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Clinical and experimental studies implicate most neuromodulatory systems in epileptogen-
esis.The dopaminergic system has a seizure-modulating effect that crucially depends on the
different subtypes of dopamine (DA) receptors involved and the brain regions in which they
are activated. Specifically, DA plays a major role in the control of seizures arising in the limbic
system. Studies performed in a wide variety of animal models contributed to illustrate the
opposite actions of D1-like and D2-like receptor signaling in limbic epileptogenesis. Indeed,
signaling from D1-like receptors is generally pro-epileptogenic, whereas D2-like receptor
signaling exerts an anti-epileptogenic effect. However, this view might appear quite
simplistic as the complex neuromodulatory action of DA in the control of epileptogenesis
likely requires a physiological balance in the activation of circuits modulated by these
two major DA receptor subtypes, which determines the response to seizure-promoting
stimuli. Here we will review recent evidences on the identification of molecules activated
by DA transduction pathways in the generation and spread of seizures in the limbic system.
We will discuss the intracellular signaling pathways triggered by activation of different DA
receptors in relation to their role in limbic epileptogenesis, which lead to the activation of
neuronal death/survival cascades. A deep understanding of the signaling pathways involved
in epileptogenesis is crucial for the identification of novel targets for the treatment of
epilepsy.
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INTRODUCTION
Epilepsy is a chronic neurological disorder, characterized by spon-
taneous and recurrent bursts of neuronal hyperactivity (seizures)
generally arising in restricted regions of the brain. Seizures may
remain confined to their area of origin (“focal” or “partial”
seizures) or spread to the whole cerebral hemispheres (“gen-
eralized” seizures). The behavioral outcome of seizures strictly
depends on the brain regions that are affected by hyperactivity.
Seizures have been traditionally characterized as an imbalance
between excitatory (glutamatergic) and inhibitory (GABAergic)
transmission. The role of glutamate and GABA in epileptogene-
sis (i.e., the process by which a normal brain develops epilepsy)
has been extensively addressed elsewhere (see for example
McNamara et al., 2006; Ben-Ari et al., 2012) and will not be further
discussed here. Clinical and experimental studies investigated the
role of the major neuromodulatory systems in epilepsy (Kurian
et al., 2011). Acetylcholine (Friedman et al., 2007; Steinlein and
Bertrand, 2010), serotonin (Bagdy et al., 2007), noradrenaline
(Weinshenker and Szot, 2002; Giorgi et al., 2004), and dopamine
(DA; Starr, 1993, 1996; Bozzi et al., 2011) are all known to reg-
ulate seizure activity. In this review, we will focus on the role of
DA in seizure onset and spread discussing evidence obtained in
human and animal studies. We present a unifying hypothesis on
the intracellular signaling cascades triggered by DA and involved
in long-term epileptogenesis.

Molecules that stimulate the dopaminergic (DAergic)
system such as apomorphine, amphetamines, L-DOPA (L-

3,4-dihydroxyphenylalanine), and anti-parkinsonian drugs (e.g.,
pergolide and bromocriptine) have anti-epileptic action and anti-
convulsant effects. Seizures involving the limbic system appear
to be the most critically affected by modulation of DA signal-
ing. Brain areas receiving afferents from the mesolimbic DAergic
pathway express different types of DA receptors (Bozzi and Bor-
relli, 2006; Bozzi et al., 2011). Interestingly, while pharmacological
studies using animal models support the anti-convulsant effects
of DA on limbic seizures (Starr, 1996; Clinckers et al., 2005), con-
trasting biochemical evidence has been obtained for the presence
of DAergic dysfunctions either in the brain of epileptic patients
or in animal models of seizure and epilepsy. This suggests that
the involvement of DA in seizure and epilepsy is likely due to a
dysfunctional control of DA levels or an alteration in the expres-
sion of specific receptors. Indeed, levels of DA and its metabolites
markedly vary depending on the type of epilepsy and animal mod-
els considered (Starr, 1996). However, it is interesting to note that
increased levels of DA (Meurs et al., 2008) as well as increased
firing of DA neurons (Cifelli and Grace, 2012) were detected
in rodent models of temporal lobe epilepsy (TLE). These find-
ings suggest also that variations of DA levels very likely alter the
neuromodulatory action of DA on brain circuits of the limbic
system.

For instance, a glutamate–DA interaction has been proposed
to explain individual susceptibility to epilepsy in limbic areas
(Starr, 1996). According to this hypothesis, paroxysmal activ-
ity of the cerebral cortex in the epileptic brain would increase
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the tonic excitation of DA neurons by glutamate. This would
then induce phasic release of DA, possibly leading to down-
regulation or desensitization of DA receptors and subsequently
decreased phasic responses. Indeed, DA exerts a marked inhibitory
effect on hippocampal excitability through activation of DA D2
receptors (D2Rs). Anti-psychotics (i.e., DAergic D2-like antago-
nists) lower seizure threshold in epileptic patients and promote
seizures in patients with no previous history of the disease.
Conversely, seizure inhibition occurs in patients administered
anti-parkinsonian drugs such as pergolide and bromocriptine,
which both act by stimulating D2Rs (Starr,1996). Further observa-
tions supported the anti-convulsant effect of a low dose treatment
with bromocriptine. According to the Starr’s hypothesis, a low
dose of a D2R agonist would act through stimulation of presy-
naptic D2 autoreceptors leading to decreased DA release, while
preventing the downregulation of postsynaptic D2R (Chen, 2006).
Based on our results using mice lacking D2R (D2R−/− mice),
we postulated that D2R activation might exert a neuroprotective
action on hippocampal and DAergic neurons against excitotoxicity
(Bozzi et al., 2000; Bozzi and Borrelli, 2006). Conversely, activation
of DA D1 receptors (D1Rs) has a proconvulsant effect, lowering
seizure threshold (Starr, 1993, 1996). The opposite action of D2R
and D1R signaling might also be explained by the glutamate–
DA interaction hypothesis for limbic epileptogenesis. Indeed,
the activation of D1R in cortical tissue samples obtained from
children undergoing epilepsy surgery has been shown to induce
glutamate receptor-mediated neuronal hyperexcitability (Cepeda
et al., 1999). More recent studies performed in animal models
during seizures support these results showing a D1R-mediated
activation of glutamatergic neurons (Gangarossa et al., 2011;
see also below).

These data clearly point to a prominent role of the DAergic cir-
cuits in limbic epileptogenesis. Classical pharmacological studies
supporting this view have been extensively reviewed by Starr (1993,
1996), to which the reader is referred for a more detailed descrip-
tion. In the next paragraphs, we will summarize recent human
studies in support of this hypothesis. Animal studies will then be
discussed to highlight the role of specific DA receptor signaling
pathways in seizure onset and spread. We will also describe the
mechanisms by which DA receptor signaling may affect neuronal
excitability and epileptogenesis in the long-term. The potential
importance of DA receptor-based drugs for the treatment of
epilepsy will be finally discussed.

HUMAN STUDIES
Recent studies performed on human epileptic patients (Table 1)
confirm the role of DA-mediated neurotransmission in epilepsy.
The role of DA in epilepsy is most likely mediated by the neu-
romodulatory effect of this molecule on structures belonging
to the basal ganglia and elements of the limbic system. These
structures are strongly interconnected and defective DA signal-
ing either in the basal ganglia or in the limbic system might
affect the electric properties of neurons located at distal sites
through either direct interactions or through feedback mecha-
nisms connecting the cortex to the striatum or other areas. In
agreement, it has been postulated that the DAergic transmission
in the basal ganglia may provide an inhibitory role (Rektor et al.,

2012). Indeed, the basal ganglia are not able to generate specific
epileptic activity, as detected by electroencephalographic (EEG)
recordings. However, seizures originating in the mesiotemporal
lobe of TLE patients can induce EEG changes in the basal gan-
glia, that may act as filter to the further spread of ictal activity
(Rektor et al., 2012).

IMAGING
Dopaminergic pathway arising from the ventral mesencephalon
[substantia nigra and ventral tegmental area (VTA)] innervate
the basal ganglia, the limbic system, and the cerebral cortex
(Cooper et al., 1996). Several imaging studies demonstrate that
reduced DAergic activity is present in various forms of epilepsy.
Reduced [18F]-fluoro-L-DOPA uptake (indicating a reduced bind-
ing to the DA transporter, DAT) was detected in the basal ganglia
of patients suffering of ring20 epilepsy (Biraben et al., 2004; Del
Sole et al., 2010), resistant generalized “absence-like” epilepsy and
drug-resistant TLE with hippocampal sclerosis (Bouilleret et al.,
2005). In TLE patients, [18F]-fluoro-L-DOPA uptake was reduced
in the caudate, putamen, and substantia nigra (Bouilleret et al.,
2008). Reduced DAT has also been detected in patients with juve-
nile myoclonic epilepsy (Ciumas et al., 2008; Odano et al., 2012)
and epilepsy with tonic–clonic seizures only (GTCS; Ciumas et al.,
2010).

Alterations of both D1-like and D2-like receptors have been
associated to different forms of epilepsy. For example, positron
emission tomography (PET) with [11C]-SCH23390 revealed a
reduced striatal D1R binding in patients with autosomal domi-
nant nocturnal frontal lobe epilepsy (ADNFLE; Fedi et al., 2008),
suggesting that neurotransmitter alterations in nigrostriatal DA
circuits may contribute to nocturnal paroxysmal motor activity
in ADNFLE. A reduced D2R/D3R density (as evaluated by PET
using the high-affinity DA D2R/D3R ligand [18F]fallypride) was
instead found in the temporal lobe of TLE with hippocampal scle-
rosis. Interestingly, the reduction of [18F]fallypride binding did
not correlate with hippocampal atrophy, indicating that reduced
D2R/D3R density is not just a consequence of the degenerative
process, but might play a specific role in the pathophysiology of
mesial TLE (Werhahn et al., 2006). The same authors also detected
a reduction in D2R/D3R binding in the putamen of patients with
juvenile myoclonic epilepsy (Landvogt et al., 2010). A recent study
evaluated the expression and binding of both D1R and D2R cere-
bral cortex samples from surgically treated patients with TLE
associated with mesial sclerosis (MTLE). As compared to con-
trol samples, higher D1R expression and binding and decreased
D2R expression were detected in the neocortex of MTLE patients,
whereas D2R binding was unaffected. MTLE samples also pre-
sented elevated DAT binding and low tissue content of DA (Rocha
et al., 2012). It is interesting to note that in this study, D1R binding
negatively correlated with seizure onset age and frequency, and
positively with epilepsy duration; conversely, D2R binding posi-
tively correlated with seizure onset age and negatively with epilepsy
duration (Rocha et al., 2012). These results are in agreement with
several data from animal models of TLE (see below), respectively,
showing a pro-epileptic and anti-epileptic role of D1R and D2R,
and confirm that an altered function of the DAergic system might
contribute to TLE.
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Table 1 | Dopamine signaling in epilepsy: human studies.

Epilepsy type DA target Analysis/findings Reference

Ring20 DAT Reduced [18F]-fluoro-L-DOPA binding in basal ganglia Biraben et al. (2004);

Del Sole et al. (2010)

“Absence-like”

TLE with sclerosis

DAT Reduced [18F]-fluoro-L-DOPA binding in basal ganglia Bouilleret et al. (2005)

TLE DAT Reduced [18F]-fluoro-L-DOPA binding in substantia nigra Bouilleret et al. (2008)

JME DAT Reduced [11C]PE2I binding in substantia nigra Ciumas et al. (2008);

Odano et al. (2012)

GTCS DAT Reduced [11C]PE2I binding in putamen Ciumas et al. (2010)

ADNFLE D1R Reduced [11C]-SCH23390 binding in striatum Fedi et al. (2008)

TLE with sclerosis D2R/D3R Reduced [18F]fallypride binding in hippocampus Werhahn et al. (2006)

JME D2R/D3R Reduced [18F]fallypride binding in putamen Landvogt et al. (2010)

MTLE D1R Increased expression and binding in cortex Rocha et al. (2012)

MTLE D2R Reduced expression in cortex Rocha et al. (2012)

MTLE DAT Increased binding in cortex Rocha et al. (2012)

See text for abbreviations.

GENETICS
Despite the notion that several genetic factors are predisposing to
epilepsy, little evidence is available in favor of a direct link between
epilepsy and variation of genes coding for protein involved in
DAergic neurotransmission. Two studies reported the associa-
tion of DNA polymorphisms in the DAT gene and idiopathic
absence epilepsy (Sander et al., 2000) and alcohol-withdrawal
seizures (Gorwood et al., 2003), indicating that genetic variation
of the DAT gene may modulate neuronal network excitability
and contribute to epileptogenesis. More recently, the genetic
variation in DAergic function has been associated with the risk
of adverse effect of anti-epileptic drug treatment. Specifically,
chronic epileptic patients carrying genetic variants associated with
decreased DAergic activity (DA-β-hydroxylase, DBH; catechol-O-
methyltransferase, COMT and D2R) showed a higher susceptibil-
ity to adverse psychotropic effects of levetiracetam (Wood, 2012;
Helmstaedter et al., 2013). This suggests that reduced DAergic
transmission in epileptic patients might contribute to worsen the
outcome of specific anti-epileptic medications.

ANIMAL STUDIES
Pharmacological studies demonstrated that the activation of dif-
ferent DA receptor subtypes plays distinct roles in the onset and
spread of limbic seizures (Starr, 1996). DA acts through two differ-
ent types of G-protein-coupled receptors (GPCRs), named D1-like
and D2-like (Beaulieu and Gainetdinov, 2011). Activation of D1-
like (D1 and D5) receptors results in reduction of seizure threshold
and increased seizure severity (DeNinno et al., 1991; Starr and
Starr, 1993). Conversely, the effect of D2-like (including D2, D3,
and D4) receptors on seizure modulation is mainly inhibitory.
Administration of D2-like receptor agonists lowers seizure activ-
ity, whereas blockade of these receptors has proconvulsant effects
(Starr, 1993, 1996). More recently, studies performed on DA
receptor knockout mice (Table 2) and the use of compounds

acting on specific DA receptor subtypes contributed to dissect
the intracellular pathways activated by different DA receptors in
response to seizures (Figure 1).

D1R
The D1R agonist SKF38393 has a proconvulsant action (Starr,
1996); D1-like receptors (D1R and D5R)-mediated signaling
increases cAMP levels and protein kinase A (PKA) activity via the
stimulation of adenylyl cyclase (AC) by stimulatory G-proteins
(Beaulieu and Gainetdinov, 2011). DA and cAMP-regulated phos-
phoprotein of 32 kDa (DARPP-32) is a critical downstream target
of D1R- and D5R-mediated signaling. PKA-catalyzed phospho-
rylation activates DARPP-32, and converts it into an inhibitor
of protein phosphatase-1 (PP-1). Phosphorylated DARPP-32,
by inhibiting PP-1, activates a series of signaling cascades that
are important in regulating neuronal excitability (Greengard
et al., 1999; Greengard, 2001). In mice, D1-like receptor agonist
administration induces seizures and DARPP-32 phosphoryla-
tion. Accordingly, seizure behavior is absent or greatly reduced
in both D1R and DARPP-32 knockout mice, thus highlighting
the crucial role of this signaling pathway in mediating DAergic
control of seizures (O’Sullivan et al., 2008). In addition to its
direct effect on DARPP-32, D1R-dependent activation of PKA
signaling also leads to phosphorylation of extracellular-regulated
kinase 1/2 (ERK1/2). Accordingly, seizure-induced ERK activa-
tion in the granule cell layer of the dentate gyrus is absent in
D1R knockout mice (Gangarossa et al., 2011). Seizures result-
ing from D1R activation depend on the specific coupling of D1R
to the PKA–DARPP-32–ERK pathway. D1-type receptor agonists
stimulating the AC pathway increase the levels of Zif268 and
Arc/Arg3.1 [two immediate early genes (IEGs) involved in tran-
scriptional regulation and synaptic plasticity] in the dentate gyrus,
with a time-course that parallels that of ERK phosphorylation
(Gangarossa et al., 2011). Conversely, D1 agonists that stimulate

Frontiers in Cellular Neuroscience www.frontiersin.org September 2013 | Volume 7 | Article 157 | 3

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-07-00157” — 2013/9/12 — 19:48 — page 4 — #4

Bozzi and Borrelli Dopamine and epilepsy

Table 2 | Dopamine signaling in epilepsy: knockout mouse studies.

Mouse Seizure model Phenotype Reference

D1R−/− SKF38393-induced seizures No seizures O’Sullivan et al. (2008)

Mice lacking D1R neurons None Spontaneous seizures Gantois et al. (2007)

DARPP-32−/− SKF38393-induced seizures No seizures

No ERK activation

O’Sullivan et al. (2008)

Gangarossa et al. (2011)

D5R−/− SKF38393-induced seizures Increased seizure latency, reduced total

EEG seizures

O’Sullivan et al. (2008)

D2R−/− KA seizures Lower seizure threshold, increased c-fos

induction, KA-induced CA3 neuronal

apoptosis

Bozzi et al. (2000)

D2R−/− Pilocarpine seizures Lower seizure threshold Bozzi and Borrelli (2002)

D2R−/− KA seizures Increased caspase-3 and GSK-3b activation Tripathi et al. (2010)

D2R−/− KA seizures Reduced pAkt(Ser473) in CA3 Dunleavy et al. (2013)

D4R−/− 4-Aminopiridine or

bicuculline on cortical slices

Increased excitability Rubinstein et al. (2001)

See text for abbreviations.

phospholipase C (PLC) but not AC do not induce seizure behaviors
(Clifford et al., 1999; O’Sullivan et al., 2008). These results clearly
indicate that activation of D1R-dependent signaling has a procon-
vulsant activity. However, it must be pointed out that postnatal
ablation of D1R-expressing striatal neurons results in spontaneous
seizures in mice (Gantois et al., 2007), suggesting seizure con-
trol may depend on the anatomical integrity of DAergic striatal
pathways.

D5R
D5R activation triggers both cAMP and PLC signaling (Sahu
et al., 2009; Beaulieu and Gainetdinov, 2011). Similarly to D1R,
D5R-mediated signaling through the cAMP pathway seems to be
mainly involved in seizure control. D5R−/− mice treated with
the proconvulsant D1R agonist SKF83822, showed an increased
latency to first seizure and a reduced total time spent in EEG
seizures when compared to wild-type (WT) mice (O’Sullivan et al.,
2008). However, it must be pointed out that D5R seems to have
less pronounced effects than D1R in regulating synaptic activ-
ity (O’Sullivan et al., 2008), as also confirmed by other studies
(Granado et al., 2008).

D2R
Several pharmacological lines of evidence indicate that D2R is
the major DA receptor subtype involved in the anti-epileptogenic
action of DA in limbic areas. In accordance with imaging stud-
ies performed in epileptic patients (Table 1), animal studies
confirmed that reduced levels of D2R expression are detected
in epileptogenic areas in seizing rodents. For example, D2-like
binding sites were reduced in the caudate–putamen (CP) of
pilocarpine-treated rats (Yakushev et al., 2010) and genetically
epileptic GAERS (genetic absence epilepsy rat from Strasbourg;
Jones et al., 2010) and WAG/Rij (Wistar Albino Glaxo rats from
Rijswijk; Birioukova et al., 2005) rats. Interestingly, WAG/Rij

rats also showed a reduced D2-like binding in the CA3 region,
confirming a prominent role of D2R signaling in limbic epilepto-
genesis (Birioukova et al., 2005). The crucial role of D2R signaling
in the prevention of hippocampal epileptogenesis is highlighted
by the observation that intra-hippocampal administration of
remoxipride (a selective D2R antagonist) completely abolished
the protective effects of DA against limbic seizures induced by
pilocarpine in adult rats (Clinckers et al., 2004).

D2R-mediated cAMP-dependent “canonical” pathway
D2-like receptor stimulation has an antagonistic effect to D1-like
stimulation. D2-like receptors are coupled to Gi proteins that
inhibit AC activity. Gi protein activation following DA binding
to D2R leads to a decrease of cAMP production (Beaulieu and
Gainetdinov, 2011) and subsequent modulation of PKA/ERK sig-
naling (Bozzi et al., 2011). Accordingly, D2R activation is able to
counterbalance DARPP-32 activity (Nishi et al., 1997). In the hip-
pocampal kindling model, an increased activation of Gi protein
coupled to D2-like receptors was detected in the hippocampus
and other brain areas, as evaluated by increased [35S]GTPγS in
situ binding (Alcantara-Gonzalez et al., 2013). Ligand stimula-
tion of G-protein-coupled receptors results into the activation of
the associated G-protein and binding of GTP to the catalytic α-
subunit. Measuring the binding of [35S]GTPγS (a radiolabeled
GTP analog) is therefore considered a reliable tool to quantify
GPCR activation (Harrison and Traynor, 2003). Increased acti-
vation of Gi signaling downstream of D2R autoreceptors might
explain the lower DA release detected in the hippocampus of
fully kindled animals, which might facilitate seizures (Alcantara-
Gonzalez et al., 2013). Accordingly, hippocampal administration
of the D2-like receptor antagonist sulpiride induces enhanced DA
release and longer seizure duration in kindled animals (Alcantara-
Gonzalez et al., 2013). Genetic inactivation of the D2R gene and
the consequent impairment of D2R-mediated signaling results
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FIGURE 1 | DA receptor signaling pathways activated in response to

seizures. D1-like (D1R, D5R) and D2-like (D2R; D3R and D4R) DA receptor
differently regulate the AC–PKA–ERK pathway. ERK-regulated gene
transcription modulates both short- and long-term responses, including
neuronal excitability, survival, and cell death. PLC and Akt pathways are
also regulated by D1R/D5R and D2R/D3R, respectively. The proposed
scheme is a general (though not complete) summary of the intracellular
pathways induced by seizures in the limbic system, where all DA receptor
subtypes are expressed. Differences may occur, however, in different limbic

areas, due to different expression levels of specific DA receptors. See
text for details. +, activation; −, inhibition; AC, adenylyl cyclase; βArr,
β-arrestin; cAMP, cyclic AMP; CaMKII, Ca2+/calmodulin-dependent
kinase II; CREB, cAMP response element-binding protein DARPP-32,
dopamine and cAMP-regulated phosphoprotein of 32 kDa; D1-5R,
dopamine receptors (D1 to D5 subtypes); ERK, extracellular-regulated
kinase; GSK-3β, glycogen synthase kinase 3β; PKA, protein kinase A;
PLC, phospholipase C; PP-1, protein phosphatase 1; PP2A, protein-
phosphatase 2A.

in more severe limbic seizures. D2R−/− mice have an increased
susceptibility to seizures induced by kainic acid (KA; Bozzi et al.,
2000) and pilocarpine (Bozzi and Borrelli, 2002): D2R−/− mice
experience generalized limbic motor seizures at doses that are not
convulsant in WT mice. The canonical D2R-mediated signaling
pathway negatively regulates ERK activity through reduction of
cAMP levels and PKA activity, thereby modulating the expres-
sion of cAMP-responsive IEGs (Beaulieu and Gainetdinov, 2011).
Accordingly, KA administration in D2R−/− mice induces a mas-
sive c-fos expression (a typical cAMP-responsive gene; West et al.,
2002), at a dose lower than in WT mice (Figure 2A). KA-
induced c-fos mRNA upregulation mainly involves the DG-CA3
hippocampal circuit (Bozzi et al., 2000, and Figure 2A), thus
indicating that the D2R-mediated seizure control mainly involves
this limbic circuit. A more rapid and longer-lasting ERK phos-
phorylation (consistent with the time-course of c-fos mRNA
induction; Figure 2A and Bozzi et al., 2000) is detectable in
the hippocampus of D2R−/− mice, as compared to WT con-
trols (Figure 2B). In addition, KA-induced seizures result in
a stronger and longer-lasting c-Fos protein upregulation in the

D2R−/− hippocampus as compared to WT (Figure 2C; see also
Bozzi et al., 2000). Taken together, these data confirm the critical
role of the D2R cAMP-dependent signaling in mediating the
first steps of DAergic control of hippocampal activity during
seizures.

D2R-mediated cAMP-independent pathway
In addition to their increased susceptibility to KA-induced
seizures, D2R−/− mice also display increased susceptibility to KA-
induced CA3 hippocampal cell death (Bozzi et al., 2000; Bozzi
and Borrelli, 2006). This death occurs by apoptosis, as indicated
by Bax (Bozzi et al., 2000) and Caspase-3 (Tripathi et al., 2010)
upregulation in the hippocampus of KA-treated D2R−/−mice.
We recently investigated the intracellular pathways involved in
D2R-mediated control of seizure-induced CA3 hippocampal cell
death. Several studies show that D2R may also trigger a cAMP-
independent pathway. Activation of this pathway following DA
binding to D2R results in the inhibition of Akt activity, by dephos-
phorylation of the threonine 308 (Thr308) residue, leading to
activation of glycogen synthase kinase 3β (GSK-3β; Beaulieu et al.,
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FIGURE 2 | D2R signaling pathways activated in response to seizures.

(A) Pattern of c-fos mRNA induction (dark staining) in the brain of WT and
D2R−/− mice treated with 10, 20, and 35 mg/kg kainic acid (KA), as
indicated. Brains were dissected 3 h after KA administration and coronal
sections were processed by mRNA in situ hybridization with a c-fos
specific anti-sense riboprobe (see Bozzi et al., 2000 for experimental
details). Administration of 20 mg/kg KA induced limbic motor seizures in
D2R−/− but not WT mice (Bozzi et al., 2000; Tripathi et al., 2010; Dunleavy
et al., 2013), whereas generalized seizures were observed in both
genotypes at 35 mg/kg KA (Bozzi et al., 2000). (B,C) Induction of ERK
phosphorylation (pERK) and c-Fos protein synthesis in the hippocampus of
WT and D2R−/− mice following KA-induced seizures. Mice received a
single systemic dose of KA (20 mg/kg) and ERK/pERK (B) and c-Fos (C)

induction were analyzed by immunoblotting on total hippocampal protein
extracts at different times after KA (1, 3, and 6 h, as indicated). CA3,
pyramidal cell layer of the hippocampus; D2R−/−, D2R knockout mice; KA,
kainic acid; (p)ERK, (phosphorylated) extracellular-regulated kinase; saline,
saline-treated mice; WT, wild-type mice.

2005, 2007a). Accordingly, we observed GSK-3β activation in the
D2R−/− hippocampus after KA (Tripathi et al., 2010), suggesting
that upregulation of GSK-3β activity might contribute to increased
susceptibility to seizure-induced cell death observed in these mice.
However, GSK-3β upregulation in KA-treated D2R−/− mice was
independent of Akt phosphorylation at Thr308 (Tripathi et al.,
2010), implicating that alternative pathways might contribute to
modulate GSK-3β in the hippocampus during epileptic activity.
The p38 mitogen-activated protein kinase (MAPK) and Wnt path-
ways, which have been implicated as potential alternative pathways

in regulating GSK-3β activity (Thornton et al., 2008; Inestrosa
and Arenas, 2010), are not affected in KA-treated D2R−/− mice
(Dunleavy et al., 2013). We were able to show that following KA,
phosphorylation of Akt occurs at the serine 473 residue (Ser473)
in the CA3 region of WT but not of D2R−/− mice (Dunleavy
et al., 2013; CA3 neuron loss following KA is detected in D2R−/−
but not WT mice; Bozzi et al., 2000; Bozzi and Borrelli, 2006).
Conversely, a strong induction of Akt (Ser473) phosphorylation
after KA was detected in the CA1 subregion (where no neu-
ronal cell loss is detected after KA) of both WT and D2R−/−
mice (Dunleavy et al., 2013). We therefore proposed that loss
of D2R signaling results in reduced Akt (Ser473) phosphory-
lation, rendering CA3 neurons more vulnerable to apoptosis.
Further investigation is required to fully elucidate the Akt/GSK-
3β targets involved in D2R-mediated response to excitotoxicity
(see also below).

D3R
Contrasting results were obtained about the role of D3R signaling
in seizure modulation. D3R are mainly expressed in the lim-
bic forebrain (Beaulieu and Gainetdinov, 2011; see also below).
However, stimulation of D3R has a minimal inhibitory effect
on limbic seizures: intra-accumbens pretreatment with D3 ago-
nists delayed the onset of limbic seizures induced by pilocarpine,
without any effect on their frequency and severity. In the same
model, D2R agonists exerted an anti-convulsant action (Alam
and Starr, 1994). Thus, the protective effect of DA on seizure
propagation through the limbic forebrain is predominantly medi-
ated by D2R rather than D3R. It has been proposed that D3R
participates in D2R cAMP-independent pathway by enhancing
D2R-mediated Akt (Thr308) phosphorylation (Beaulieu et al.,
2007b). Signaling cascades downstream of D3R also involve
Ca2+/calmodulin-dependent protein kinase II (CaMKII), that
binds to the N-terminal region of the third intracellular loop of
D3R (Liu et al., 2009), as well as ERK (Collo et al., 2012) and
CREB (cAMP response element-binding protein; Karasinska et al.,
2005) phosphorylation, whose activity is negatively modulated
by DR3.

D4R
As the other members of the D2-like receptor family, D4R
have a prominent inhibitory role on neuronal hyperexcitabil-
ity. The frequency of spontaneous synaptic activity and the
frequency and duration of epileptic discharges induced by 4-
aminopyridine or bicuculline were increased in cortical slices
from D4R−/− mice, as well as in brain slices from WT
mice treated with a selective D4R antagonist (Rubinstein
et al., 2001). In vivo, D4R−/−mice showed a reduction of
SKF83822-induced seizures, indicating that D4R interacts with
AC-coupled D1R to positively regulate D1R-mediated seizures
(O’Sullivan et al., 2006).

BUILDING A UNIFYING VIEW OF DA SIGNALING IN
EPILEPTOGENESIS
The results reported in the previous sections clearly highlight
the opposite neuromodulatory role of D1- and D2-like receptors
on seizures arising in the limbic system. However, most of (if
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not all) these studies investigated the role of DA signaling on
the modulation of acute seizures (such as those occurring dur-
ing an experimentally induced status epilepticus). Few data are
available suggesting a direct link between DA signaling and epilep-
togenesis, i.e., the establishment of a chronic epileptic condition
following an initial precipitating injury. In the next paragraphs
we will present current understanding of how altered DA sig-
naling might contribute to a chronic epileptic condition. In
the attempt to build up a common signaling network for DA
in epileptogenesis, we will first consider (i) the (co)expression
of DA receptors in epileptogenic brain areas and (ii) what we
know about DAergic modulation of chronic seizures in appro-
priate animal models of epileptogenesis. Then we will try to
explain how altered DA neurotransmission in epileptogenic brain
areas might interfere with intracellular pathways involved in
long-term hyperexcitability. Finally, we will propose a novel,
testable hypothesis on the role of DA receptor signaling in
epileptogenesis.

EXPRESSION OF DA RECEPTORS IN EPILEPTOGENIC AREAS
All DA receptor subtypes are expressed in epileptogenic brain
areas. D1Rs are expressed at high levels in the CP, nucleus accum-
bens (NAc), substantia nigra pars reticulata (SNr), amygdala, and
cerebral cortex, and to a lower level in the hippocampus. D5Rs are
expressed in the entorhinal cortex, SNr, and hippocampus mainly
in the dentate gyrus). Lower levels of expression are found in the
NAc and CP neurons. D2Rs are mainly expressed in the CP, NAc,
SN pars compacta (SNc), in the ventral tegmental area, cerebral
cortex, amygdala, and hippocampus. D3R expression is mainly
restricted to areas of the limbic system (NAc, islands of Calleja),
but is also present in the SNc, VTA, hippocampus, and cerebral
cortex. Finally, D4R expression in epileptogenic areas is limited to
the frontal cortex, amygdala, hippocampus, and SN (Beaulieu and
Gainetdinov, 2011).

This brief summary clearly shows that most DA receptor sub-
types are present in epileptogenic areas within the limbic system. In
these areas, DA receptors are generally expressed in different sub-
sets of neurons, but co-expression of different subtypes has also
been detected in restricted neuronal populations. For example,
D1R and D2R are generally expressed in distinct subpopulations
of striatal medium spiny neurons, but a small percentage (5–15%)
of these neurons has been shown to co-express both receptors;
similarly, 20–25% of pyramidal neurons of the prefrontal cor-
tex do co-express D1R and D2R (Valjent et al., 2009; Beaulieu
and Gainetdinov, 2011). In the hippocampus, D1R mRNA is pre-
dominantly expressed in the granule cell layer of dentate gyrus,
whereas the protein is localized in the molecular layer (Fremeau
et al., 1991). D2R mRNA is also expressed in granule cells of the
dentate gyrus, but its expression is also detectable in CA1–CA3
pyramidal layers; D2R protein is instead localized in the hilus and
stratum lacunosum moleculare (Martres et al., 1985; Bouthenet
et al., 1987). According to the expression profile of DA receptor
subtypes, it is therefore likely that the signaling cascades depicted
in Figure 1 may cooperate at least in some, restricted neuronal
subpopulations within the limbic system, such as dentate granule
cells in the hippocampal formation. Indeed, DA has been shown
to markedly regulate neuronal excitability in the dentate gyrus

(Hamilton et al., 2010), as well as other limbic regions (Tseng and
O’Donnell, 2004; Hammad and Wagner, 2006; Rosenkranz and
Johnston, 2006) via D1-like and D2-like signaling pathways.

INVESTIGATING DOPAMINERGIC MODULATION OF CHRONIC SEIZURES
IN ANIMAL MODELS OF EPILEPTOGENESIS
The vast majority of studies demonstrating a DAergic modulation
of seizure onset and spread were performed on animal models
of acute but not chronic seizures (Starr, 1996). Thus, a direct
demonstration of a neuromodulatory effect of DA in epileptogen-
esis is substantially lacking. However, some important indications
may be obtained from the limbic kindling model. Limbic kin-
dling consists in the repeated, subthreshold electrical stimulation
of the amygdala or hippocampus, that ultimately leads to the
expression of chronic seizures (Morimoto et al., 2004). Kindling
has been extensively used for the preclinical evaluation of anti-
epileptic drugs; many studies demonstrated that drugs showing
anti-epileptic effects against limbic kindling also have an anti-
epileptic efficacy in clinical TLE (Morimoto et al., 2004). The
effect of DAergic drugs on kindled seizures is well-documented.
Non-selective DA agonists (such as amphetamines) have an anti-
epileptic action. Interestingly, while the prototypical D1R agonist
SKF38393 has no effect in this model, D2R-selective compounds
do modify seizure threshold. D2R agonists (lisuride) are pro-
tective, whereas D2R blockers (haloperidol) exacerbate kindled
seizures (Starr, 1996).

The advantages of the limbic kindling model of epileptoge-
nesis are multiple: a precise, focal activation of specific brain
areas; a reliable development of chronic epileptogenesis; and a
rapid and consistent pattern of seizure propagation and general-
ization. However, the kindling procedure is labor intensive, and
spontaneous seizures develop only after a very large number of
stimulations. For these reasons, DAergic modulation of seizure
onset and spread has been more extensively studied in phar-
macological models of limbic epileptogenesis, namely seizures
induced by the muscarinic agonist pilocarpine and glutamater-
gic agonist KA. These two drugs induce very similar epileptic
activity despite their distinct mechanism of action. Pilocarpine
and KA initially provoke signs of focal epilepsy (stereotyped
pre-convulsive behaviors), due to the activation of limbic areas
(dentate gyrus, hippocampal formation, amygdala, entorhinal
cortex). From these areas, epileptic activity rapidly propagates
to the whole cerebral cortex, culminating in acute motor seizures
and status epilepticus. Most importantly, pilocarpine- and KA-
induced seizures result in extensive neurodegeneration in specific
regions of the brain and may lead to the occurrence of sponta-
neous chronic seizures in the long-term (Turski et al., 1983, 1984;
Ben-Ari, 1985; Leite et al., 2002). Using these models, a clear
effect of D1R and D2R signaling on the genesis of limbic seizures
has been observed, as described in previous paragraphs. How-
ever, several questions remain open. Specifically, do DA drugs
(namely, D1R antagonists and D2R agonists) have a disease-
modifying effect? Do they reduce or stop the occurrence of chronic
seizures? The first issue could be addressed by administering DA
compounds after pilocarpine- or KA-induced status epilepticus,
and recording the occurrence of spontaneous chronic seizures.
To test the anti-convulsant effect of DA drugs onto chronic
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seizures, D1R- and D2R-selective compounds should instead be
administered during the occurrence of spontaneous seizures in
appropriate models of chronic epilepsy (such as that resulting
from intrahippocampal administration of KA; Antonucci et al.,
2008).

DA SIGNALING AND EPILEPTOGENESIS: A TESTABLE HYPOTHESIS
Evidence discussed above supports a neuromodulatory role of DA
signaling in limbic epileptogenesis. However, the mechanisms by
which DA signaling affects neuronal excitability and epileptogene-
sis in the long-term remain largely unknown. Here we propose that
activation of neuronal cell death pathways (a well-known causal
factor of limbic epileptogenesis; Bozzi et al., 2011; Henshall and
Engel, 2013) following altered DA signaling might contribute to
chronic epilepsy. As summarized in Figures 1 and 3, stimulation
of D1R and blockade of D2R signaling can lead to the activa-
tion of neuronal cell death pathways. This phenomenon essen-
tially involves two intracellular cascades: the PKA/ERK/Fos/Jun
pathway and the mammalian target of rapamycin (mTOR)
pathway.

Canonical, cAMP-dependent signaling through D1R and D2R
activates the expression of the IEGs c-fos and c-jun. Treatment
with D1R agonists results in a robust Fos-like immunoreactivity in

basal ganglia and limbic structures of rats undergoing pilocarpine-
induced generalized seizures (Barone et al., 1993). Recent studies
indicate that D1R signaling through the G protein αolf β2γ7 might
contribute to seizure-induced neuropathology (Schwindinger
et al., 2012). Similarly, D2R receptor blockade by haloperidol
induces Fos and Jun B expression during status epilepticus in the
hippocampus and striatum (Dragunow et al., 1993); accordingly,
KA seizures in D2R−/− mice markedly induce c-fos and c-jun
expression (Bozzi et al., 2000; Figure 2). The protein products of
c-fos/c-jun form the AP-1 transcription factor, whose activation
regulates the expression of a wide number of cell death genes.
The prolonged activation of c-fos after acute seizures was pro-
posed as one of the crucial steps that trigger long-term neuronal
death (Smeyne et al., 1993; Kasof et al., 1995). Jun phosphoryla-
tion (mediated by the c-Jun N-terminal kinase, JNK) activates Jun
transcriptional activity and triggers apoptotic neuronal cell death
after seizures (Schauwecker, 2000; Bozzi et al., 2000; Spigolon et al.,
2010).

D2R signaling also occurs through a cAMP-independent,
Akt/GSK-3β-dependent pathway (Beaulieu and Gainetdinov,
2011; see also Figure 1 and references above). Loss of D2R
signaling in D2R−/− mice results in reduced Akt (Ser473) phos-
phorylation and subsequent overactivity of GSK-3β (Tripathi

FIGURE 3 | Simplified diagram of intracellular pathways downstream of

DA receptors, potentially involved in seizure-induced cell death and

epileptogenesis in the limbic system. We propose that signaling cascades
downstream of D1R and D2R may converge on two principal intracellular
pathways (PKA/ERK/Fos/Jun and Akt/GSK-3β/mTOR) to regulate

seizure-induced cell death and epileptogenesis. See text for details. αolfβ2γ7,
trimeric Golf protein; elF4E, elongation factor 4E; mTORC1, mammalian
target of rapamycin complex 1; pJun, phosphorylated Jun; Rheb, Ras
homolog enriched in brain; TSC1/2, tuberous sclerosis complex 1/2; see also
Figure 2 for other symbols and abbreviations.
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et al., 2010; Dunleavy et al., 2013), thus rendering CA3 neurons
more susceptible to apoptosis. GSK-3β hyperactivity is known
to induce hippocampal neurodegeneration (Lucas et al., 2001;
Sirerol-Piquer et al., 2011; Llorens-Martín et al., 2013), through
mechanisms involving the blockade of the pro-survival β-catenin
pathway (De Ferrari and Inestrosa,2000) as well as the activation of
the mTOR pathway (Beaulieu and Gainetdinov, 2011). KA seizures
do not alter the β-catenin pathway in the D2R−/−hippocampus
(Dunleavy et al., 2013). Thus, it is likely that GSK-3β hyperactivity
in KA-treated D2R−/−mice results in the activation of the mTOR
pathway. Several evidences support the crucial role of this path-
way in epileptogenesis (Cho, 2011; Galanopoulou et al., 2012). For
example, the components of the mTOR pathway are upregulated
after seizures (Macias et al., 2013) and, most importantly, inhi-
bition of mTOR by rapamycin may ameliorate the development
of epilepsy-related pathology and reduce the expression of spon-
taneous seizures in TLE models (Zeng et al., 2009; Huang et al.,
2010). In addition, there is strong evidence that rapamycin may
prevent epilepsy and ameliorate its progression in mice lacking the
tuberous sclerosis complex genes 1 and 2 (TSC1/2), which act as
negative regulators of mTOR (Zeng et al., 2008, 2011). The mech-
anisms through which mTOR overactivity promotes epileptogen-
esis and neurodegeneration remain to be understood; according
to the multiple action of the mTOR targets, these might involve
altered cell growth and morphology, dysregulation of gluta-
matergic neurotransmission, inflammation, axonal sprouting, and
remodeling of epileptogenic circuits (Galanopoulou et al., 2012;
see also Figure 3).

Taken together, these data lead us to propose that loss of
D2R signaling (induced by pharmacological blockade or genetic
inactivation of D2R) might contribute to epileptogenesis via
the activation of the mTOR pathway. This hypothesis might
be tested by checking whether targets of the mTOR complex
are upregulated in D2R−/−mice following KA- or pilocarpine-
induced seizures. It would be then possible to investigate whether
the mTOR inhibitor rapamycin is able to prevent seizures in
KA or pilocarpine-treated D2R−/− mice. It is interesting to
point out that seizure induction by activation of D1R might
also converge onto the mTOR pathway; indeed, this pathway
is also activated via PKA/ERK signaling (Figure 3), and the
D1R agonist SKF81297 was shown to increase the phosphory-
lation of the mTOR target ribosomal protein S6 in the dentate
gyrus, in an ERK-dependent manner (Gangarossa and Valjent,
2012). However, SKF81297 administration did not activate (but
rather suppressed) the mTORC1/S6 kinase pathway, suggest-
ing that S6 phosphorylation occurs independently of mTOR
(Gangarossa and Valjent, 2012). Further investigation is there-
fore needed to understand whether stimulation of D1R signal-
ing may promote epileptogenesis via activation of the mTOR
pathway.

EXPLORING THE CLINICAL USE OF DOPAMINERGIC DRUGS
IN EPILEPSY
Modulation of limbic seizures by DAergic drugs, as detected
in the kindling, pilocarpine and KA models (see above) might
predict a similar effect of these drugs on clinical epileptogene-
sis. However, no known DAergic drug is currently used to treat

epilepsy (Beaulieu and Gainetdinov, 2011), despite anti-epileptic
effects of DA agonists have been reported in epileptic patients
(Starr, 1996). The lack of a systematic investigation of the anti-
epileptic efficacy of DA agonists is certainly due to their severe
neurological and neuropsychiatric side effects. However, some
studies investigated the potential use of the D2R-selective ago-
nist bromocriptine in some forms of epilepsy. Bromocriptine was
originally reported to have an anti-epileptic effect in a case of self-
induced, drug-resistant epilepsy (Clemens, 1988). Other studies
subsequently confirmed that bromocriptine was highly effective
in reducing seizure frequency in TLE patients affected by pitu-
itary prolactinomas (Gatterau et al., 1990; Saie and Sills, 2005;
Deepak et al., 2007). It is important to observe that these stud-
ies did not report severe side effects of prolonged bromocriptine
treatment (see also Chen, 2006). Interestingly, in D2R−/− mice,
increased seizure susceptibility (Bozzi et al., 2000; Bozzi and Bor-
relli, 2002) is accompanied by the progressive development of
pituitary prolactinomas (Saiardi et al., 1997; Iaccarino et al., 2002;
Radl et al., 2013), suggesting that altered D2R signaling might be
a common cause of these two conditions. These observations def-
initely prompt for a better investigation of the anti-epileptogenic
efficacy of D2R-selective agonists. Indeed, different D2R agonists
(including bromocriptine) have neuroprotective efficacy against
KA-induced brain damage (Micale et al., 2006), and recent studies
promisingly show that lisuride may reduce seizures occurring after
traumatic brain injury (Zweckberger et al., 2010). Further inves-
tigation in both animal models and clinical settings is needed to
establish the anti-epileptogenic efficacy of D2R agonists.

CONCLUSION
In this review, we described recent evidence from both human
and animal studies supporting the opposite role of D1-like and
D2-like receptor signaling in limbic epilepsy. These studies indi-
cate that increased D1R and decreased D2R function might be
involved in limbic epilepsy. We propose that altered D1R and D2R
signaling might contribute to epileptogenesis via the activation of
the neuronal cell death cascades, activated by the PKA/ERK and
mTOR pathways. The possible therapeutic application of these
findings has been long disregarded, mainly due the severe side
effects of DAergic drugs. However, the beneficial effects of selec-
tive D2R agonists observed in both animal and human epilepsy
would deserve more attention.
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