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Neuronal progenitors capable of long distance migration are produced throughout life in the
subventricular zone (SVZ). Migration from the SVZ is carried out along a well-defined path-
way called the rostral migratory stream (RMS). Our recent finding of the specific expression
of the cytoskeleton linker protein radixin in neuroblasts suggests a functional role for radixin
in RMS migration.The ezrin-radixin-moesin (ERM) family of proteins is capable of regulating
migration through interaction with the actin cytoskeleton and transmembrane proteins.
The ERM proteins are differentially expressed in the RMS with radixin and moesin localized
to neuroblasts, and ezrin expression confined to astrocytes of the glial tubes. Here, we
inhibited radixin function using the quinocarmycin analog DX52-1 which resulted in reduced
neuroblast migration in vitro, while glial migration remained unaltered. Furthermore, the
morphology of neuroblasts was distorted resulting in a rounded shape with no or short
polysialylated neural cell adhesion molecule positive processes. Intracerebroventricular
infusion of the radixin inhibitor resulted in accumulation of neuroblasts in the anterior SVZ.
Neuroblast chains were short and intermittently interrupted in the SVZ and considerably
disorganized in the RMS. Moreover, we studied the proliferation activity in the RMS after
radixin inhibition, since concentrated radixin expression has been demonstrated in the
cleavage furrow of dividing cells, which indicates a role of radixin in cell division. Radixin
inhibition decreased neuroblast proliferation, whereas the proliferation of other cells in the
RMS was not affected. Our results demonstrate a significant role for radixin in neuroblast
proliferation and migration.
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INTRODUCTION
In the adult rodent brain neuronal progenitor cells, neuroblasts,
migrate a long distance from the neurogenic subventricular zone
(SVZ) through the rostral migratory stream (RMS) to their final
destination in the olfactory bulb (OB) where they differentiate
into mature neurons (Altman, 1969; Lois and Alvarez-Buylla,
1994). The significance and extent of adult neurogenesis in the
adult human SVZ/RMS area is not clear, however, in rodents
brain injury and pathology can induce both proliferation and
deviated migration from the SVZ/RMS toward damaged tissue
areas (Arvidsson et al., 2002; Li et al., 2010; Osman et al., 2011).
Abolishing migrating neuroblasts after stroke leads to worsened
recovery (Jin et al., 2010), suggesting a supportive role for these
neuronal progenitors under injury conditions. A deeper under-
standing of RMS migration may reveal ways to direct immature
cells to damaged areas and to increase possibilities for brain repair.
In the RMS, neuroblasts migrate along each other forming cellular
chains which are tightly surrounded by glial cells, often referred
to as the glial tubes (Lois et al., 1996; Peretto et al., 1997). Chain
migration has been proposed to be supported by the glial tubes
and blood vessels and, is regulated by numerous extracellular and
intracellular cues. Polysialylated neural cell adhesion molecule
(PSA-NCAM) is important for the organization of chain migra-
tion in the RMS and adjusts cell-cell adhesion (Ono et al., 1994;

Chazal et al., 2000). Doublecortin (DCX) is required for nuclear
translocation during neuroblast migration (Gleeson et al., 1999;
Koizumi et al., 2006). Moreover, neuroblasts divide en route to
the OB and EGF receptors (Anton et al., 2004; Kim et al., 2009);
ephrins (Conover et al., 2000; Ghashghaei et al., 2006) and NogoA
(Rolando et al., 2012) have been found to regulate both migration
and proliferation in the RMS. Cellular functions such as migra-
tion and adhesion require a highly dynamic cytoskeleton. Linker
proteins of the ERM (ezrin/radixin/moesin) family can interact
with both f-actin and several transmembrane proteins, providing
a connection between extracellular cues and the cytoskeleton (Sato
et al., 1992). The action of ERM proteins is regulated by binding
of their two main domains; the N-terminal FERM domain and
the C-terminal domain, which can be interrupted by threonine
phosphorylation (for review, see Bretscher et al., 2002). An open
conformation enables simultaneous binding of ERM proteins to
the cytoskeleton and to transmembrane proteins such as recep-
tors, ECM molecules and adhesion proteins (Serrador et al., 1997;
Ivetic et al., 2002; Bono et al., 2005; Loebrich et al., 2006; Takai
et al., 2007; Tang et al., 2007; Terawaki et al., 2008). Formation of
actin-rich structures like filopodia and lamellipodia are essential
for cell migration and process formation in various cell types. The
involvement of ERM proteins in a variety of cell functions in the
embryonic and early postnatal brain, including axonal outgrowth,
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morphological rearrangement, cell migration and signaling, have
been demonstrated (Paglini et al., 1998; Castelo and Jay, 1999;
Loebrich et al., 2006; Haas et al., 2007; Parisiadou et al., 2009). In
the adult brain, however, ERM proteins have been less studied.
Although highly homologous, the ERM proteins seem to localize
to different cell types in the adult brain, with ezrin expression in
glial cells and radixin expression in neuronal cells (Paglini et al.,
1998; Gronholm et al., 2005; Cleary et al., 2006; Persson et al.,
2010). We recently described the specific expression of radixin
in PSA-NCAM+ neuroblasts in the adult SVZ and RMS (Persson
et al., 2010). Here we investigate the function of radixin in neurob-
lasts using the radixin inhibitor DX52-1, aquinocarmycin analog.
The inhibitor was recently shown to primarily target radixin and
disrupt the ability for radixin to bind actin as well as transmem-
brane proteins, such as CD44 (Kahsai et al., 2006). In this study,
we explore the effects of DX52-1 and radixin inhibition on neu-
roblasts in the adult SVZ and RMS using in vitro and in vivo
approaches to analyze migration, proliferation, cell death, and
proteomic changes.

MATERIALS AND METHODS
CHEMICALS
The quinocarmycin analog DX52-1 (generous gift from Prof.
Gabriel Fenteany) was used to block radixin function as described
previously (Kahsai et al., 2006). A stock solution was prepared
by dissolving the compound in sterile 50% DMSO in PBS which
was further diluted with PBS to the final concentration (<0.05%
for in vivo experiments and <0.0025% DMSO for in vitro
experiments). Control experiments were always performed with
the same concentration of DMSO as the corresponding diluted
DX52-1 solution.

ANIMALS
Eight to nine week-old male Wistar rats were used in this study.
All rats were housed in a barrier facility with a 12-h light/dark
cycle and allowed free access to food and water. Experiments were
conducted according to protocols approved by the Gothenburg
ethics committee of the Swedish Animal Welfare Agency (Ethical
application no 32/11 and 145/10). For in vitro studies and whole
mount preparations, animals were anesthetized using isofluorane
and brains removed after decapitation.

SURGERY
Surgeries were performed under ketamine (33 mg/mL Ketalar,
Pfizer, New York, NY, USA) and xylazine (6.67 mg/mL Rompun,
Bayer Healthcare AG, Tarrytown, NY, USA) anesthesia, and all
efforts were made to minimize suffering. The animals were divided
into two groups receiving either vehicle (0.05% DMSO in PBS) or
DX52-1 (1.3 μg/day), for 4 days. The surgeries were performed
as previously described (Lindberg et al., 2012). Briefly, osmotic
minipumps (Model 1002; Alzet-Durect, Cupertino, CA, USA) and
infusion cannulas (Brain Infusion Kit 2; Alzet-Durect) were filled
with vehicle or DX52-1. Cannulas were inserted intracerebroven-
tricularly using a stereotaxic instrument [David Kopf, Tujunga,
CA and Stoelting Co, Wood Dale, IL, USA; anteroposterior (AP)
+8.5 mm, lateral +1.2 mm from the center of the interaural line
at flat skull position; cannula length, 5 mm below skull] and

the minipumps were placed subcutaneously. At the end of the
DX52-1 infusion period, animals were sedated using an overdose
of pentobarbital and transcardially perfused with 4% PFA (His-
tolab, Gothenburg, Sweden) in 0.1 M phosphate buffer (pH 7.4).
Brains were removed, postfixed for 24 h in 4% PFA (Thermo Fisher
Scientific, Waltham, MA, USA) and thereafter kept in 30% sucrose
at 4◦C until further processed.

IMMUNOFLUORESCENCE
The ipsilateral side of infused brains was cut in a sagittal plane
and the contralateral side was cut coronally. Sagittal sections
were cut at 25 μm and coronal sections were cut at 40 μm on
a sliding microtome (Leica Microsystems, Wetzlar, Germany)
followed by immunofluorescence. Immunostainings including
radixin were preceded by antigen retrieval in sodium citrate, pH
6.0, for 20 min at 97◦C followed by 15 min cooling at room
temperature. Sections were blocked for 30 min in 3% normal
donkey serum (Jackson ImmunoResearch, West Grove, PA, USA)
in 0.1% Triton X-100, and then incubated for 48 h at 4◦C
in primary antibodies; monoclonal rabbit anti-radixin (Abcam,
Cambridge, MA, USA), mouse anti-radixin (Abnova, Taipei City,
Taiwan), rabbit anti-phosphorylated ezrin/radixin/moesin (Cell
signaling, Danvers, MA, USA), rabbit anti-phosphorylated his-
tone H3 (PHH3, Millipore, Billerica, MA, USA), mouse IgM
anti-PSA-NCAM (Chemicon International/Millipore, Billerica,
MA, USA). ToPro-3 (Molecular Probes/Invitrogen, Carlsbad, CA,
USA) was used as a nuclear counterstain. After rinsing in tris-
buffered saline (TBS), sections were incubated for 2 h with Alexa
Fluor-conjugated secondary antibodies (Molecular Probes) and
CF secondary antibodies (Biotium, Hayward, CA, USA). The
sections were mounted on glass slides and coverslipped with
ProLong Gold DAPI (Molecular Probes).

To study apoptotic cell death in the SVZ and RMS after DX52-1
infusion, the ApopTag Fluorescein Direct in situ Apoptosis Detec-
tion kit (Millipore) was used. Fixed free floating sections were
mounted onto glass slides and pretreated with ethanol:acetic acid
(2:1) for 5 min at −20◦C followed by a PBS washing step. After
1 h of incubation in terminal deoxynucleotidyltransferase at 37◦C,
the reaction was stopped by washing and the sections were incu-
bated for 30 min with a Fluorescein-conjugated anti-digoxigenin
antibody at room temperature and subsequently washed in PBS.
The slides were coverslipped with ProLong Gold DAPI (Molecular
Probes).

SVZ WHOLE MOUNT PREPARATION
After 4 days of vehicle or DX52-1 intracerebroventricular infusion,
brains (n = 3) were removed and placed in 37◦C warm Hank’s
Balansed Salt Solution (HBSS, Invitrogen). The whole ventricu-
lar wall of the contralateral hemisphere, including the underlying
parenchyma, was carefully dissected out and fixed in cold 4%
PFA/0.1% Triton X-100 in PBS for 24 h before washing and block-
ing unspecific binding in 10% Donkey serum/2% Triton X-100 in
PBS for 1 h (Mirzadeh et al., 2010). The wholemount was incu-
bated for 48 h with primary antibodies; goat anti-DCX (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA), rabbit anti-PhosH3
(Millipore), washed thoroughly in 0.1% Triton X-100 in PBS,
and subsequently incubated for 24 h in Alexa Fluor secondary
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antibodies (Molecular Probes). After completing the staining, a
sliver of the SVZ was cut out from the underlying parenchyma
and coverslipped with Prolong Gold DAPI (Molecular Probes).

SVZ EXPLANTS
For explant cultures brains were rapidly removed and kept in
Hank’s balanced salt solution (Gibco/Invitrogen) on ice. One mil-
limeter coronal brain slices were cut between anterio-posterior
coordinates Bregma −0.5 to 2.5 using a coronal brain matrix. The
slices were kept on ice while the lateral ventricle walls were dis-
sected and cut into approximately 100 μm diameter pieces. The
tissue pieces were resuspended in Neurobasal A medium (Invit-
rogen), mixed 3:1 with Matrigel (BD Biosciences, San Jose, CA,
USA) and dispensed in 8-well chamber slides (BD Bioscience), fol-
lowed by 10 min polymerization at 37◦C. Explants were cultured
in Neurobasal A medium, supplemented with B27 and Glutamax,
PenStrep (all Invitrogen) and a concentration series of the radixin
inhibitor DX52-1 (Vehicle 0.0025% DMSO, 50, 100 or 250 nM)
at 37◦C in 5% O2 and 1% CO2 for 72 h. At the end of the exper-
iment the explants were fixed in 4% PFA for 20 min. After three
15-min washes in TBS, the explants were blocked for 3 h at room
temperature using 3% donkey serum and 0.2% Triton-X in TBS.
Explants were then incubated with primary antibodies for 48 h;
goat anti-Sox2 (Santa Cruz Biotechnology), rabbit anti-GFAP
(DakoCytomation, Glostrup, Denmark), mouse IgM anti-PSA-
NCAM (Chemicon International) and with secondary antibodies
as described above.

Apoptosis and cell death was analyzed using Vybrants Apopto-
sis Assay kit 2 (Molecular Probes) on explants after 96 h in culture.
Explants were washed in cold PBS for 10 min and subsequently in
Annexin buffer for 15 min followed by incubation with Annexin
V conjugated with Alexa 488 and propidium iodide (PI) in room
temperature for 40 min. The cultures were washed in Annexin
buffer, fixed with 2% PFA and stained with the nuclear stain
ToPro-3 (Molecular Probes) before one wash in Annexin buffer
and subsequently coverslipped with ProLong Gold (Molecular
Probes).

CONFOCAL MICROSCOPY AND QUANTIFICATIONS
Immunofluorescence labeling was imaged using confocal laser
scanning microscope (Leica TCS SP2, Leica Microsystems, Wetzlar,
Germany, and at the Centre for Cellular Imaging; Zeiss LSM 700
and Zeiss LSM 710, Carl Zeiss Microscopy GmbH, Jena, Germany).
For SVZ explant cultures, migration distance of migratory chains
was measured for PSA-NCAM+ cells. The three longest migratory
chains per explant were used to estimate the maximum migration
distance under DX52-1 treatment (1–4 explants). Furthermore,
the percentage of PSA-NCAM+ and Sox2high cells leaving the
explants were quantified by counting the ratio of PSA-NCAM+
and Sox2high cells (total cells counted per condition: 549 ± 66)
in migratory chains emerging from the explants. Cells were visu-
alized with the nuclear stain ToPro-3 and n = 4 for all explant
quantifications.

For in vivo quantifications coronal sections from the contralat-
eral hemisphere were used after vehicle or DX52-1 infusion. For
quantification of cell proliferation in the RMS, the total number
of PHH3+ cells, and PSA-NCAM+/PHH3+ double labeled cells,

in the RMS was acquired from 7 to 9 sections at a 1:12 inter-
val covering the RMS. Anterior RMS refers to anterio-posterior
coordinates from 13.20 to 11.52 mm from interaural line and
posterior RMS refers to anterio-posterior coordinates from 11.52
to 10.44 mm from interaural line. Double labeling was assumed
when cells exhibited direct co-localization or when nucleus and
cytosol or processes from the same cell were individually labeled.
Area/volume measurements and the number of ApopTag stained
cells were assessed using stereology software (Stereo Investigator;
MicroBrightField Inc., Williston, VT, USA).

PROTEOMIC ANALYSIS
The proteomic analysis was performed by the Proteomics core
facility at the University of Gothenburg. Relative protein expres-
sion levels was analyzed after radixin inhibition using the TMT
isotopic mass tagging kit (Thermo Fisher Scientific), where the
reporter mass is used for semi quantitative identification of pro-
teins with tandem mass spectrometry. The ipsilateral SVZ was
microdissected from rats (n = 3) after intracerebroventricular
infusion of DX52-1 or vehicle. Tissue samples were lysed in a
buffer containing; 50 mM TEAB, 8 M Urea, 4% Chaps, 0.2%
SDS, 5 mM EDTA, pH 8.5. Total protein concentration was
determined using Pierce 660 nm Protein Assay (Thermo Fisher
Scientific). 100 μg protein per sample were incubated with TCEP
(tris(2-carboxyethyl)phosphine), alkylated with MMTS (methyl
methanethiosulfonate) and digested with trypsin, after a four-fold
dilution, in 0.5 M TEAB ratio 1:25 over night in 37◦C.

TMT 6-plex reagents (126–131) were dissolved in ACN and
added to the respectively sample according to manufacturer’s pro-
tocol (Thermo Fisher Scientific). After labeling and quenching
of the reagents, the samples were combined and concentrated.
TMT-labeled peptides were separated with strong cation exchange
chromatography (SCX). The 18 peptide containing fractions were
desalted on PepClean C18 spin columns according to manufac-
turer’s instructions (Thermo Fisher Scientific). The desalted and
dried fractions were reconstituted into 0.1% formic acid and ana-
lyzed on a LTQ-Orbitrap-Velos (Thermo Fisher Scientific) inter-
faced with an in-house constructed nano-LC column. Two-micro
liter sample injections were made with an Easy-nLCautosampler
(Thermo Fisher Scientific), running at 200 nL/min. The peptides
were trapped on a precolumn (45 × 0.075 mm i.d.) and sep-
arated on a reversed phase column, 200 × 0.075 mm, packed
in-house with 3 μm Reprosil-Pur C18-AQ particles. The gradi-
ent was as followed; 0–60 min 5–25% acetonitrile (ACN), 0.1%
formic acid, 60–75 min 25–80% ACN, 0.1% formic acid and the
last 15 min at 90% ACN, 0.1% formic acid. LTQ-OrbitrapVelos
settings were: spray voltage 1.4 kV, 1 microscan for MS1 scans at
60,000 resolutions (m/z 400), full mass spectrometry (MS) mass
range m/z 400–1,800. The LTQ-OrbitrapVelos was operated in a
data-dependent mode with one MS1 FTMS scan precursor ions
followed by HCD (high energy collision dissociation), MS2 scans
of the 10 most abundant protonated ions in each FTMS scan.
Dynamic exclusion of a precursor during 30 s was used after one
repeat for MS2. All fractions were analyzed a second time using an
exclusion list of m/z for all identified peptides.

Mass spectrometry raw data files from all SCX fractions for the
TMT set were merged for relative quantification and identification
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using Proteome Discoverer version 1.3 (Thermo Fisher Scientific).
Database search was performed by Mascot search engine using
the following critera: Swissprot rat protein database, MS peptide
tolerance as 10 ppm, MS/MS tolerance as 0.1 Da, trypsin diges-
tion allowing one missed cleavages with variable modifications;
methionine oxidation, cysteine methylthiol, and fixed modifi-
cations; N-terminal TMT-label, lysine TMT-label. The detected
protein threshold in the software was set to 99% confidence and
identified proteins were grouped by sharing the same sequences to
minimize redundancy.

For TMT quantification, the ratios of TMT reporter ion intensi-
ties in MS/MS spectra (m/z 126.12, 127.13, 128.13, 129.14, 130.14,
131.14) from raw data sets were used to calculate fold changes
between samples. The average of all three reporters for the control
group were used as the denominator. Only peptides unique for a
given protein were considered for relative quantitation, excluding
those common to other isoforms or proteins of the same fam-
ily. The resulting ratios were then exported into Excel for data
interpretation. The total group of 32 significantly changed pro-
teins were analyzed using the software Ingenuity Pathway Analysis
(IPA; Ingenuity systems, Redwood City, CA, USA).

STATISTICS
Statistical differences of in vivo quantifications were analyzed using
the 2-tailed Student’s t-test. For in vitro experiments, one-way
ANOVA and Bonferroni post hoc test were employed. All error
bars represent standard error of the mean (s.e.m.). All statistical
calculations and graphical visualizations, except for the proteomics
analysis, were performed in GraphPad Prism 5 (GraphPad Soft-
ware, La Jolla, CA, USA). For the proteomic analysis Welsh t-test
was used. Differences of p < 0.05 were considered statistically
significant (*).

RESULTS
SPECIFIC TARGETING OF PSA-NCAM+ PROGENITOR CELL MIGRATION
BY RADIXIN INHIBITION IN VITRO
To determine the influence of radixin inhibition on progenitor
cell migration, we incubated SVZ explants with increasing con-
centrations of the radixin inhibitor DX52-1 for 72 h to determine
the migration distance (Figures 1A–C). For PSA-NCAM positive
neuronal progenitor cells (PSA-NCAM+), the average distance
migrated was significantly reduced by inhibitor concentrations of
50 nM and higher (Figure 1D). Moreover, a reduced portion of
PSA-NCAM+ cells migrated out from the explants under radixin
inhibition at 100 and 250 nM DX52-1 (Figure 1F). The neu-
roblast chains had an altered morphology with a short leading
process expressing PSA-NCAM and occasionally neuroblasts had
a completely circular cell membrane and were situated close to
the explant. Since a reduced migratory response could be due
to toxicity of the radixin inhibitor, we assayed apoptosis and cell
death using Annexin V and PI staining of cells emerging from
the explants. There was no difference in the ratio of Annexin
V (Figure 2A) or PI (Figure 2B) labeled cells under control
conditions compared to 50, 100 or 250 nMof the inhibitor.

To test ifDX52-1 treatment exclusively affects migration of neu-
roblasts, we analyzed the migration pattern of cells expressing high
levels of Sox2 (Sox2high), which represent the glial cells migrating

from SVZ explants under control conditions. Sox2 expression is
present in migrating neuroblasts, but at lower levels (Figure 3B)
(Ferri et al., 2004). A common marker for glial cells is the glial
fibrillary acidic protein (GFAP). The majority of cells migrating in
SVZ explant cultures under control conditions express Sox2high

and a smaller fraction express GFAP (Figure 3A). Almost all
GFAP+ cells were also Sox2high (Figure 3A). No statistical dif-
ference in the migration distance of glial Sox2high cells could
be discerned at any concentration of the inhibitor (Figure 1E).
Sox2high cells migrated also under treatment with the highest con-
centration (250 nM) of the inhibitor. As a consequence, at the
highest concentrations of DX52-1, the reduced migration of PSA-
NCAM+ cells, led to an increased percentage of migratory Sox2high

cells surrounding the explants (Figure 1F).

RADIXIN INHIBITION IN VIVO RESULTS IN DISORGANIZED
NEUROBLAST CHAIN FORMATION AND ACCUMULATION IN THE
POSTERIOR RMS
Effects of radixin inhibitonin the SVZ and RMS were analyzed by
intracerebroventricular infusion of DX52-1. Wholemount prepa-
rations of the lateral ventricle wall was used to analyze the overall
organization of neuroblast chains in the SVZ. In the dorsal SVZ
of naive animals, large amounts of DCX positive neuroblast
chains were organized parallel to the corpus callosum and directed
towards the anterior SVZ. In addition, long cell chains spanned
the entire SVZ (Figures 4A,B). In coronal sections of the control
RMS the neuroblasts chains were organized in tight cell bundles
(Figure 4C). In contrast, under radixin inhibition neuroblast
chain formation in the SVZ were randomly oriented and dis-
played short intermittently interrupted cell chains (Figure 4D).
The morphology of DCX+ cells wasless polarized and the neurob-
lastsformed clusters (Figure 4E). In the RMS, radixin inhibition
resulted in similarly disorganized chains (Figure 4F). Previous
studies show that the interaction between radixin and f-actin
require phosphorylation of a threonine residue on the C-terminal
end of radixin (Tsukita et al., 1997). After treatment with DX52-1,
images indicate a reduced immunoreactivity for phosphorylated
radixin in the RMS (Figures 5A–D).

The phenotype of neuroblasts described above is likely the
cause of accumulation of neuroblasts in the anterior SVZ as evi-
dent by PSA-NCAM immunoreactive cells in coronal sections
after DX52-1 infusions, in the posterior RMS (Figures 6A–D).
In the posterior RMS the volume of the was increased (Figure 6I)
whereas no difference was found in the volume of the anterior
RMS (Figure 6F).

RADIXIN INHIBITION AFFECTS PROLIFERATION OF NEUROBLASTS IN
THE RMS
High amounts of radixin have been demonstrated in the cleavage
furrow of dividing cells (Sato et al., 1991), suggesting an involve-
ment of this protein in cell proliferation. A large proportion of
neuroblasts divide en route from the SVZ to the OB (Luskin,
1993). Quantifying the number of cells expressing both the cell
cycle marker PHH3 and PSA-NCAM (Figures 6E,E′,E′′) revealed
that fewer neuroblasts divided after radixin inhibition in both the
anterior and posterior RMS (Figures 6G,J). However, there was
no difference in proliferation in the glial population (PSA-NCAM
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FIGURE 1 | Dose-dependent decrease in migration distance of

neuronal progenitor cells from SVZ explants under radixin

inhibition. Neural and glial progenitor cells are visualized by PSA-NCAM
and Sox2 immunofluorescence. (A) Color separation for PSA-NCAM
(top row) and (B) Sox-2 (middle row) expressing cells under increasing
concentrations of the radixin inhibitor DX52-1 (Vehicle, 10, 50, 100, and
250 nM). (C) Bottom row depicts color merge of PSA-NCAM (green),

Sox-2 (red) immunoreactivity with Topro-3 as a nuclear stain (blue).
(D) Migration distance (μm) of PSA-NCAM+ cells under DX52-1
treatment. (E) Migration distance (μm) of Sox2high glial cells under
DX52-1 treatment. (F) The fraction of cells expressing PSA-NCAM+
(black line) and Sox2high (red line) in the population that migrated
from the explants (*p < 0.05, **p < 0.01, ***p < 0.001). Scale
bar = 100 μm.

FIGURE 2 | No increase in cell death of progenitor cells in vitro or in vivo

under radixin inhibition. Paired results from four different experiments
showed no significant difference in thepercentage of cells that migrated out
from SVZ explant cultures being AnnexinV postitive (A) or PI positive (B)

under different concentrations of the radixin inhibitor DX52-1 (Vehicle, 50,
100, and 250 nM). (C) The number of TUNEL positive cells was quantified per
volume in the RMS after 4 days of intracerebroventricular infusion of vehicle
or DX52-1 (n = 5).
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FIGURE 3 | Cell populations migrating in SVZ explant cultures.

(A) Percentage of cells positive for the markers PSA-NCAM, Sox2 and
GFAP, in the SVZ explant experiment. All analyzed cells migrating out from
the explants expressed Sox2, in low or high levels. Similar proportions of
neuronal (PSA-NCAM+) and glial (GFAP+) cells migrated in the SVZ
explants cultures and the majority of the GFAP+ cells expressed Sox2high.
(B) Examples of Sox2low (arrows) and Sox2high (arrowheads) cells. Scale
bar in (B) = 20 μm.

negative cells) in the RMS (Figures 6H,K). To assess induction
of apoptosis due to the DX52-1 treatment in vivo we analyzed
the number of TUNEL positive cells in the RMS; however, no
significant difference was detected (Figure 2C).

ALTERED PROTEIN EXPRESSION AFTER RADIXIN INHIBITION
To study protein expression changes after treatment with DX52-1,
the ipsilateral SVZ was dissected after 4 days of intracerebroven-
tricular infusion of DX52-1 or vehicle (each n = 3). Using isobaric
labeling and LC-MS/MS, 32 proteins were identified with sig-
nificantly changed expression levels after treatment (Table 1).
Functional analysis of all significantly changed proteins was
performed using IPA (Ingenuity Systems, Redwood City, CA,

USA) identifying two associated functional networks: (1) cell
morphology, cellular development, small molecule biochemistry
(enrichment score = 48); (2) cell-to-cell signaling and interac-
tion, cellular development, developmental disorder (enrichment
score = 30). The protein list was enriched for proteins involved
in a number of basic molecular and cellular functions including
cellular assembly and organization, which correlates well with the
predicted functions of radixin (Figure 7).

A number of proteins involved in cell-to-cell signaling and
interaction changed expression levels, such as the metabotropic
glutamate receptor 5 (mGluR5), arrestinβ1 and adenylatecyclase
5. The cytoskeleton components dynactin and alpha tubulin
were enriched after DX52-1 treatment. Furthermore, proteins
involved in molecular and vesicular transport, such as mitochon-
drial import inner membrane translocase, Scl6a17, syntaxin-12,
synapsin-2, peroxisomal membrane protein PEX14 and flotillin-1
were altered. The suppressor of G2 allele SKP1 homolog, a pro-
tein regulating the transition from G2 to M-phase, was reduced,
corroborating the in vivo results of decreased proliferation after
radixin inhibition.

Altered proteins involved in protein metabolism include cyto-
plasmic tryptophanyl-tRNAsynthetase, V-type proton ATPase,
cytoplasmic aspartate aminotransferase, mitochondrial ATP
synthase-coupling factor 6, and heterogeneous nuclear riboprotein
D0.

DISCUSSION
The data presented in the current study suggest a role for radixin
in neuronal progenitor migration and proliferation. We have

FIGURE 4 | Aberrant morphology of neuroblastsin the SVZ and RMS

after radixin inhibition. Overview (A) and magnification (B) of whole
mount preparations of the lateral ventricular wall stained for DCX in
control animals showing long and well organized neuroblast chains. (C) The
RMS in a coronal section showing the tight association of DCX+ neuroblasts
within cellular chains in control animals. Overview (D) and magnification
(E) of whole mount preparations of the lateral ventricular wall stained for

DCX after DX52-1 infusion showing short and abnormalneuroblasts in
aggregations. (F) The RMS in a coronal section showing the disorganized
arrangement of DCX+ neuroblasts after DX52-1 infusion. Schematic inset
in (D) represent the sagittal brain orientation, and in gray the area, of
images (A) and (D). Schematic inset in (F) represent the coronal
orientation of images (C) and (F). Scale bar in (C) = 50 μm, and
(E) = 200 μm.
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FIGURE 5 | Decreased phosphorylation of radixin in the RMS after

DX52-1 treatment. (A) Merged image of radixin and phosphorylated
rzrin/radixin/moesin (pERM) immunoreactivity in a coronal section of the
control RMS. (B) pERM immunoreactivity in the control RMS. (C) Merged
image of radixin and phosphorylated ezrin/radixin/moesin (pERM)
immunoreactivity in a coronal section in the DX52-1 treated RMS.
(D) pERMimmunoreactivity in the DX52-1 treated RMS. Radixin/pERM
immunopositive circular structures in B and D are likely residual ependymal
cells originating from the wall of the collapsed olfactory ventricle (Peretto
et al., 1997). Ependymal cells are known to express high levels of ezrin
which explains sustained pERM expression in this area in both control and
DX52-1 treated RMS. Scale bar = 50 μm.

previously shown that radixin is specifically expressed in migrating
neuroblasts in the RMS of the adult rodent brain (Persson et al.,
2010). The current study confirms the expression of radixin in
PSA-NCAM+ migratory cells, both in vivo and in vitro. Blocking
radixin with the quinocarmycin analog DX52-1 in vitro resulted in
a dose-dependent downregulation of neuroblast migration from
SVZ explants. Under control conditions similar numbers of PSA-
NCAM+ neuroblasts and Sox2high expressing glial cells migrate
from the explants. The motility of glial cells was not affected by
the inhibitor, supporting previous results describing the expres-
sion of ezrin, but not radixin, in glial cells (Cleary et al., 2006;
Persson et al., 2010).

DX52-1 specifically binds radixin at low concentration and
inhibits its binding to f-actin and the transmembrane protein
CD44 (Kahsai et al., 2006). At concentrations above those used
in our study, DX52-1 are reported to interact with additional
proteins, such as the other ERM proteins, ezrin and moesin,
and galectin-3 (Kahsai et al., 2006). Treatment with a low dose
of DX52-1 in Madin-Darby canine kidney (MDCK) epithelial
cell cultures revealed a decreased ability for wound closure after
radixin inhibition (Kahsai et al., 2006), suggesting a role for radixin
in migration and/or proliferation of epithelial cells. The selective
inhibition of neuroblasts in our study confirms the specificity of
DX52-1 for radixin, since Sox2high glial cells remained migratory
in the migration assay. In addition, continued migration of glial
cells indicates that the inhibitor is not generally toxic to cells. Fur-
thermore, we can exclude DX52-1 toxicity in the neurogenic niche
since the rate of apoptosis or cell death was not increased, neither
in vitro nor in vivo.

Intracerebroventricular infusion of DX52-1 resulted in dis-
tortion of neuroblast chain formation in the SVZ and the

FIGURE 6 | Decreased neuroblast proliferation and accumulation of

neuroblastsin the posterior RMS after radixin inhibition. (A, B)

PSA-NCAM immunoreactivity in the anterior RMS after 4 days of DX52-1
intracerebroventricular infusion of vehicle (A) or DX52-1 (B). (C, D)

PSA-NCAM immunoreactivity in the posterior RMS after 4 days of DX52-1
intracerebroventricular infusion of vehicle (C) or DX52-1 (D) shows an
accumulation of PSA-NCAM+ neuroblasts in the posterior RMS after
radixin inhibition. (E, E′, E′ ′) Example of PHH3 (E) immunoreactive cell
expressing PSA-NCAM (E′) and corresponding merged image in (E′ ′).

(F) There was no difference in the volume of the anterior RMS of vehicle
and DX52-1 treated animals. (I) The volume of the posterior RMS was
increased after infusion of DX52-1. (G, J) The number of PHH3 and
PSA-NCAM double positive cells in the anterior (G) and posterior (J)

RMS was decreased after 4 days of DX52-1 intracerebroventricular
infusion. However, there was no difference in the number of PHH3
positive/PSA-NCAM negative cells in the anterior (H) or posterior RMS
(K) (*p < 0.05, **p < 0.01). Scale bar in (A) = 50 μm, scale bar in
(E´´) = 10 μm.
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Table 1 | Proteins with altered expression level after radixin inhibition in the SVZ as detected by isobaric labeling and mass spectrometry.

Accession no. Description Foldchange p-value CV (%)

Q9WV97 Mitochondrial import inner membrane translocase subunit Tim9 1.21 0.05 8.13

P61227 Ras-related protein Rap-2b 1.20 0.05 5.73

Q6AYH5 Dynactin subunit 2 1.19 0.02 5.45

P31662 Orphan sodium- and chloride-dependentneurotransmitter transporter NTT4 (Slc6a17) 1.13 0.05 4.58

G3V7P1 Syntaxin-12 1.13 0.03 1.65

Q63537 Synapsin-2 1.12 0.02 3.91

Q6P9V9 Tubulin alpha-1B chain 1.12 0.02 3.60

Q6P7B0 Tryptophanyl-tRNA synthetase, cytoplasmic 1.12 0.01 1.65

P50408 V-type proton ATPase subunit F 1.11 0.00 1.91

Q9JK11 Reticulon-4/Nogo A 1.11 0.03 2.31

P13221 Aspartate aminotransferase, cytoplasmic 1.10 0.02 3.11

P21571 ATP synthase-coupling factor 6, mitochondrial 1.10 0.02 2.76

P04797 Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 1.10 0.01 2.37

O35824 DnaJ homolog subfamily A member 2 1.09 0.05 3.08

P04636 Malatedehydrogenase, mitochondrial 1.08 0.02 2.64

Q4KM73 UMP-CMP kinase 1.08 0.03 1.81

Q8CFN2 Cell division control protein 42 (Cdc42) 1.08 0.01 0.98

Q63569 26S protease regulatory subunit 6A 1.04 0.02 0.90

P27139 Carbonic anhydrase 2 0.97 0.00 0.59

Q62950 Dihydropyrimidinase-related protein 1 0.95 0.04 1.85

Q99PD4 Actin-related protein 2/3 complex subunit 1A 0.94 0.01 2.03

Q568Z9 Phytanoyl-CoA hydroxylase-interacting protein 0.91 0.02 3.26

O70196 Prolyl endopeptidase 0.90 0.01 2.25

Q04400 Adenylate cyclase type 5 0.89 0.02 3.34

Q9ESB5 N-terminal EF-hand calcium-binding protein 1 (Necab1) 0.87 0.03 3.62

Q642G4 Peroxisomal membrane protein PEX14 0.86 0.02 4.39

Q9Z1E1 Flotillin-1/Reggie 2 0.85 0.03 4.19

B0BN85 Suppressor of G2 allele of SKP1 homolog 0.85 0.01 3.49

P29066 Beta-arrestin-1 0.84 0.01 3.56

P31424 Metabotropic glutamate receptor 5 0.82 0.01 5.03

Q64537 Calpain small subunit 1 0.80 0.04 9.91

Q9JJ54 Heterogeneous nuclear ribonucleo protein D0 0.80 0.04 9.27

Coefficient of variance, CV; n = 3, (p < 0.05).

RMS. The accumulation of neuroblasts in the posterior parts
of the RMS suggests that fewer neuroblasts migrate through
the RMS. This was corroborated by an increased volume in
the posterior RMS. However, this accumulation was not suf-
ficient to cause any significant decrease in the volume of
the anterior RMS indicating that neuroblast migration in the
SVZ and posterior RMS may be hampered although suffi-
cient to proceed through the RMS. A longer infusion period
than 4 days may be required to reveal an effect along the
entire RMS. Phosphorylation of radixin enables its binding to
the actin cytoskeleton under control conditions. After DX52-1
treatment in vivo, thelevel of phosphorylated radixin immunore-
activity was low in the RMS. Thus, the aberrant neuroblast

migration could be a result of decreased phosphorylation of
radixin.

Furthermore, radixin has been shown to concentrate in the
cleavage furrow of dividing cells (Sato et al., 1991) and may have
a role in proliferation. We demonstrate a selective decrease in
neuroblast proliferation in the RMS after intracerebroventricular
infusion of DX52-1. Proliferation of other cell types (PSA-NCAM
negative) was not affected. These data are in accordance with
a study that tested DX52-1as a chemotherapeutic agent after a
screening for molecules affecting growth of melanoma cells, which
also express radixin (Plowman et al., 1995).

We have determined the effects on neuroblast migration
and proliferation in vivo after DX52-1 infusion. However, the
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FIGURE 7 | Schematic figure categorizing cellular functions affected in the SVZ under radixin inhibition according to IPA analysis of the altered

proteins as detected by proteome analysis. Proteins allocated to each cellular function group are presented and the associated p-value for their enrichment
in the group of altered proteins.

compound may have additional effects which are not related
to neuroblast migration and proliferation. We could discern a
moderate morphology change in the microglia population and
an increase in the immunoreactivity of GFAP in the SVZ and
corpus callosum (data not shown). Microdissection of DX52-
1 treated brains indicated affected areas outside the SVZ/RMS
and we observed vasculature changes in the thalamus, occasion-
ally ventricle enlargement and softening of white matter tissue
(data not shown). This may be explained by altered functions in
non-neuroblast radixin expressing cells.

Considering recent evidence for regulation of cell functions by
radixin other than migration (Loebrich et al., 2006; Tang et al.,
2007; Valderrama et al., 2012), we quantified protein changes in
the SVZ using a proteomic approach to identify biological func-
tions affected by radixin inhibition in the neurogenic niche. It
is important to consider that the proteomics analysis was based
on a material of mixed cell types, and includes both intra- and
extra-cellular proteins. This approach enables detection of general
protein changes, including both primary and secondary events
to the treatment. Our results show that the majority of the
altered proteins have a role in cellular morphology and cellu-
lar assembly and organization which match our in vitro and in
vivo results of radixin inhibition. Of the altered proteins 31%
are abundantly expressed in the RMS according to the Allen
brain atlas (http://mouse.brain-map.org), for example Reticu-
lon 4/Nogo-A, Dynactin 2, and suppressor of G2 allele of SKP

homolog. Cdc42 and Rac1 are members of the Rho family of
small GTP-binding proteins, and radixinis known to interact
with several Rho GTP-binding proteins and to regulate Rac1
activity (Takahashi et al., 1998; Hamada et al., 2001; Valderrama
et al., 2012). Both Cdc42 and Rac1 are involved in neuronal
embryonic migration but may have different roles (Konno et al.,
2005). Cdc42 is for instance important for the guiding cues
of the Slit-Robo pathway (Wong et al., 2001), suggesting a spe-
cific role in RMS migration. Calpain small subunit 1 is present
in both calpain 1 and 2 and calpains regulate cell migration
and adhesion (Huttenlocher et al., 1997; Dourdin et al., 2001).
Recently, calpain 1 expression was shown to be high in neu-
ral stem cells and decreased during differentiation and calpain
1 inhibition increased neural stem cell differentiation (Santos
et al., 2012). Contrary, calpain 2 was increased during neu-
ral stem cell differentiation (Santos et al., 2012). Furthermore,
arrestins were initially acknowledged for their role in receptor
internalization; however, recent evidence suggest a role for β-
Arrestin-2 in promoting actin polymerization and migration of
leukocytes (Zoudilova et al., 2010). The interaction of radixin with
proteins identified in the proteomics analysis may be direct or indi-
rect, or induced as a compensatory action to radixin inhibition.
Future studies will have to address these issues. Our data sug-
gest that radixin likely interacts with several different signaling
or scaffolding proteins to mediate and/or regulate dynamic actin
rearrangement.
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The effects of acute radixin inhibition in this study suggest that
the functions of radixin in neuroblasts are not compensated by
other actin binding proteins described in RMS neuroblasts, such
as Girdin (Wang et al., 2011). However, the antibody against phos-
phorylated Ezrin/Radixin/Moesin does not discriminate between
the three ERM proteins and thus, changes in phosphorylation lev-
els could be due to any of the three proteins. We can exclude ezrin
from being affected, since we do not see any effect on migration
of glial cells, which express high levels of ezrin (Gronholm et al.,
2005; Cleary et al., 2006; Persson et al., 2010) even at high doses of
DX52-1. This confirms that DX52-1 seems not to generally block a
common site on all three ERM proteins. In Persson et al. (2010), we
show that close to all neuroblasts express radixin as the main ERM
protein but also to a lower degree moesin, leaving the possibility
that radixin and moesin could be affected by DX52-1. In the cur-
rent study we observe that all radixin positive cells in the RMS loose

their pERM immunoreactivity upon DX52-1 incubation. We con-
clude from this that radixin is dephosphorylated and inactivated by
DX52-1. However, we cannot exclude an additional contribution
to the cellular effects from a possible inactivation of moesin.
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