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In the central nervous system (CNS) of most vertebrates, oligodendrocytes enwrap
neuronal axons with extensions of their plasma membrane to form the myelin sheath.
Several proteins are characteristically found in myelin of which myelin basic protein (MBP)
is the second most abundant one after proteolipid protein. The lack of functional MBP
in rodents results in a severe hypomyelinated phenotype in the CNS demonstrating its
importance for myelin synthesis. Mbp mRNA is transported from the nucleus to the plasma
membrane and is translated locally at the axon–glial contact site. Axonal properties such
as diameter or electrical activity influence the degree of myelination. As oligodendrocytes
can myelinate many axonal segments with varying properties, localized MBP translation
represents an important part of a rapid and axon-tailored synthesis machinery. MBP’s
ability to compact cellular membranes may be problematic for the integrity of intracellular
membranous organelles and can also explain why MBP is transported in oligodendrocytes
in the form of an mRNA rather than as a protein. Here we review the recent findings
regarding intracellular transport and signaling mechanisms leading to localized translation of
Mbp mRNA in oligodendrocytes. More detailed insights into the MBP synthesis pathway
are important for a better understanding of the myelination process and may foster the
development of remyelination therapies for demyelinating diseases.
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MYELIN BASIC PROTEIN
In the central nervous system (CNS) oligodendrocytes pro-
duce and maintain myelin. The insulating multilamellar myelin
sheath improves neuronal communication by increasing impulse
propagation velocity in neuronal axons while limiting energy
requirements. It is also becoming more and more apparent that
oligodendrocytes provide trophic support for neuronal axons
which is essential for axonal survival and integrity (Funfschilling
et al., 2012; Lee et al., 2012). A lack or disruption of intact myelin is
associated with several neurological disorders including multiple
sclerosis and inherited leukodystrophies.

One of the major components of CNS myelin is myelin
basic protein (MBP; Jahn et al., 2009), which has been referred
to as the “executive molecule of myelin” (Boggs, 2006). Shiv-
erer (shi) mice as well as long evans shaker (les) rats both lack
functional MBP and are characterized by severe hypomyelina-
tion in the CNS, shivering symptoms, and premature death
(Readhead and Hood, 1990; Kwiecien et al., 1998). Interestingly,
compact myelin can be formed in the peripheral nervous system
of both mutant rodents which seems to depend on a com-
pensatory function of the P0 protein which is not expressed
in the CNS (Martini et al., 1995). The deficiency of other
myelin proteins such as proteolipid protein (PLP) and 2′,3′-cyclic
nucleotide 3′-phosphodiesterase (CNP) seems to cause secondary
neuronal effects rather than affecting CNS myelination as such
(Klugmann et al., 1997; Griffiths et al., 1998; Lappe-Siefke et al.,
2003).

The multifunctional classic MBP proteins arise from a gene
complex called Golli (genes of oligodendrocyte lineage) which
also gives rise to the Golli (-MBP) family of proteins (Campagnoni
et al., 1993). The Golli gene has three different transcriptional start
sites allowing the expression of the two distinct subfamilies of
proteins, which are temporally and locally regulated. Whereas the
presence of classic MBP proteins is mainly restricted to myeli-
nating cells, Golli (-MBP) proteins have been described in other
neural and non-neural cells (Fulton et al., 2010). The different
MBP isoforms in the mouse (14, 17.22, 17.24, 18.5, 20.2, and
21.5 kDa) mainly stem from transcription start site 3 and are
formed by differential splicing (Harauz and Boggs, 2013). All clas-
sic MBP isoforms are encoded by exons I, III, IV, and VII, while
exon II, V, and VI are only found in specific splice variants.

Interestingly, different isoforms are developmentally regulated
and have different cellular distributions. Exon II-containing iso-
forms (17.22, 20.2, and 21.5 kDa) are expressed at high levels in
early development, are spread throughout the cytoplasm and also
accumulate in the nucleus (Allinquant et al., 1991; Smith et al.,
2013). Nuclear 21.5 kDa MBP appears to influence the prolifer-
ation of immortalized N19 oligodendroglial cells and stimulates
morphological changes in co-cultured neuronal N2a cells (Smith
et al., 2013). Exon II-containing MBPs have also been found in
compact myelin but appear to be enriched in the radial component
of myelin (Karthigasan et al., 1996).

MBP Isoforms lacking exon II are located at the plasma mem-
brane (Allinquant et al., 1991). Due to its positive charge MBP
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associates with the negatively charged oligodendroglial phospho-
lipids and has traditionally been proposed to function primarily
in the compaction of myelin membranes. It was shown in mice
and zebrafish that phosphatidylinositol 4,5-bisphosphate (PIP2)
recruits MBP to the plasma membrane and that this interac-
tion can be counteracted by elevated calcium levels (Nawaz et al.,
2009, 2013). MBPs function in myelin compaction by membrane
association is obviously very important, but additional functions
have been assigned to this molecule and may explain the drastic
phenotypes observed in its absence.

It was recently shown that MBP protein is involved in regulat-
ing the protein to lipid ratio of myelin membranes by acting as a
molecular sieve and by inhibiting the diffusion of membrane pro-
teins with large cytosolic domains into myelin membrane sheets
(Aggarwal et al., 2011). In these developing membrane sheets,
MBP seems to oligomerize into a cohesive protein meshwork
which drives other myelin proteins such as myelin-associated gly-
coprotein (MAG) or CNP out of the sheet to form a lipid rich
insulating myelin membrane with only few remaining proteins,
largely PLP and MBP (Aggarwal et al., 2013).

It has also been demonstrated that MBP interacts with
cytoskeletal proteins and influences their bundling and poly-
merization (Dyer et al., 1994; Hill and Harauz, 2005; Hill et al.,
2005).

In addition to these structural tasks, MBP has been connected
to signaling pathways. MBP has the ability to bind signaling
molecules such as Fyn kinase which is important for morpholog-
ical differentiation and myelination (Kramer-Albers and White,
2011; Smith et al., 2012). Moreover, MBP binding to the plasma
membrane modulates voltage-operated Ca2+ channels (VOCCs)
and thereby affects Ca2+ responses in the cell (Smith et al., 2011).

The distinct functions as well as their regulation by post-
translational modifications are reviewed in detail elsewhere
(Boggs, 2006; Harauz et al., 2009; Harauz and Boggs, 2013) and
emphasize that MBP is an essential protein for many aspects
of oligodendrocyte homeostasis and myelin formation. Here
we review the synthesis of MBP and focus on the posttran-
scriptional events including mRNA transport and localized
translation.

Mbp mRNA IS LOCALIZED IN RNA TRANSPORT GRANULES
As Mbp mRNA and ribosomes were found to be present in
biochemically purified myelin fractions thirty years ago, it was
postulated that Mbp mRNA is transported to the myelin compart-
ment where translation occurs locally (Colman et al., 1982). This
study also demonstrated the efficiency of this localization system.
It was shown that newly synthesized MBP protein can be detected
in myelin fractions as early as 2 min after translation in the actively
myelinating brainstem of young rats. Following this, microinjec-
tion experiments with labeled Mbp mRNA revealed the formation
of RNA transport granules which are moved on microtubules
throughout the cytoplasm to the distal parts of oligodendrocyte
processes (Ainger et al., 1993; Carson et al., 1997).

Cytoplasmic mRNA localization has been described for many
mRNAs and cell types (Shahbabian and Chartrand, 2012). Com-
monly, different RNA binding proteins referred to as trans-acting
factors bind to specific nucleotide sequences in the mRNA’s

3′untranslated region (UTR) termed cis-acting factors or ele-
ments. mRNA localization can expand the control of cellular
gene expression in a spatio-temporal manner by inhibiting mRNA
translation until a specific location is reached at a defined time
point.

The formation of RNA granules including a specific selection of
the transported cargo needs to be tightly controlled. Members of
the QKI family of proteins have been reported to influence nucleo-
cytoplasmic transport as well as stabilization of Mbp mRNA (Li
et al., 2000; Larocque et al., 2002; Bockbrader and Feng, 2008;
Wang et al., 2010).

Cytoplasmic transport of Mbp mRNA largely depends on an
RNA binding protein termed heterogeneous nuclear ribonucle-
oprotein (hnRNP) A2 which binds to a specific sequence in the
3′UTR (Hoek et al., 1998). This sequence was initially termed the
RNA transport signal (RTS) consisting of 21 nucleotides (Ainger
et al., 1997) and it was subsequently shown that hnRNP A2 bind-
ing requires only 11 nucleotides (GCCAAGGAGCC) which are
referred to as the A2 response element (A2RE; Munro et al., 1999).
This cis-acting A2RE has been identified in several other mRNAs
including glial myelin-associated oligodendrocytic basic protein
(Mobp), Tau, carbonic anhydrase II (CaII), amyloid precursor
protein (App), as well as neuronal calcium/calmodulin-dependent
protein kinase IIα (CamKIIα), Neurogranin, and activity-regulated
cytoskeleton-associated protein (Arc; Barbarese et al., 1999; Gao
et al., 2008).

Alternative splicing of pre-mRNA encoded by the HnRNP
A2/B1/B0 gene results in the synthesis of the four isoforms hnRNP
B1, A2, B1b, and A2b (Hatfield et al., 2002). In most of the stud-
ies dealing with hnRNP A2 and Mbp mRNA, antibodies were used
which do not distinguish between the four isoforms in immunocy-
tochemical experiments. Hence the drawn conclusions focused on
the most abundant hnRNP A2 protein. It was recently suggested
that hnRNP A2b is the predominant isoform in the cytoplasm
of neural cells and that Mbp mRNA granule formation seems to
depend on hnRNP A2b (Han et al., 2010). It may be the case that
the described cytoplasmic functions of hnRNP A2 in the context of
Mbp mRNA localization which we review here should be (mainly)
attributed to hnRNP A2b and be taken into account when we refer
to hnRNP A2.

The A2RE is encoded as part of exon VII and is hence present
in every Mbp splice variant. Therefore, all of the Mbp mRNAs
can potentially interact with hnRNP A2 and RNA granules. Inter-
estingly, it was proposed that similar to the protein, also exon
II-containing mRNAs are differentially localized in oligodendro-
cytes. It seems that exon II-containing Mbp mRNAs are located in
the cell body whereas the exon II-lacking mRNAs are transported
into the distal cellular processes (de Vries et al., 1997). It remains
unclear how the exon II sequence influences the subcellular distri-
bution of Mbp mRNAs encoding these 17.22, 20.2, and 21.5 kDa
isoforms.

In addition to the A2RE, Mbp mRNA contains an additional
cis-acting sequence in its 3′UTR termed the RNA localization
region (RLR) (Ainger et al., 1997) or RNA localization signal (RLS;
Barbarese et al., 1999). It has been proposed that the secondary
structure of this sequence is required for specific localization of
Mbp mRNA into the myelin compartment.
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Recently, additional RNA binding proteins were identified
in Mbp mRNA granules (Raju et al., 2008; Laursen et al., 2011;
White et al., 2012). HnRNP K as well as hnRNP F are both
associated with Mbp mRNA and hnRNP A2 and influence the
synthesis of MBP protein (Laursen et al., 2011; White et al.,
2012). Coimmunoprecipitation of hnRNP F with hnRNP A2
is RNAse resistant while the copurification of hnRNP A2 with
hnRNP K seems to depend on RNA. Thus hnRNP F is possi-
bly recruited to the RNA granule by hnRNP A2 while hnRNP
K binds to Mbp mRNA directly to a yet undefined region.
The knock down of hnRNP K appears to abolish the trans-
port of Mbp mRNA from process branch points to the most
distal parts of oligodendrocyte processes and suggests a role
of hnRNP K during this part of the transport path (Laursen
et al., 2011). Earlier studies had already observed oligoden-
droglial hnRNP K in granular structures in the more proxi-
mal and not the distal parts of the processes (Kosturko et al.,
2005), but it seems that the cellular distribution of hnRNP
K depends on the differentiation status of the oligodendrocyte
(Laursen et al., 2011).

In addition to hnRNP K and hnRNP F, the A/B type hnRNP
CBF-A was identified in Mbp mRNA granules. CBF-A binds to
the RTS of Mbp mRNA, coimmunoprecipitates with hnRNP A2,
A3 as well as U and knock down of CBF-A in the immortalized
oligodendrocyte precursor cell (OPC) line Oli-neu inhibits the
transport of Mbp mRNA to the processes (Raju et al., 2008). It
appears that hnRNP K and CBF-A are important for different parts
of the transport path from the cytosol to the most distal regions of
the processes, but this needs to be addressed in more detail in the
future.

HnRNP F is tyrosine-phosphorylated by Fyn kinase (White
et al., 2012) and hnRNP K appears to become tyrosine-
phosphorylated in oligodendrocytes cultured on laminin for 4 days
(Laursen et al., 2011). Although it has been shown that laminin
stimulates oligodendroglial Fyn activity and that Fyn interacts with
hnRNP K in the CNS (Kai et al., 1997), it remains to be shown if
hnRNP K is a target of Fyn. The influence of Fyn activation on
translation of MBP is discussed below.

It was postulated that Mbp mRNA is transported on micro-
tubules to the myelin compartment and that this transport requires
kinesin as the translocation of microinjected Mbp mRNA to
the myelin sheets of cultured oligodendrocytes is perturbed by
drugs affecting microtubule dynamics or by kinesin antisense
RNA treatment (Carson et al., 1997). Furthermore, oligodendro-
cytes derived from the hypomyelinated taiep rat mutant have
abnormally accumulated microtubules and show restricted trans-
port of Mbp mRNA granules (Song et al., 2003). As shown in
zebrafish, the kinesin motorprotein Kif1b is required for the
transport of Mbp mRNA toward the processes of myelinating
oligodendrocytes and Kif1b mutants show ectopic localization
of MBP protein as well as misplaced myelin like membranes
(Lyons et al., 2009). The microtubule associated protein tumor
overexpressed gene (TOG) colocalizes with Mbp mRNA and
hnRNP A2 in granules and might be involved in the reg-
ulation of kinesin activity, thereby directing granule trans-
port toward the plus end of the microtubule (Kosturko et al.,
2005).

TRANSLATIONAL REPRESSION DURING Mbp mRNA
TRANSPORT
It has been proposed that RNA granules contain all necessary
molecules for the translation of mRNA and indeed a number
of relevant molecules have been identified in Mbp mRNA gran-
ules. These include arginyl-tRNA synthetase (ATS), elongation
factor 1a (EF1a), and ribosomal RNA (Barbarese et al., 1995).
If mRNA granules are more or less ready to translate the trans-
ported mRNAs, then premature or ectopic translation must be
avoided until certain signals set off the protein synthesis machin-
ery. Regarding Mbp mRNA, hnRNP E1 and the small non-coding
RNA 715 (sncRNA715) have been directly connected to transla-
tional inhibition during transport (Kosturko et al., 2006; Bauer
et al., 2012), while the function of other granule molecules such
as hnRNP F, TOG, and hnRNP K in respect to translational con-
trol may have a more indirect effect on the MBP synthesis path
(Francone et al., 2007; Laursen et al., 2011; White et al., 2012).

HnRNP E1 partially colocalizes with hnRNP A2 and microin-
jected A2RE-containing mRNA in oligodendrocytes (Kosturko
et al., 2006). Furthermore hnRNP E1 inhibits the translation of
an A2RE-containing Green fluorescent protein reporter mRNA in
microinjected B104 neuroblastoma cells and in a rabbit reticulo-
cyte lysate-based in vitro assay (Kosturko et al., 2006). Additional
experiments lead to the conclusion that hnRNP E1 is recruited
to RNA granules by hnRNP A2 and inhibits the translation of
A2RE-containing mRNAs during transport (Kosturko et al., 2006).

In the light of the emerging importance of post-transcriptional
gene regulation by small RNA molecules such as microRNAs or
endogenous siRNAs, translational inhibition of localized mRNAs
by these types of molecules appears to be a suitable mechanism
and has been reported in neurons (McNeill and Van Vactor, 2012).
Recently, sncRNA715 was revealed to inhibit the synthesis of
endogenous MBP in primary oligodendrocytes via binding to a
specific recognition site in the 3′UTR of Mbp mRNA (Bauer et al.,
2012). SncRNA715 copurifies with hnRNP A2 and Mbp mRNA
biochemically and is located in granular structures in the cyto-
plasm and processes of cultured oligodendrocytes. Interestingly,
the analysis of chronic multiple sclerosis lesions containing OPCs
and Mbp mRNA but lacking MBP protein revealed abnormally
high levels of sncRNA715 compared to normal appearing white
matter (NAWM; Bauer et al., 2012). These data not only allude to
an evolutionary conserved mechanism of MBP translational reg-
ulation, but may also contribute to a better understanding of why
OPCs fail to differentiate appropriately to remyelinate axons in
late stages of MS.

While yet unclear for hnRNP E1, sncRNA715 seems to regulate
all MBP isoforms as the binding sequence is present in all of the
Mbp mRNA 3′UTRs and Western blot analysis revealed a transla-
tional repression of every isoform (Bauer et al., 2012). So far it is
unknown if hnRNP E1 and sncRNA715 synergistically influence
MBP translation in oligodendrocytes or if they act at different time
points or cellular locations.

Conceptually, one could distinguish two aspects of translational
repression of Mbp mRNA. As Mbp mRNA can be detected in OPCs
which do not yet synthesize MBP protein, MBP translation may
generally be repressed in OPCs until a certain degree of differen-
tiation has been reached at which defined (axonal) signals initiate
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MBP protein synthesis. In myelinating oligodendrocytes MBP
protein synthesis may be repressed during intracellular transport
to prevent ectopic localization of MBP which may have deleterious
consequences by compacting intracellular membranes (Staugaitis
et al., 1990). The latter also appears to be very important for a spe-
cific synthesis machinery capable of producing defined amounts of
myelin in response to axonal determinants such as axon diameter
or activity.

A number of molecules participate in the transport of Mbp
mRNA in oligodendrocytes and are proposed to function in
RNA granule formation, transport and translational inhibition
(summarized in Table 1 and Figure 1). RNA deep sequenc-
ing and advanced proteomics will most likely identify additional
regulatory molecules in the future.

TRANSLATIONAL DE-REPRESSION AND LOCAL MBP
SYNTHESIS
Translationally inhibited mRNAs in RNA granules have been
shown to be de-repressed in order to initiate protein synthesis
at a specific time point or localization in cells (Ostareck-Lederer
et al., 2002; Huttelmaier et al., 2005).

As mentioned above oligodendrocytes must regulate the
amount of myelin that is produced at specific axonal seg-
ments and as these amounts may vary, it seems to be the case
that at least parts of the myelin synthesis machinery is decen-
tralized to respond to axonal requirements locally. Src-family
non-receptor tyrosine kinases have been implicated with the
initiation of localized translation of transported mRNAs by phos-
phorylation of trans-acting factors (Ostareck-Lederer et al., 2002;
Huttelmaier et al., 2005).

In oligodendrocytes Fyn kinase is the predominant Src-family
kinase and is an important regulator of myelination (Kramer-
Albers and White, 2011). In a screen for Fyn substrates in
oligodendroglial cells, hnRNP A2 was identified and an axonal–
glial signaling pathway was suggested controlling the activation of
Fyn in order to trigger MBP translation at the axon–glial contact
site (White et al., 2008). It was shown that binding of the axonal cell
adhesion molecule L1 to oligodendroglial F3/Contactin activates
Fyn kinase which phosphorylates hnRNP A2 and promotes
translation of A2RE-containing mRNAs (White et al., 2008).

It was later contributed that F3/Contactin forms a complex
with α6β1 integrins and that L1 binding enhances myelination

Table 1 | Molecules associated with MBP mRNA during cytoplasmic

localization as mentioned in the text.

Molecule Binding region Reference

hnRNP A2 A2RE within RTS in 3′UTR Hoek et al. (1998)

hnRNP K Undefined Laursen et al. (2011)

hnRNP F Presumably via hnRNP A2 White et al. (2012)

hnRNP CBF-A RTS in 3′UTR Raju et al. (2008)

TOG Presumably via hnRNP A2 Kosturko et al. (2005)

sncRNA 715 Specific recognition site in 3′UTR Bauer et al. (2012)

hnRNP E1 Presumably via hnRNP A2 Kosturko et al. (2006)

in a co-culture system which can be blocked by the addition of
antibodies directed against β1 integrins (Laursen et al., 2009), sug-
gesting a coordinated regulation of Fyn activation and myelination
by the extracellular matrix and the axonal surface.

The stimulation of α6β1 integrins by laminin binding increases
Fyn activity (Laursen et al., 2009) and the presence of a con-
stitutively active β1 integrin mutant promotes MBP translation
(Laursen et al., 2011). As described above the granule protein
hnRNP F is phosphorylated by Fyn. Active Fyn releases hnRNP
F from the granule and reduces the amount of Mbp mRNA bound
to hnRNP F (White et al., 2012). As hnRNP A2 and hnRNP
E1 also appear to be released from the granule in these con-
ditions (White et al., 2008) it seems that Fyn activation results
in a breakdown of the granule by phosphorylation of granule
proteins, releasing Mbp mRNA from its inhibitors at the axon–
glial contact site and allowing localized MBP protein synthesis
to occur. It may be the case that sncRNA715 is also separated
from Mbp mRNA in response to Fyn activity by a yet unknown
mechanism.

Interestingly, it was recently shown that electrical stimulation
increases the axonal surface expression of L1 as well as Fyn acti-
vation, local MBP synthesis and myelination all of which appears
to be regulated by axonal vesicular glutamate release (Wake et al.,
2011).

All of the above mentioned studies emphasize the central role
of Fyn kinase in translational regulation of MBP. This has strong
implications for the myelination process, as demonstrated in vivo,
as mice are hypomyelinated in the CNS in the absence of Fyn
or in the presence of mutated inactive Fyn (Sperber et al., 2001).
Moreover, MBP levels are reduced in Fyn knockout mice and
Fyn phosphorylates QKI proteins modulating binding and sta-
bilization of Mbp mRNAs (Zhang et al., 2003; Lu et al., 2005).
In an elegant recent in vivo myelination study in zebrafish it
was shown that Fyn regulates the number of myelin sheaths per
oligodendrocyte (Czopka et al., 2013).

Intriguingly, active Fyn binds to α-Tubulin as well as the micro-
tubule associated protein Tau in oligodendrocytes and it was
proposed that activated Fyn recruits the cytoskeleton toward the
axon–glial contact site (Klein et al., 2002). As mentioned above,
Mbp mRNA granules are transported on microtubules toward the
periphery of the cell, so that activation of Fyn could recruit Mbp
mRNA to the axon–glial contact site to initiate the myelination
process by synthesizing MBP. However, it is likely that also Fyn-
independent pathways regulate the translation of Mbp mRNA.
Interestingly, a function of TOG in the synthesis of MBP has been
suggested which does not seem to be dependent on granule trans-
port (Francone et al., 2007). Nevertheless, a lot of data provide
evidence for an intercellular signaling pathway originating from
active neuronal axons which recruits Mbp mRNA and induces
localized MBP synthesis and myelination.

CONCLUSION
The overall synthesis of MBP is a complex and highly regulated
mechanism and we have only discussed elements of it here. As
summarized in Figure 1, Mbp mRNA is transported in large
ribonucleoprotein complexes on microtubules toward the oligo-
dendroglial plasma membrane. A number of proteins and RNAs
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FIGURE 1 |Transport and localized translation of MBP. Mbp mRNA is
transported on microtubules toward the oligodendroglial plasma membrane in
RNA granules containing RNA binding proteins, motor proteins and parts of
the (if not the entire) protein synthesis machinery. At the plasma membrane,
Fyn kinase is a crucial signaling molecule and converts axonal signals into
localized translation of MBP. See text for details. MBP, myelin basic protein;

A2, F, E1, K, heterogeneous nuclear ribonucleoproteins A2, F, E1, and K;
CBF-A, CArG-box binding factor A; TOG, tumor overexpressed gene; mGluR,
metabolic glutamate receptor; NMDAR, NMDA receptor; EF1a, elongation
factor 1a; ATS, arginyl-tRNA synthetase; 60S/40S, large/small ribosomal
subunit; 5′CAP, 5′ 7-methylguanylate CAP; UTR, untranslated region; AAAAA,
Poly A tail.

form these granules and MBP translation is repressed during trans-
port. It seems that axon–glial signaling events recruit the granules
and stimulate localized translation of MBP allowing axon-tailored
myelination to ensue. It is likely that RNA transport granules are
highly dynamic and potentially change their composition dur-
ing intracellular transport so that a critical function of individual
molecules is restricted to individual parts of the localization event.
Future investigations will help to improve our understanding of
the regulation and composition of heterogeneous granules which
will have important implications for the myelination procedure.
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