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In the nervous system, glia cells maintain homeostasis, synthesize myelin, provide
metabolic support, and participate in immune defense. The communication between glia
and neurons is essential to synchronize these diverse functions with brain activity. Evidence
is accumulating that secreted extracellular vesicles (EVs), such as exosomes and shedding
microvesicles, are key players in intercellular signaling. The cells of the nervous system
secrete EVs, which potentially carry protein and RNA cargo from one cell to another. After
delivery, the cargo has the ability to modify the target cell phenotype. Here, we review
the recent advances in understanding the role of EV secretion by astrocytes, microglia,
and oligodendrocytes in the central nervous system. Current work has demonstrated that
oligodendrocytes transfer exosomes to neurons as a result of neurotransmitter signaling
suggesting that these vesicles may mediate glial support of neurons.
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INTRODUCTION
Glia cells are involved in central nervous system (CNS) func-
tion, development, and maintenance, which all require intense
cell–cell communication between glia and neurons. Intercellular
communication can be mediated through direct cell–cell contact
or paracrine action of secreted molecules. In the past few years, a
novel mode of interaction relying on the exchange of extracellular
vesicles (EVs) between cells has become evident. Various cell types
release EVs of different origin into their environment, which have
the potential to transfer a collection of biomolecules between cells
locally or over longer distances (Thery, 2011; Raposo and Stoorvo-
gel, 2013). Glia and neurons secrete EVs and the recent literature
implicates that intercellular communication by EVs has versatile
functional impact in the CNS (Chivet et al., 2012; Frühbeis et al.,
2012; Prada et al., 2013; Sharma et al., 2013).

Extracellular vesicles comprise shedding microvesicles (MVs),
exosomes, and apoptotic bodies, which differ in size, cargo, mem-
brane composition, and origin. Apoptotic bodies are released
during apoptosis, whereas the other types of vesicles are derived
from healthy cells (Cocucci et al., 2009; Thery et al., 2009). A mix-
ture of EVs is detectable in virtually all body fluids and to date it is
challenging to clearly discriminate the different types, as some clas-
sifying criteria are overlapping (Gould and Raposo, 2013). While
MVs directly pinch off from the plasma membrane and are hetero-
geneous in size (up to 1000 nm in diameter), exosomes originate
from the endosomal system and exhibit a regular shape (50–
100 nm in diameter). Exosomes correspond to the intraluminal
vesicles of multivesicular bodies (MVBs), hence their generation
involves sorting at the level of the endosomal limiting membrane
mediated by the ESCRT (endosomal sorting complex required for
transport) machinery (Simons and Raposo, 2009; Baietti et al.,
2012) or is assisted by the sphingolipid ceramide and tetraspanins
(Trajkovic et al., 2008; Buschow et al., 2009). Fusion of MVBs with

the plasma membrane releases exosomes and is controlled by Rab
GTPases such as Rab27 in epithelial cells and Rab35 in oligo-
dendrocytes (Hsu et al., 2010; Ostrowski et al., 2010). Exosomes
carry characteristic lipids, RNA species, biogenesis-related pro-
teins (Tsg101 and Alix are classic markers), tetraspanins, integrins,
heat shock proteins, and cell type specific components. On the
other hand, they exclude proteins of other intracellular compart-
ments such as the endoplasmic reticulum and mitochondria (Kalra
et al., 2012; Raposo and Stoorvogel, 2013). Less is known about
the specific composition and biogenesis of MVs. Interestingly, the
molecular machinery for MV generation may necessitate factors
also involved in exosome generation (Nabhan et al., 2012).

This review summarizes characteristic properties and functions
of EVs emphasizing glial EVs in the CNS and in particular the role
of oligodendroglial exosomes in neuron–glia communication.

BIOLOGICAL FUNCTIONS OF EVs
Since their discovery, several physiological and pathological func-
tions have been ascribed to EVs. Reticulocytes utilize exosome
release to eliminate obsolete internal membranes during cell mat-
uration (Harding et al., 2013). Furthermore, RNAs are transported
by EVs from cell to cell and can modulate gene expression in the
recipient cell. After transfer, mRNAs are translated leading to a new
set of proteins in the target cell and miRNAs inhibit the expres-
sion of resident proteins (Valadi et al., 2007; Skog et al., 2008;
Zhang et al., 2010). In the immune system, antigen presenting
cells (APCs) secrete exosomes bearing MHC-peptide complexes,
which can activate T-cells, suggesting a role of exosomes in the
adaptive immune response. On the other hand, tumor exosomes
can induce anti-tumor responses but are also able to facilitate
tumor development by suppressing immune responses, stimulat-
ing tumor growth, invasion, angiogenesis, and metastasis (Bobrie
et al., 2011; Luga et al., 2012; Peinado et al., 2012).
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Exosomes also have been implicated in morphogen secretion
and thus may mediate evolutionary conserved developmental pro-
cesses. Exosomes derived from human and Drosophila cells carry
Wnt in association with its cargo receptor Evi/Wls (Evenness
Interrupted/Wntless) on the surface and induce Wnt signaling
in target cells (Gross et al., 2012; Gross and Boutros, 2013). At
the Drosophila larval neuromuscular junction pre-synaptic release
of exosomes containing Evi/Wls is required for Wnt transmis-
sion to the post-synapse (Korkut et al., 2009; Koles et al., 2012).
Moreover, synaptotagmin 4 (Syt4) is transferred via exosomes
from pre-synaptic terminals to post-synaptic muscles in turn
enabling retrograde Syt4 signaling and synaptic growth (Korkut
et al., 2013).

In the mammalian nervous system, cortical neurons release
exosomes from somatodendritic compartments. Synaptic glu-
tamatergic activity mediates the rise in post-synaptic calcium
levels triggering exosome secretion. As neuronal exosomes carry
AMPA receptor subunits, they might play a role in synap-
tic plasticity by regulating the number of AMPA receptors
in the post-synaptic membrane (Lachenal et al., 2011; Chivet
et al., 2013). Exosomes thus may be implicated in transsynap-
tic communication in vertebrates and invertebrates. Intercel-
lular transfer of exosomes may be relevant for pathology in
several neurodegenerative diseases, since pathogenic proteins
such as prions, β-amyloid peptide, superoxide dismutase, α-
synuclein, and tau are released from cells in association with EVs
(Bellingham et al., 2012; Schneider and Simons, 2012). These vesi-
cles are assumed to spread the pathogenic proteins throughout
the tissue. Moreover, EVs derived from glioma cells carry onco-
genic EGFRvIII, RNA, and angiogenic factors. They promote cell
transformation and modulate the tumor environment to improve
tumor growth (Al-Nedawi et al., 2008; Skog et al., 2008).

MICROGLIA-DERIVED EVs
Microglia, the resident macrophages of the brain, maintain tissue
homeostasis, provide the first line of defense during infection and
brain injury, and promote tissue repair. In pathological condi-
tions resting microglia polarize toward a M1 (pro-inflammatory)
or M2 (pro-regenerative) phenotype largely defined by the pro-
file of secreted cytokines (Hanisch and Kettenmann, 2007; Saijo
and Glass, 2011). Microglia bud MVs of irregular shape and
size (0.1–1 μm) from their plasma membrane characterized by
high levels of externalized phosphatidylserine. Upon ATP stimu-
lation of P2X7 receptors, reactive microglia release MVs carrying
the pro-inflammatory cytokine interleukin-1β (IL-1β), the IL-1β-
processing enzyme caspase-1, and the P2X7 receptor (Bianco et al.,
2005). The budding of MVs is facilitated by externalization of acid
sphingomyelinase, which induces membrane curvature by locally
increasing ceramide levels in the outer leaflet of the plasma mem-
brane (Bianco et al., 2009). The authors suggest that when IL-1β

and P2X7containing MVs approach tissue areas with high exter-
nal ATP levels, MV-associated P2X7 receptors become activated,
followed by IL-1β processing and release from MVs. This pathway
may induce and propagate inflammatory reactions throughout the
brain (Prada et al., 2013).

Microglia-derived MVs can transmit inflammatory signals to
recipient microglia, which then upregulate the co-stimulatory

molecule CD86 and express pro-inflammatory genes like IL-
1β, IL-6, inducible nitric oxide synthase, and cyclooxygenase-2
(Verderio et al., 2012). MVs derived from all major types of neu-
ral cells and in particular MVs carrying myeloid markers are
detectable in the rodent and human CSF under normal conditions.
In the inflamed brain, in cases of multiple sclerosis in humans and
experimental autoimmune encephalomyelitis (EAE) in mice, the
amount of MVs increases dramatically depending on disease sever-
ity and the extent of microglia activation. Injection of MVs into the
brain of mice with subclinical EAE recruits inflammatory cells to
the injection site. However, acid sphingomyelinase deficient mice,
which are impaired in MV production, are largely protected from
EAE. Intriguingly, FTY720, an oral drug for the treatment of mul-
tiple sclerosis, reduces the amount of microglial MVs in the CSF
of EAE mice. Microglial MVs thus seem to enforce inflammation
in neuroinflammatory diseases such as multiple sclerosis. They
may represent promising diagnostic markers or even therapeutic
targets of brain inflammation (Colombo et al., 2012).

Intriguingly, microglia-derived MVs can interact with neu-
rons and stimulate spontaneous and evoked excitatory transmis-
sion in vitro and after injection in vivo. Hippocampal neurons
exposed to MVs show an increase in miniature excitatory post-
synaptic current (mEPSC) frequency without changes in mEPSC
amplitude. MVs affect the pre-synaptic site of the excitatory
synapse by increasing the release probability of synaptic vesicles
through induction of ceramide and sphingosine synthesis. Thus,
microglial MVs appear to modulate synaptic activity and enhance
neurotransmission (Antonucci et al., 2012; Turola et al., 2012).

Besides MVs, microglia release exosomes with a protein con-
tent analogous to B cell- and dendritic cell-derived exosomes
(Potolicchio et al., 2005). For example, MHC class II is packed
into exosomes and its amount is increasing upon stimulation with
interferon-γ. However, whether this is instrumental in antigen
presentation and brain immunity is open. In addition, microglial
exosomes comprise aminopeptidase N (CD13), which cleaves
opioid receptor-binding enkephalins. They also carry enzymes
for anaerobic glycolysis and the monocarboxylate transporter 1
(MCT1), potentially delivering energy substrates to target cells,
and the insulin degrading enzyme (IDE), which can also degrade
the Aβ peptide (Tamboli et al., 2010). It has been suggested that
microglial exosome release does not occur constitutively and is
induced by Wnt3a, which in turn becomes included in these
vesicles (Hooper et al., 2012).

ASTROCYTE-DERIVED EVs
Astrocytes are multifunctional interactive cells. They are part
of the blood brain barrier (BBB), control the extracellular ion
balance, provide trophic support, and participate in repair and
scarring processes after CNS injury. Similar to microglia, MV shed-
ding from astrocytes is evoked by the ATP-triggered activation of
P2X7 receptors and subsequent action of acid sphingomyelinase
(Bianco et al., 2009). Moreover, astrocytes release vesicles from
the cell surface that can be up to 8 μm in size and carry intact
mitochondria, and lipid droplets (Falchi et al., 2013). Astrocyte-
derived EVs are heterogeneous in their composition and have
been ascribed beneficial and pathological functions. MVs and
exosomes with proposed physiological functions carry Hsp/Hsc70
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and synapsin I implicated in neuroprotection (Taylor et al., 2007;
Wang et al., 2011), factors modulating angiogenesis such as FGF-2,
VEGF, endostatin, and PEDF (Proia et al., 2008; Hajrasouliha et al.,
2013), matrix metallo-proteinases mediating extracellular matrix
proteolysis (Sbai et al., 2010), and nucleoside triphosphate diphos-
phohydrolases (NTDPases; Ceruti et al., 2011). The precise action
of these EVs on the level of the target cells, however, remains to be
determined.

Astrocyte-derived EVs have been implicated in the propa-
gation of pathogenic proteins in neurodegenerative disorders.
Astrocytes expressing mutant SOD1 (copper-zinc superoxide dis-
mutase) secrete increased amounts of exosomes, which carry
mutant SOD1. These vesicles can transfer mutant SOD1 to cul-
tured neurons and induce motor neuron death suggesting a
role of EVs in the pathogenesis of amyotrophic lateral sclero-
sis (ALS; Basso et al., 2013). Furthermore, exposure of amy-
loid peptide to astrocytes triggers the release of pro-apoptotic
exosomes that include ceramide and PAR4 (prostate apoptosis
response 4). These exosomes are taken up by astrocytes and
promote their apoptosis suggesting that exosome-mediated astro-
cyte death may contribute to neurodegeneration in Alzheimer’s
disease (Wang et al., 2012). Exosome-mediated miRNA transfer
from astrocytes to neurons has been suggested to participate in
neurodegeneration in HIV-associated neurological disorders (Hu
et al., 2012). Treatment of cultured astrocytes with pathogenic
HIV Tat (trans-activator of transcription) protein and morphine
triggers shuttling of miR-29b via exosomes to neuronal cells
which results in decreased PDGF-B expression and neuronal
viability.

OLIGODENDROCYTE-DERIVED EXOSOMES AND THEIR ROLE
IN AXON-GLIA COMMUNICATION
Oligodendrocytes produce the myelin sheath facilitating impulse
conduction. Myelinating oligodendrocytes and axons constitute
a sophisticated functional unit based on continuous mutual

interaction (Nave, 2010). Hence, maintenance of axonal integrity
depends on support from oligodendrocytes. Recent work sug-
gests that this trophic function of oligodendrocytes may relate
to the transfer of exosomes from oligodendrocytes to neurons
(Frühbeis et al., 2013; Lewis, 2013), in addition to the supply of
glycolytic substrates such as lactate (Fünfschilling et al., 2012; Lee
et al., 2012). Oligodendrocytes release exosomes that include gen-
uine myelin proteins such as PLP, CNP, MAG, and MOG as well
as the NAD-dependent deacetylase sirtuin-2, glycolytic enzymes,
and typical exosome-associated proteins such as tetraspanins and
heat-shock proteins (Krämer-Albers et al., 2007).

Oligodendrocyte-derived exosomes are internalized by a subset
of MHC class II negative microglia via macropinocytosis and are
subsequently degraded without provoking any response (Fitzner
et al., 2011). In addition, they have been suggested to nega-
tively regulate myelin synthesis in an autocrine fashion (Bakhti
et al., 2010). However, in myelinated fibers in situ, PLP-positive
MVBs and their fusion profiles were observed in the innermost
non-compacted wrapping of the myelin sheath (Figure 1A) imply-
ing that exosomes are released into the periaxonal space and
involved in axon-glia interaction (Frühbeis et al., 2013). Indeed,
the secretion of exosomes from oligodendrocytes is regulated by
neurotransmitter signaling. Active neurons release glutamate that
provokes Ca2+ entry through oligodendroglial ionotropic glu-
tamate receptors, mostly of the NMDA subtype. This results in
elevation of cytosolic Ca2+ levels and triggers exosome secretion.
In turn, neurons internalize oligodendrocyte-derived exosomes by
clathrin and dynamin-dependent endocytosis at both somatoden-
dritic and axonal compartments (Figure 1B). The uptake appears
selective since astrocytes and oligodendrocytes internalize these
exosomes to a minor extent. After internalization, the cargo of
oligodendroglial exosomes can be functional in the target neu-
ron. The ectopically expressed enzyme Cre-recombinase is packed
into exosomes and activates a reporter in the recipient neuron
in vitro and, importantly, also after injection of Cre-bearing

FIGURE 1 | Adaxonal localization of MVBs and uptake of

oligodendroglial exosomes by neurons. (A) Electron micrograph of
myelinated axons in the optic nerve labeled with antibodies against PLP

(scale bar 200 nm, courtesy of Wiebke Möbius). (B) Confocal stack of primary
cortical neurons (red) that internalized exosomes, labeled with PLP-EGFP and
SIRT2-EYFP (green). Nuclei are blue, scale bar 20 μm.
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FIGURE 2 | Oligodendroglial exosomes in neuron-glia communication. (1) Electrically active axons release glutamate that provokes Ca2+ entry through
oligodendroglial glutamate receptors. (2) Elevation of intracellular Ca2+ levels triggers exosome release from oligodendrocytes. (3) Neurons internalize
exosomes and use their cargo.

exosomes into the mouse brain. Moreover, oligodendroglial exo-
somes improve the metabolic activity of cultured neurons under
cell stress. In brief, this suggests a model where active neurons
signal to oligodendrocytes and demand the delivery of support-
ive biomolecules via exosomes (Figure 2). Oligodendrocytes can
then utilize these vesicles to locally transfer metabolites, protec-
tive proteins, glycolytic enzymes, mRNA, and miRNA to axons,
which may maintain axonal integrity (Frühbeis et al., 2013). In
the peripheral nervous system, evidence suggests that myelinating
Schwann cells shuttle supportive cargo to axons by vesicular means
facilitating regeneration of axons after injury (Lopez-Verrilli and
Court, 2012).

Oligodendroglial trophic support is impaired in CNP and
PLP null mice resulting in progressive axonal degeneration (Nave
and Trapp, 2008). Since both proteins are components of oligo-
dendroglial exosomes, glial support of axons may be linked to
the transfer of substances by exosomes. Lack of these proteins
could negatively affect exosome secretion influencing the supply
of axons with trophic factors. Indeed, exosome secretion from
oligodendrocytes deficient in CNP and PLP is impaired (Frühbeis,
Krämer-Albers, unpublished data).

Future work needs to address the identification of surface
molecules and target cell receptors mediating vesicle internaliza-
tion and, moreover, the analysis of functional components which

convey support to neurons. Oligodendroglial exosomes include
several substances with potentially beneficial activities including
stress alleviating proteins and, importantly, mRNA and miRNA.
It will be interesting to investigate if RNA transfer via exosomes
results in local translation at axonal sites.

CONCLUSION
Several studies attribute pathological and physiological functions
to glial EVs. These vesicles may spread pathogenic factors, promote
inflammation, influence neurotransmission, and support neu-
rons. Exosomes secreted by oligodendrocytes transport cargo to
neurons and may contribute to axonal integrity. To date, most con-
cepts rely on in vitro data and future work will necessitate genetic
models to underscore their importance. Nevertheless, EVs emerge
as crucial players in the brain and elucidating their physiological
relevance opens up new perspectives in CNS research.
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