe.
These findings indicate that SGK1.1 activity can regulate neuronal
excitability through M-current modulation and protects against
seizures (Miranda et al., 2013).

Kv8 CHANNELEPSY: ROLE OF THE SILENT MODIFIERS OF K*
CHANNELS IN EPILEPSY

A number of subunits have been cloned and classified in the K*
channel subfamilies Kv6, Kv8, and Kv9. Although they possess the
hallmarks of Kv subunits they do not appear to form functional
homomeric Kt channels when expressed alone and, therefore,
have been named “silent” subunits. However, these proteins do
co-assemble with other Kv subunits (e.g., Kv2), and confer dis-
tinct biophysical properties to heteromeric channels Kv2/Kv6,
Kv2/Kv8, or Kv2/Kv9. Thus, these gene products are also known
as “silent modifiers” of Kv channels. In particular, Kv8.2 (KCNV2)
co-assembles with Kv2.1 as a heterotetramer, significantly reduc-
ing the surface expression of the resulting channels and influenc-
ing their biophysical properties. Within the hippocampus, Kv2.1
and Kv8.2 co-localize in pyramidal neurons and in the principal
excitatory neurons of the pyramidal cell layers and the dentate
gyrus. Moreover, both are expressed in the cortex, with high lev-
els of transcript in layers 2/3 and 5 (Allen brain atlas; http://
www.brain-map.org). These regions are critically involved in
seizure generation and propagation. It has been shown that Kv2.1
channels contribute significantly to the delayed-rectifier K* cur-
rents in hippocampal neurons (Murakoshi and Trimmer, 1999).
Importantly, knockdown of Kv2.1 in hippocampal slices resulted

in increased CA1 pyramidal neuron excitability under conditions
of high-frequency stimulation (Du et al., 2000). Thus, the Kv2.1
current reduction, mediated by the inclusion of Kv8.2 subunits in
heterotetramers, could regulate the membrane repolarization and
excitability of hippocampal neurons, contributing to seizure sus-
ceptibility. Indeed, mutations in two related silent subunits have
been associated with neurological disorders (Table 1). In partic-
ular Kv8.2 (KCNV2) with epilepsy (Jorge et al., 2011) and Kv9.1
(KCNS1I) with chronic pain (Costigan et al., 2010). Recently, an
individual affected by febrile and afebrile partial seizures has
been reported to carry a genetic variation in KCNV2, inherited
from his unaffected mother. This resulted in the substitution of
a highly conserved lysine for an arginine (R7K) in the cytoplas-
mic amino terminus of Kv8.2 subunits. An additional patient who
inherited a methionine to arginine mutation (M285R) in Kv8.2
subunits from his unaffected mother was likewise identified with
an epileptic encephalopathy and with severe refractory epilepsy
(Jorge et al., 2011). The pathogenic relevance of these variants
was assessed by electrophysiological recordings from cells co-
expressing the human Kv2.1 with Kv8.2 wild-type or its mutated
subunit (R7K or M285R). This assay showed that both variants
suppressed Kv2.1-mediated current more than the wild-type; in
addition, the M285R impaired the voltage-dependence of the
channel. These results suggest that both variants enhance seizure
susceptibility of affected patients by reducing neuronal delayed-
rectifier Kt channel function in brain regions critically involved
in seizure generation and propagation (Jorge et al., 2011).

The severity of seizures in mouse models of epilepsy is highly
dependent on their genetic background. In transgenic mouse
models of sodium channel-dependent epilepsy, the phenotype
is more severe in SJL/] compared with the C57BL/6] strain
(Bergren et al., 2005). Interestingly, it has been shown that
the hippocampal Kv8.2 (Kcnv2) transcript is ~3-fold greater in
SJL/] compared with the C57BL/6] strain (Jorge et al., 2011).
The enhanced availability of Kv8.2 subunits for co-assembling
with Kv2.1 would remarkably reduce the surface expression of
the resulting channels in hippocampal neurons of SJL/] mice
contributing to their greater susceptibility to seizures.

In conclusion, these studies implicate Kv8.2 (Kcnv2) as an
epilepsy gene in rodents and humans. Moreover, although silent
subunits have been mostly ignored since they were first cloned
a decade or more ago, their potential clinical relevance is now
becoming fully evident and therefore represents an attractive new
avenue of investigation in neurologic channelopathies research.

Kv11-HERG-CHANNELEPSY

The human ether-a-go-go-related gene (HERG) encodes for
voltage-gated K' channels. HERG channels exhibit func-
tional properties remarkably different from other K* chan-
nels (Tristani-Firouzi and Sanguinetti, 2003). They are widely
expressed in the brain where they contribute to setting the fre-
quency and the discharge stability of neurons, and to adapt-
ing their intrinsic properties to signal processing (Pessia et al.,
2008). They also modulate the excitability of dopaminergic and
GABAergic neurons (Nedergaard, 2004; Canavier et al., 2007).
HERG channels are expressed in the heart where they control the
repolarization of ventricular action potentials. Loss-of-function
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mutations in KCNH2 (HERG) cause type 2 long QT syndrome
(LQT?2), a condition in which the induced delayed repolarization
of the heart following a heartbeat increases the risk of episodes
of sudden death due to ventricular fibrillation. However, LQT
syndrome is closely associated with seizure and frequently it is
misdiagnosed as epilepsy (Table1). Sudden unexpected death
in epilepsy is the most frequent epilepsy-related cause of death
for which an underlying arrhythmogenic predisposition has been
suggested. Several clinical reports have recently described seizures
and arrhythmic events in LQT2 triggered by visual or acous-
tic stimuli (Keller et al., 2009; Omichi et al., 2010; Tu et al.,
2011; Zamorano-Leén et al., 2012). Considering that HERG
channels control several neuronal electrical features, including
discharge dynamics (Pessia et al., 2008), these clinical findings
raise the possibility that alteration in KCNH2-encoded K™ chan-
nels may confer susceptibility for epilepsy and cardiac LQT2
arrhythmia.

AUXILIARY SUBUNITS OF K* CHANNELS AND
CHANNELEPSIES

K™ channels expressed by distinct cell types may be formed by
unique hetero-oligomeric complexes comprising auxiliary sub-
units. Several types of these subunits have been identified includ-
ing beta-subunits (KvB), minK (minimal K* channel peptide),
MiRP (minK-related peptide), KChAP (K" channel-associated
protein), KChIP (Kt channel-interacting protein) and neuronal
calcium sensor (NCS). Each type of auxiliary subunit modulates
the activity of the associated K* channel in distinct ways. Defects
in these subunits may alter the function of the channel and result
in increased seizure susceptibility.

Kv@ CHANNELEPSY

Auxiliary subunits such as Kvf1.1 and KvB1.2 confer fast N-type
or A-type inactivation to non-inactivating Kv1 channels by means
of a “ball-and-chain” mechanism of pore occlusion whereby the
tethered (chain) positively charged inactivation particle (ball)
in the amino-terminus of the Kvf1 subunit binds to the intra-
cellular entrance of the pore discontinuing the outflow of K+
ions. The fast inactivation of delayed-rectifier K channels is a
physiologically relevant process, as it controls the firing prop-
erties of neurons and their response to input stimuli (Pessia,
2004). Surprisingly, KvB1.1 knockout mice do not display an
overt epileptic phenotype. On the other hand, KvB2 knockout
and KvB1/KvB2 double-knockout mice are characterized by an
increased neuronal excitability, occasional seizures, cold swim-
induced tremors and a reduced life span (McCormack et al.,
2002; Connor et al., 2005, Table 2). Clinical investigations have
found an association between the severity of seizures, includ-
ing infantile spasms and the loss of the Kvf2 gene. Moreover,
the hemizygosity of this gene in epileptic patients suggests that
haploinsufficiency for KCNAB2 is a significant risk factor for
epilepsy (Heilstedt et al., 2001). Notably, Kvf2 subunits do not
confer fast inactivation properties to Kvl channels, since they
lack the inactivation particles. Thus, a chaperone-like function
has been proposed for these subunits. Although these findings
are consistent with a role for accessory subunits in regulating
central nervous system excitability, further functional assays are

necessary to determine thoroughly how loss or haploinsufficiency
of the KvB2 gene affects distinct network excitability and causes
KvB2 channelepsy.

Kvi g1 CHANNELEPSY

The leucine-rich glioma-inactivated-1 (LGII) is a secreted neu-
ronal protein, complexed with Kv channels, and highly expressed
in neocortex and hippocampus. LGI1 mutations—e.g., the point
mutation E383A that prevents the neuronal secretion of LGI1—have
been found in patients with autosomal dominant lateral tempo-
ral lobe epilepsy (ADLTE), a syndrome characterized by partial
seizures with acoustic or other sensory hallucinations (Kalachikov
et al.,, 2002; Morante-Redolat et al., 2002; Fukata et al., 2010,
Table 1). Moreover, loss of Lgil in mice causes lethal epilepsy
(Fukata et al., 2010, Table 2). In the hippocampus, both Kv1.1
and Lgil appear co-assembled with Kvl1.4 and Kvp1 in axonal
terminals. In A-type channels composed of these subunits, Lgil
prevents N-type inactivation mediated by the KvB1 subunit. In
contrast, defective LGI1 molecules identified in ADLTE patients
fail to exert this effect, which results in channels with rapid
inactivation kinetics. These data suggest that these changes in
inactivation gating of presynaptic A-type channels may promote
epileptic activity (Schulte et al., 2006).

Specific auto-antibodies underlie an emerging class of seizures
named “autoimmune epilepsy” that involves K™ channels.
Indeed, several of these auto-antibodies do not bind directly with
Kv1.1, Kv1.2, or Kv1.6 channels, as previously believed, but rather
to associated proteins such as LGI1, contactin-associated protein
2 (CASPR2), contactin-2, or others to be identified (Irani et al.,
2010; Lai et al., 2010; Lancaster et al., 2011).

KVKChIP1 CHANNELEPSY
Cytosolic Kv channel-interacting proteins KChIP1-KChIP4 (An
et al., 2000), which belong to the NCS family of calcium bind-
ing EF-hand proteins, co-assemble with the N-terminus of Kv4
subunits (Zhou et al., 2004) to form a native complex that
encodes major components of neuronal somatodendritic A-type
K™ current (I). KChIP2 expression is high in the hippocam-
pus, particularly within the apical dendrites of pyramidal cells.
KChIP2 gene deletion in mice (Kchip2~/~) affected the I in hip-
pocampus, namely reduced current density, decreased channel
availability, and slowed recovery from inactivation. This results
in chronic hyper-excitability in hippocampal pyramidal neu-
rons and Kchip2~/~ mice exhibited increased susceptibility to
seizures induced by kindling (Table 2). However, a compensatory
up-regulation of inhibitory synaptic activity (up-regulation of
GABA currents) was also observed (Wang et al., 2013). These
findings indicated that KChIP2 is essential for homeostasis in
hippocampal neurons and mutations in these K channel aux-
iliary subunits may be loci for epilepsy (Wang et al., 2013).
Interestingly, Kchip2~/~ mice are highly susceptible to cardiac
arrhythmias (Kuo et al., 2001). Thus, this evidence suggests that
loss-of-function mutations in KChIP2 could confer an increased
susceptibility to both seizures and cardiac arrhythmias, increasing
the risk to sudden unexpected death in epileptic patients.

In conclusion, these studies demonstrated that the auxiliary
subunits play important roles in the pathogenesis of epilepsy by
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affecting K™ channel function and network excitability in distinct
ways (see also Kca1.1 channelepsy).

CALCIUM-ACTIVATED K* CHANNELS AND CHANNELEPSY

The calcium-activated K™ (Kc,) channels are highly conserved
across species, and widely expressed in the human brain. The phy-
logenetic tree of the K¢, channels shows that they are made of two
genetically well-distinct groups (Wei et al., 2005), the large con-
ductance (BK; Kca1.1), and the small/intermediate-conductance
(SK/IK; Kcaz.1> Kca2.2> Kcaz.3 Kcas.1) Kca channels. With regard
to gating mechanism, the Ca?" sensitivity of SK/IK channels is
provided by tightly bound calmodulin (Xia et al., 1998; Fanger
et al,, 1999), in contrast to the direct binding of Ca?t at specific
internal sites on the channel protein of Kca;.; channels (Lee and
Cui, 2010). Moreover, unlike the SK/IK channels, Kc,1.; channels
are also activated by voltage.

In brain neurons K¢, channels are widely distributed in the
axons plasma membrane and at the presynaptic terminals (Knaus
etal., 1996; Blank et al., 2004), and often located close to voltage-
gated Ca’* channels (Ca,; Marrion and Tavalin, 1998). The
Ca?t influx that follows neuronal excitation activates K¢, chan-
nels whose outward K™ flux contributes to terminate the action
potential and establish the afterhyperpolarization (AHP) that
closes Cay channels. This negative feedback control has been gen-
erally assumed to make K¢, channels critical players in opposing
repetitive firing and hyperexcitability typical of epileptic disor-
ders. To date only mutations in the Kca1.1 channel have been
clearly associated to epilepsy.

Kca1.1 CHANNELEPSY
The Kca1.1 channel, originally cloned from the Drosophila slow-
poke locus, thus the name slo (Atkinson et al., 1991), is coded
by one single gene, the KCNMAI (Wei et al., 2005). The vari-
ety observed in biophysical and pharmacologic properties of
the channel derives from the extensive alternative splicing of its
mRNA (Tseng-Crank et al., 1994), and the type of accessory
B subunit (Kcep) that associates with the channel (Jiang et al.,
1999). The Kca1.1 channel is composed of four identical pore-
forming o subunits, each displaying a transmembrane portion
very much like the Kv channel, with the voltage sensing domain
made by segments S1-S4, and the permeating pore domain by the
S5, P, and S6 segments. Unlike Kv channels, the Kc,1.1 channel has
an additional transmembrane domain (S0), thought to subserve
for (Kcag) subunit interaction and modulation of the channel
(Morrow et al., 2006). The channel has also a large C-terminal
cytosolic domain that confers Ca?T sensitivity to the channel.
Notably, the amino-acid sequence of the C-terminal domain con-
tains no conventional Ca?" binding motif such as EF hands or
C2 domains. The two putative high affinity Ca?* binding sites of
the channel are formed, respectively, by two closely located (five
amino acids apart) aspartate residues (Xia et al., 2002) on the
RCK1 (regulator of Kt conductance) domain, and by a series of
aspartate residues in a region known as the Ca?t bowl, located in
the RCK2 domain (Wei et al., 1994; Schreiber and Salkoff, 1997).
Kcal.1 channels expression predominates in axons and pre-
synaptic terminals of excitatory neurons located in epileptic rel-
evant structures, such as cortex and hippocampus (Knaus et al.,

1996; Hu et al., 2001; Misonou et al., 2006; Martire et al., 2010).
In brain neurons, the Ca?t that activates Kcap.1 channels enters
primarily through Ca, channels (Berkefeld et al., 2006), with
which Kcay.1 channels strictly co-localize in order to be acti-
vated during an action potential by the Ca?>* microdomains that
form around the Ca®>t source (Miiller et al., 2007). The Kca1.1
channel activity is thus limited by the duration of the action
potential-evoked Ca?T transients, and consequently restricted
to the action potential repolarization phase and the fast por-
tion of the after-hyperpolarization (fAHP; Sah and Faber, 2002),
and generally assumed to reduce neuronal excitability. Recent
findings point, however, to a role of Kc,1.1 channels in pro-
moting high frequency firing, an effect likely attributed to fast
spike repolarization, fAHP generation and the consequent reduc-
tion in the activation of other slower Kv channels and of the
inactivation of Nat channels (Storm, 1987a,b; Gu et al., 2007).
Whereas they appear to be virtually uninfluential to synap-
tic release modulation under physiologic conditions (Hu et al.,
2001; Raffaelli et al., 2004; Shruti et al., 2008; Martire et al,,
2010).

Given the role of Kca1.1 channels in promoting high neuronal
firing frequency and their predominant expression in excitatory
neurons of cortex and hippocampus, it is no surprising that sev-
eral lines of evidence from animal models point to a pro-epileptic
role for Kca1.1 channels. For example, spontaneous cortical burst-
ing in mice with high susceptibility to convulsions was completely
inhibited by the Kca;.1 channel blocker iberiotoxin (IbTX) (Jin
et al., 2000). A similar inhibitory effect of Kc,;.1 channel antago-
nists was reported on chemoconvulsant-induced seizures in vitro
and in vivo (Jin et al., 2000; Shruti et al., 2008; Sheehan et al.,
2009). Finally, Kcags knockout mice displayed temporal cortex
seizures and a gain-of-function of K¢, 1 channels in dentate gyrus
slices, resulting in higher firing rate (Brenner et al., 2005, Table 2).

Evidence for an association of human epilepsy with the Kca1.1
channel has also been found. A missense mutation (D434G) in the
KCNMAT gene coding for the o subunit has been found in family
patients suffering from generalized epilepsy and paroxysmal disk-
inesia (Du et al., 2005, Table 1). Expression studies indicated that
the D434G mutant channel displayed markedly greater macro-
scopic currents and single channel open probability, resulting
from a 5-fold increase in Ca?* sensitivity (Du et al., 2005). In
accordance, the mutation appeared to be located in the RCK1
domain, close to the putative Ca’* binding site and the segments
subserving the allosteric coupling between Ca’* binding site and
the activation gate (Yang et al., 2010). Subsequent studies showed
that the effects of the D434G mutation on the Kc,1.1 channel
properties were similar or even more pronounced in the pres-
ence of the Kcag1, Kcapa, or Kcaps subunit, highly expressed in the
brain (Diez-Sampedro et al., 2006; Lee and Cui, 2009). Notably, a
polymorphism in the Kc,g4 subunit has been associated to human
MTLE in an Irish cohort, but this has not been confirmed in other
populations (Cavalleri et al., 2007; Manna et al., 2013). By con-
trast, the a subunit coexpressed with Kcag3p, (a splicing variant of
Kcapgs) was modified by the mutation with a slowing of the acti-
vation, a reduction in the voltage-dependence, but no change in
Ca’*-dependence, suggesting a loss-of-function of the Kc,1.1 cur-
rent (Lee and Cui, 2009). Interestingly, a Kcap3 single-nucleotide
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mutation, causing a loss-of-function of Kc,1.1 current containing
the Kcapsp subunit, displays a small but significant association
with idiopathic generalized epilepsy (Hu et al., 2003; Lorenz et al.,
2007, Table 1). Taken together, these data suggest that both a
loss-of-function of Kcapsp-containing Kcar.1 channels and a gain-
of-function of Kcap1, Kcap2, or Kcaps-containing Kcai,1 channels
would favor the epileptic phenotype, but more information on
the location and function of Kcagsp subunits is needed to clarify
this point.

A modulation of Kc,1.1 channel expression in epilepsy mod-
els has also been found. A gain-of-function of Kca1.1 cur-
rents associated with increased spontaneous and evoked fir-
ing rates occurs in mouse neocortical pyramidal neurons 24 h
after chemoconvulsant-induced generalized tonic-clonic seizures
(Shruti et al., 2008). Conversely, in a model of pilocarpine-
induced MTLE Kc,1.1 channel a subunit was down-regulated at
the protein and mRNA level in hyppocampal mossy fibers orig-
inating from the dentate gyrus (Ermolinsky et al., 2008; Miceli
et al., 2013). Notably, Kca1.1 channel proteins remaining after
seizure induction were mostly changed to the STREX splicing iso-
form, displaying an increased Ca? " -sensitivity with respect to the
ZERO splice variant normally present (Ermolinsky et al., 2008).
The functional consequence of the observed changes is thus not
clear.

INWARDLY-RECTIFYING K+ CHANNELS AND
CHANNELEPSIES

Members of the inwardly-rectifying family of K* channels (Kir)
are found in virtually every cell type where they are major reg-
ulators of Kt fluxes across membranes (Hibino et al., 2010).
The principal role of most Kir channels is the maintenance of
the resting membrane potential and thereby the control of cell
excitability, while others subserve the transport and recycling of
K™ across membranes. Like other K channels, Kir subunits
assemble as tetramers, and their ability to heteromultimerise adds
functional diversity to a limited number of gene products. Kir
subunits possess two transmembrane domains and approximately
15 distinct Kir clones have been identified so far, forming seven
major subfamilies: Kirl-Kir7 (Bond et al., 1994; Hibino et al,,
2010). Important physiological roles have been established for
nearly all of these subfamilies. Generally, a Kir channel acts as
a diode whereby the inward current through these channels is
greater at potentials more negative than the Ex, as compared to
more positive values, where the outward flow is inhibited and the
membrane potential free to change. The rectifying nature of Kir
channels is due to a voltage-dependent block of the intracellu-
lar side of the pore by cytoplasmic polyamines and Mg?* ions
(Matsuda et al., 1987; Lopatin et al., 1994; Lu and MacKinnon,
1994; Stanfield et al., 1994). Several studies highlighted the role of
inwardly-rectifying Kt channels’ dysfunction in neuropsychiatric
disorders and epilepsy although the relevant mechanisms in some
instances await clarification.

Kir2 CHANNELEPSY

Kir2.1 channels are highly expressed in brain, particularly in hip-
pocampus, caudate, putamen, nucleus accumbens, and to lower
levels in habenula and amygdala (Karschin et al., 1996), where

they contribute to control neuronal excitability. In particular, the
amplitude of Kir2.1 currents is small in young dentate gran-
ule neurons (DGCs), and increases ~3-fold in mature DGCs to
optimize their excitability. Thus, Kir2.1 channels play an impor-
tant role in DGCs firing properties during development (Mongiat
et al., 2009). Moreover, Kir2.1 channels in combination with
Kir4.1 control the astrocyte-mediated K buffering (Bordey and
Sontheimer, 1998; Jabs et al., 2008; Chever et al., 2010). It has
been proposed that up-regulation of Kir2.1 in DGCs would coun-
terbalance the hyper-excitability observed in TLE, thus function-
ing as an anti-convulsant (Young et al., 2009). Individuals har-
boring loss-of-function mutations in KCNJ2 (e.g., Andersen-Tawil
syndrome; OMIM 170390) may present with mood disorders and
seizures (Haruna et al.,, 2007; Chan et al., 2010, Table 1), sug-
gesting a possible role for Kir2.1 channels in the pathogenesis
of neuropsychiatric disorders and epilepsy (Haruna et al., 2007;
Chan et al., 2010).

Kir3-GIRK-CHANNELEPSY

Several neurotransmitters, including dopamine, opioid, somato-
statin, acetylcholine, serotonin, adenosine, and GABA exert their
actions by modulating the activity of G protein-coupled Kir
channels (GIRK) belonging to the subfamily 3 (Kir3). Four sub-
units have been cloned: GIRK1-GIRK4, also known as Kir3.1—
Kir3.4, that may heteropolimerize. Generally, receptors activation
of intracellular heterotrimeric G proteins afy leads to stim-
ulation of heteromeric Kir3 channels activity, resulting in an
outward flux of KT ions that causes membrane hyperpolariza-
tion and inhibition of cell excitability (Krapivinsky et al., 1995;
Slesinger et al., 1995; Tucker et al., 1996a). The crystal structure
of this channel type has been resolved, recently (Whorton and
Mackinnon, 2013). Gain-of-function of Kir3 channels can con-
siderably reduce neuronal activity, whereas loss-of-function can
lead to excessive neuronal excitability and epilepsy. Indeed, abla-
tion of the gene encoding for Kir3.2 channels (GIRK2) results in
spontaneous convulsions and increased susceptibility for gener-
alized seizures in rodents (Signorini et al., 1997, Table 2). The
principal phenotype of weaver mice (wv/wv) is an ataxic gait,
due to severe hypoplasia of the cerebellum, learning deficits
and epileptic seizures. Weaver mice carry a deleterious muta-
tion in the pore of Kir3.2 channels (G156S; Patil et al., 1995,
Table 2). This mutation alters the KT selectivity of the channel,
induces calcium overload in cells, and reduces channel availabil-
ity (Slesinger et al., 1996; Tucker et al., 1996b) with a mech-
anism different from heteromeric subunit degradation (Tucker
et al., 1996¢). It is likely that these molecular defects, induced
by the G156S mutation, would lead to neurodegeneration and
seizures susceptibility that characterize the phenotype of weaver
mice.

Kir3 channel inhibition, induced by intrathecal adminis-
tration of tertiapin, is pro-convulsant (Mazarati et al., 2006).
Moreover, several drugs used in clinics—desimipramine, flu-
oxetine, haloperidol, thioridazine, pimozide and clozapine—
inhibit Kir3 channel activity, and cause seizures as side effect.
Conversely, electroconvulsive shock leads to increased expression
of Kir3 channels (Pei et al., 1999), which may provide compen-
satory mechanisms against excessive electrical activity leading to
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neuroprotection. In support of this hypothesis, stimulation of
galanin type 2 receptors that activate GIRK channels prevents
kindled epileptogenesis in rats (Mazarati et al., 2006). In con-
clusion, these studies point out that distinct changes in Kir3
channel activity or availability throughout the brain may result
in pro-convulsant or anti-convulsant effects.

Kir4/Kir5 CHANNELEPSY
Kir4.1 subunits (KCNJ10; BIR10; Bond et al., 1994; Lagrutta et al.,
1996) may form homomeric channels or may polymerize with
Kir5.1 (KCNJ16) to form heterotetramers (Pessia et al., 1996)
highly sensitive to pH (Tucker et al., 2000; Pessia et al., 2001;
Casamassima et al., 2003; D’Adamo et al., 2011b). Kir4.1 chan-
nels are expressed primarily in oligodendrocytes and astrocytes
surrounding synapses and blood vessels, mainly in the cortex,
thalamus, hippocampus, and brainstem (Takumi et al., 1995;
Higashi et al., 2001). Kir4.1 channel activity shows a profound
developmental regulation, which correlates with both cell differ-
entiation and the developmental regulation of extracellular K+
dynamics (Connors et al., 1982; MacFarlane and Sontheimer,
2000; Neusch et al., 2001). Kir4.1 controls primarily the resting
membrane potential of astrocytes, and maintains the extracellular
ionic and osmotic environment by promoting K transport from
regions of high [K™],, which results from synaptic excitation, to
those of low [K*],. This polarized transport of K* in astrocytes,
referred to as “spatial buffering of Kt~ is essential for normal
neuronal activity, excitability, and synaptic functions. Among
the genes associated with different forms of epilepsy Kir4.1 is
receiving increasing interest. Genetic studies have indicated a
linkage between missense variations in Kir4.1 and seizure suscep-
tibility (Buono et al., 2004; Connors et al., 2004, Table 1). The
DBA/2 mouse strain exhibits a greater susceptibility to induced
seizures compared to the C57BL/6 strain. Previous QTL map-
ping identified the seizure susceptibility locus (SzsI) on the distal
region of mouse chromosome 1 and further fine mapping stud-
ies suggested that a missense variation (T262S) in Kcnjl0 was the
likely candidate for this linkage (Ferraro et al., 2004, Table 2).
In a second linkage study, a variation in the human KCNJI0
gene (R271C) was associated with seizure resistance in groups of
patients with either focal or generalized epilepsy (Buono et al.,
2004). However, a functional study demonstrated that these vari-
ations (T262S and R271C) do not produce any observable change
in channel function or in predicted channel structure (Shang
et al.,, 2005). It is therefore unlikely that the seizure suscepti-
bility phenotypes associated with these missense variations are
caused by changes in the intrinsic functional properties of Kir4.1.
However, this study was unable to comprehensively disprove this
association, and alterations in Kir4.1 channel activity remain an
attractive mechanistic hypothesis. Future investigations willing
to prove the association between these variants and seizure sus-
ceptibility phenotypes should include examination of how these
variants could produce subtle changes in their interaction with
cell-specific trafficking or regulatory proteins, or other possible
pathways.

Recordings from surgical specimens of patients with
intractable epilepsies have demonstrated a reduction of Kir
conductance in astrocytes (Bordey and Sontheimer, 1998)

and potassium clearance (Jauch et al., 2002). Moreover, loss-
of-function recessive mutations of KCNJI0 (Kir4.1) have been
recently associated with a disease, named EAST syndrome or
SeSAME syndrome, consisting of seizures, ataxia, sensorineural
deafness, mental retardation, and renal salt-losing tubulopathy
(Bockenhauer et al., 2009; Scholl et al., 2009, Table 1). A number
of additional elements substantiate the hypothesis that variants
in KCNJI0 might contribute to brain dysfunction and seizures
susceptibility. Conditional knockout mice lacking Kir4.1 exhibit
stress-induced seizures, severe ataxia, spongiform vacuolation,
axonal swellings, and degeneration, in addition to hearing loss
and premature lethality (Neusch et al., 2001; Djukic et al., 2007,
Table 2). In Kir4.1 knockout glial cells, no variations in mem-
brane potential were observed during increases in [K™], induced
by nerve stimulations (Chever et al., 2010). Hence, it has been
proposed that the loss-of-function of glial K™ conductance would
favor extracellular Kt accumulation, contributing to neuronal
hyperexcitability and epilepsy (Orkand et al., 1966; Chever et al.,
2010).

Epilepsy and autism spectrum disorders (ASD) are strongly
associated. The prevalence of seizures is highly represented in
ASD (5-46%) (Bryson et al., 1988; Hughes and Melyn, 2005),
compared with the general population (0.5-1%). The prevalence
of autism in the epilepsy population is ~32%, which is about 50
times higher than in the general population (Clarke et al., 2005).
An “autism—epilepsy phenotype” has been identified (Tuchman
et al., 2009). Recently we reported a mutational screening of
KCNJ10 in 52 children with cryptogenic epilepsy that resulted
in the identification of two heterozygous KCNJ10 mutations in
two identical twins (R18Q) and in a 14-year-old child (V84M;
Sicca et al.,, 2011, Table 1). Clinically, the two 8-year-old iden-
tical twins showed impaired social interaction, sleep difficulties,
hypotonia and both exhibited epileptic spasms within the same
24h period. Other symptoms, typical of ASD, included clum-
siness, absence of speech, severe disorder of social interaction,
stereotypies, repetitive behaviors, symptoms of anxiety, depres-
sion, obsessive compulsive disorder and intellectual disability (1Q:
58). The 14-year-old child showed normal psychomotor devel-
opment until 12 months of age, when ASD symptoms such as
poor social gaze, no response to name, absence of language devel-
opment, and withdrawal behaviors became evident. At the age
of 6, he experienced complex partial seizures. EEG recordings
showed synchronous and asynchronous paroxysmal abnormali-
ties over frontal regions in both hemispheres tending to spread.
The functional consequences of these heterozygous mutations
were gain-of-function of either Kir4.1 or Kir4.1/Kir5.1 channels
(Sicca et al., 2011). To date, we have identified several new
probands displaying an autism—epilepsy phenotype who carry
mutations in KCNJ10 that cause gain-of-function effects, assessed
by using astrocytoma cell lines. Collectively, our findings point
to a new class of genes that should be examined in autism-
epilepsy patients, and disclose novel molecular mechanisms that
may increase the susceptibility to this distinct neuropsychiatric
phenotype by altering the K+ homeostasis in the brain (D’Adamo
et al., 2011a; Sicca et al., 2011). Indeed, Kir4.1 is the main glial
inward conductance, astrocytes make up 90% of all human brain
cells, and each astrocyte controls the activity of many thousands
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of synapses (about 140,000 in the hippocampus; Benarroch,
2009). Co-occurrence of epilepsy and ASD in patients harboring
KCNJ10 gain-of-function mutations suggests that dysfunction in
the astrocytic-dependent Kt buffering may be a common mech-
anism contributing to seizures as well as the core behavioral
features of ASD. It has been shown that an isolated episode of local
neuronal hyperactivity triggers a large and synchronous Ca’*
elevation in closely associated astrocytes. Activated astrocytes
signal back to neurons favoring their recruitment into a coher-
ent activity that underlines the hypersynchronous ictal discharge
(Goémez-Gonzalo et al., 2010). It is possible that an increased
and faster influx of K* into astrocytes through high function-
ing Kir4.1-containing channels may lead, during intense neuronal
activity, to larger membrane depolarization and higher intracellu-
lar Ca?* elevations in these cells. Ca>* elevations in astrocytes are
associated with the release of gliotransmitters, such as glutamate
and D-serine, which trigger discharges in neurons, promote local
neuronal synchrony and epileptic activity (Parpura et al., 1994;
Bezzi et al., 1998; Pasti et al., 2001; Angulo et al., 2004; Fellin et al.,
2004; Mothet et al., 2005; Tian et al., 2005). Speculatively, a recur-
rent neuron-astrocyte-neuron excitatory loop may develop at a
restricted brain site, as a consequence of gain-of-function of Kir4.1
channels, and contribute to initiation of seizures. These muta-
tions may alter the noradrenergic (NA) system of the brain as
well, since Kir4.1/Kir5.1 channels control the excitability of locus
coeruleus (LC) neurons (D’Adamo et al., 2011b). Indeed, a devel-
opmental dysregulation of this LC-NA network (Samuels and
Szabadi, 2008) has been suggested to underlie epilepsy. From a
therapeutic perspective, these studies indicate that, alike neurons,
astrocytes may represent a crucial target for the pharmacological
control of abnormal electrical discharge and synaptic function.

Kir6-Karp-CHANNELEPSY

The adenosine triphosphate (ATP)-sensitive K™ (Karp) channels
are octamers composed of four pore-forming subunits, consist-
ing of Kir6.1 or Kir6.2, with four regulatory sulfonylurea receptors
such as SUR1, SUR2A, or SUR2B, which are members of the ATP-
binding-cassette transporter family (Aguilar-Bryan et al., 1995;
Inagaki et al., 1995; Nichols et al., 1996). The secretion of insulin
from pancreatic B-cells is mediated by the closure of these chan-
nels caused by increased levels of cytoplasmic ATP. Neuronal
Karp channels are predominantly composed of Kir6.2/SURI,
although Kir6.1/SUR2B and Kir6.2/SUR2B are also found. These
channels link the metabolic state of neurons to their excitabil-
ity by sensing changes in intracellular phosphate potential (i.e.,
ATP/ADP ratio). DEND syndrome (OMIM 606176) is an inher-
ited disease characterized by developmental delay, epilepsy and
neonatal diabetes mellitus. Twenty percent of these patients have
associated neurologic defects, the most severe of which are gener-
alized epilepsy, marked delay of motor and social development,
including late development of speech, and learning difficulties.
Numerous gain-of-function mutations have been identified in the
genes encoding Kir6.2 (KCNJI1) or the associated regulatory
SURI subunit (ABCCS8) of patients affected by DEND syndrome
(Table 1). To date, all mutations in KCNJ11 that have been char-
acterized functionally, produce marked decrease in the ability of
ATP to inhibit the Kyrp channel when expressed in heterologous

systems or enhance the activatory effects of Mg?*-nucleotides.
This reduction in ATP sensitivity translates in more fully open-
ings of the channel at physiologically relevant concentrations
of ATP, increased Karp current, hyperpolarization of the B-cell
plasma membrane, and consequent suppression of Ca?* influx
and insulin secretion (Hattersley and Ashcroft, 2005). Clinical
severity of the disorder correlates with the magnitude of shift
in the ATP affinity. Sulfonylureas, which block opened chan-
nels and restore glucose homeostasis, ameliorate some of the
neurological symptoms of DEND syndrome. How Karp channel
over-activity in the central nervous system results in epilepsy is
unclear. Whereas insights have been provided on the mechanisms
linking loss of Karp channel function to increased seizure suscep-
tibility. Notably, generalized seizures can be evoked by metabolic
stresses such as hypoxia and hypoglycemia. Kir6.2 knockout mice
exhibited high-voltage sharp-wave bursts in the EEG recordings,
myoclonic jerks followed by severe tonic-clonic convulsion and
death upon exposure to hypoxia (Table 2). However, the wild-
type mice remained sedated during this challenge and revived
normally (Yamada et al., 2001). Substantia nigra pars reticulata
(SNr) and its efferents act as a central gating system in the prop-
agation of seizure activity (Iadarola and Gale, 1982). Remarkably,
wild-type neurons in brain slices from the substantia nigra pars
reticulata (SNr) were hyperpolarized by hypoxia, whereas the
membrane potential of Kir6.2 knockout neurons were depolar-
ized by the perfusion with hypoxic solutions. The SNr and its
efferents act as a central gating system in the propagation of
seizure activity (Iadarola and Gale, 1982). Therefore, hyperpolar-
ization of SNr neurons upon opening of Karp channels has been
proposed to protect against seizure propagation during metabolic
stress, although other brain regions could be involved in this
process (Yamada et al., 2001).

CONCLUDING REMARKS

Solving the puzzle of epilepsy is an extremely difficult task.
Here we have put several new pieces in the puzzle by describ-
ing novel genetic defects in K™ channels and related pro-
teins that underlie distinct human epileptic phenotypes. We
have also analyzed critically the new insights in the neuro-
biology of this disease that have been provided by investiga-
tions on valuable animal models of epilepsy. It is becoming
increasingly clear that mutations in K™ channel genes or per-
turbations in KT channel function, even in the absence of
a primary channel defect, underlie an increased susceptibility
to epilepsy. Despite the abundance of genes encoding for K+
channels and associated subunits, and their established crucial
functional roles, these genes have been greatly overlooked in
the search for the causes underlying idiopathic epilepsy. The
extremely high diversity of KT channels and the numerous muta-
tions identified in their genes often generate confusion in the
classification of the associated diseases. Therefore, we proposed
to name the K* channels defects underlying distinct epilep-
sies as “KT channelepsies” and suggested a new classification
according to a widely used K™ channel nomenclature (Chandy
and Gutman, 1993; Kubo et al., 2005; Wei et al., 2005). This
original classification could be also adopted to easily unify,
identify and describe multiple organ dysfunction related to a
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single ion channel gene defect (e.g., Kx.y-phenotype; Nayx.y-
phenotype; Cayx.y-phenotype) (Catterall et al., 2005a,b). KT
channels represent crucial targets for novel pharmacological
control of abnormal electrical discharges and synaptic func-
tion in the brain. Much greater efforts should thus be made to
find new KT channel modulators and gene therapies to ame-
liorate the symptoms of this devastating disease. On the other
hand, the effects of newly developed drugs on the activity of
most KT channel types should be tested in order to predict
their pro-convulsant side effects. Research on K channelep-
sies is clearly providing important knowledge on the signaling
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