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The enteric nervous system (ENS) is a network of neurons and glia within the wall
of the gastrointestinal tract that is able to control many aspects of digestive function
independently from the central nervous system. Enteric glial cells share several features
with astrocytes and are closely associated with enteric neurons and their processes
both within enteric ganglia, and along interconnecting fiber bundles. Similar to other
parts of the nervous system, there is communication between enteric neurons and glia;
enteric glial cells can detect neuronal activity and have the machinery to intermediate
neurotransmission. However, due to the close contact between these two cell types and
the particular characteristics of the gut wall, the recording of enteric glial cell activity in
live imaging experiments, especially in the context of their interaction with neurons, is not
straightforward. Most studies have used calcium imaging approaches to examine enteric
glial cell activity but in many cases, it is difficult to distinguish whether observed transients
arise from glial cells, or neuronal processes or varicosities in their vicinity. In this technical
report, we describe a number of approaches to unravel the complex neuron-glia crosstalk
in the ENS, focusing on the challenges and possibilities of live microscopic imaging in both

animal models and human tissue samples.
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INTRODUCTION

Many aspects of gastrointestinal function are controlled without
major inputs from the brain. Instead, the enteric nervous system
(ENS), a ganglionated neuronal network that resides within the
gut wall, autonomously controls gastrointestinal motility, secre-
tion, and blood flow (Furness, 2000). The ENS develops from
neural crest cells that migrate and proliferate extensively to even-
tually form a network of interconnected ganglia throughout the
entire length of the gut (Sasselli et al., 2012; Obermayr et al.,
2013). Similar to other parts of the nervous system, the ENS
comprises both a neuronal and a glial component. Enteric glial
cells are located in close contact with enteric neurons within the
ganglia, along interganglionic connectives of the myenteric and
submucosal plexus, and can also be found in the extraganglionic
layers of the gut wall (Gershon and Rothman, 1991). In contrast
to other parts of the peripheral nervous system, the ENS is quite
exceptional: it lacks coats of connective tissue that surround nerve
cell bodies and fibers and is therefore more reminiscent to the cen-
tral nervous system (Cook and Burnstock, 1976; Gabella, 1981).
Enteric glial cells share many phenotypical features with astro-
cytes, and were for a long time also believed to function mainly
as support cells for neurons. However, in the last two decades this
dogma has gradually been abandoned and considerable progress
has been made in understanding enteric glial function, most of
which has been covered in recent reviews (De Giorgio et al., 2012;
Gulbransen and Sharkey, 2012; Neunlist et al., 2013).

Enteric glial cells are considered to be active partners in ENS
function (Ruhl et al., 2004). They display dynamic responses to
neuronal inputs and have the apparatus to sequester and release
neuro-active factors. Nonetheless, whether enteric glial cells
indeed regulate synaptic transmission in a physiological context
such as during gastrointestinal motility patterns is not known.
Furthermore, before the concept of the “tripartite synapse”—with
the glial cell as a full synaptic partner (Perea et al., 2009)—can also
be established in the ENS, it needs to be elucidated what “glio-
transmitters” are released by enteric glia in response to neuronal
activity, and perhaps act on neighboring pre- and postsynap-
tic elements. Also a better understanding of the initial steps in
such reciprocal neuron-glia communication, i.e., the integration
of neuronal inputs to enteric glia, is vital. However, the detec-
tion of enteric glial activity, especially when their interaction with
enteric neurons is targeted, is not unambiguous. The close prox-
imity between enteric glia and neurons and their processes makes
optical discrimination between signals originating from specific
cells particularly challenging.

In this technical report, we describe a number of approaches to
disentangle the complex neuron-glia crosstalk in the ENS, in both
animal models and human tissue. We discuss the techniques that
have been used to examine neuron-glia interactions in the animal
and human ENS with an emphasis on live intracellular calcium
concentration ([Ca2t];) imaging and present some novel analysis
tools that serve this purpose.
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NEURONS AND GLIA: CLOSE NEIGHBORS IN THE GUT
Enteric glial cells resemble astrocytes in several ways, including
the expression of the intermediate filament glial fibrillary acidic
protein (GFAP) (Jessen and Mirsky, 1980) and the Ca?t bind-
ing protein, S100B (Ferri et al., 1982). The intimate association
between glia and neurons within enteric ganglia has been revealed
by co-immunolabeling of gut tissue with GFAP or S100p with
neuronal markers, such as HuC/D (Figures 1A,B). In addition,
the transcription factor SRY box—containing gene 10 (Sox10),
which is expressed by multipotent ENS precursors (Paratore
et al., 2002; Bondurand et al., 2003), is also expressed by mature
enteric glia (Young et al., 2003), and is ideally suited for quan-
tification purposes because of its selective nuclear localization
(Figure 1C) (Hoff et al., 2008). Enteric glial cells closely embrace
nerve fibers and varicose release sites both within enteric gan-
glia and along the interconnective fiber tracts (Figures 1D-F)
(Hanani and Reichenbach, 1994; Vanden Berghe and Klingauf,
2007). As a consequence, the optical segregation of signals aris-
ing from either neurons or glia in live imaging experiments is not
straightforward.

Microscopic imaging techniques have provided invaluable
information about several aspects of neuronal signaling in both
the developing and adult ENS (Schemann et al., 2002; Vanden
Berghe et al,, 2008; Hao et al,, 2012). In particular, chemo-
and mechanosensitivity of various classes of enteric neurons has
been uncovered using both voltage-sensitive and Ca®* indica-
tor dyes (Smith et al., 2007; Schemann and Mazzuoli, 2010).
Strong evidence for communication between enteric neurons and
glia comes from a series of studies using live imaging in both
ex vivo wholemount preparations of gut and in cell cultures of
the ENS (Gomes et al., 2009; Gulbransen and Sharkey, 2009;
Gulbransen et al., 2010). In addition, in a study by Broadhead
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FIGURE 1 | The relation between enteric neurons and glia visualized by
immunohistochemistry. (A,C) Maximum projection of colonic myenteric
ganglia of mice stained for the pan-neuronal marker HuCD (red) and enteric
glial cell markers (green) S1008 (A), GFAP (B), and Sox10 (C). (D,E)
Maximum projection composed of a stack of two confocal images of a
mouse colonic myenteric ganglion labeled with antibodies for S1008 (glia,
yellow) and HUCD (neurons, magenta) and for vVAChT (cyan) and substance
P (grays) revealing the close apposition of neuronal fibers and varicosities
with enteric glial cells (F). Scale bars: 25 um (A-C), 10 wm (D).

et al., interaction between neuronal and glial cells was shown fol-
lowing spontaneous or induced physiological activity (Broadhead
et al.,, 2012). In all studies, purinergic signaling pathways have
been identified as the primary mechanism of transmission.

LIVE IMAGING OF NEURON-GLIA INTERACTIONS: /n vitro vs.
Ex vivo

Optical information generated by multiple sources is always con-
voluted due to the diffraction limitations of optical microscopy.
To address this, we estimated the contribution of any given sig-
nal in the pixels directly neighboring a structure of interest as
recorded by a widefield fluorescence microscope equipped with a
CCD camera. Primary ENS cultures (including both neurons and
glia) were loaded with the Ca%t indicator dye, Fluo4-AM, and
stimulated by 75mM KT depolarization (Figure 2). To measure
the change in fluorescence, a region of interest (ROI) was drawn
over a neuronal bouton. We found that even with limited opti-
cal resolution (widefield, 20x, NA = 0.75, pixel width: 623 nm),
the signal contribution drops sharply outside of any structure that
can be picked out intuitively by an observer (Figure 2C). Simple
rectangular ROIs are sufficient to calculate the cellular signals and
polygon-shaped ROIs do improve signal to noise ratios due to
inclusion of larger cell areas (Figures 2D-F). Thus, at least in
in vitro experiments, careful drawing of ROIs at least 1 um away
from each other may be sufficient to separate signals coming from
structures situated in each other’s vicinity.

The ENS, due to its planar organization in ex vivo prepara-
tions, is very attractive to investigate with imaging techniques.
However, the assumption of 2D structure is only valid when entire
cells are considered. Once synaptic contacts and cellular processes
are of interest, the analysis faces all the technical problems that
are associated with 3D organization and ROIs will easily incorpo-
rate scattered light emanating from structures close by. Hence, the
intimate relationship between enteric glia, neurons and their pro-
cesses (Figure 1) entails the risk that signals arising from enteric
varicosities and fibers are interpreted as being of glial origin.
This is an important confounding factor that may cause the false
impression that glial cells respond as fast to electrical and depo-
larizing stimuli as do neurons. Therefore, to make use of the
fundamental physiological difference between neurons and elec-
trically passive non-excitable glia (Hanani et al., 2000; Gulbransen
and Sharkey, 2012) we suggest, in combination with using lenses
with sharp focal depths, to consistently apply known stimuli (e.g.,
electrical stimulation) to identify neuronal structures, which then
serve as a guide to draw regions at least 1 um away from other
structures in order to minimize false interpretation.

The clear delineation of the cells and compartments of interest
in ex vivo gut preparations is further complicated by the fact that
these ganglia are on a contractile muscle layer, which even with
pharmacological inhibition and mechanical restraining can still
cause movement artifacts. This further complicates accurate anal-
ysis, especially of smaller structures and cell compartments (e.g.,
varicosities, parts of glial processes). To correct for residual move-
ments, we use translation stabilization routines (Bisschops et al.,
2006; Gallego et al., 2008), which recently have been expanded
to also correct for more complex movements like rotation and
torque.
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FIGURE 2 | Quantification of Fluo4 signals in regions of interest (ROI).
(A-C) Example of a neuronal fiber and bouton at rest (A) and
depolarized with 75mM K+t (B). In (C) the amplitude (at rest in gray,
depolarized in red circles) along the line marked green in (A) and (B) is
plotted. As seen, especially in the inset, the signal drops sharply outside
the intuitively drawn ROI [gray shade bar in (C) and gray box in (B)]: the
last pixel included contains 75% of the signal's maximal amplitude, while
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the first pixel outside the ROl only contains 2.5%. (D-F) Analysis of a
situation in which a neuronal fiber crosses a glial cell. The cyan region of
interest includes a mixture of both neuronal (purple) and glial (red, blue,
green) information. Smaller regions of interest (rectangular or polygon
shaped) away from the nerve fiber identify pure glial signals with
improving signal to noise ratios (F) for larger areas included. Scale bars:
10um (A,B), 20um (D).

DIFFERENTIATING BETWEEN NEURONAL AND GLIAL
RESPONSES: RESPONSE TIMING AND SHAPE

Although originally not intended for studying neuron-glia inter-
actions, data from pioneering studies showing that several neu-
roligands can elicit Ca?" transients in cultured enteric glial
cells have already indicated the potential for glial participation
in enteric neurotransmission (Kimball and Mulholland, 1996;
Zhang et al., 1997, 1998; Garrido et al., 2002). In an alternative
approach to directly measure the sensitivity of enteric glial cells to
neuronal transmitters, we used an immortalized rat enteric glia
cell line (CRL-2690) (Ruhl et al., 2001) and confirmed that neu-
rotransmitters known to elicit fast excitatory potentials in enteric
neurons can directly induce [Ca?*]; changes in enteric glial cells
(Boesmans et al., 2013). In contrast, enteric glia did not respond
to high Kt depolarization. The absence of neurons in these cul-
tures obviously eliminates the problems illustrated above, but
also excludes the possibility that these cells are activated sec-
ondary to neuronal activation. However, in mixed cultures of
neurons and glia this is not the case (Gomes et al., 2009). By
specifically stimulating enteric neurons while monitoring the
secondary glial responses, an adenosine tryphosphate (ATP)-
dependent paracrine communication pathway between enteric
neurons and glia was revealed.

This typical ATP sensitivity was also found in enteric neuron-
glia co-cultures obtained from adult mouse gut where the neu-
ronal and glial Ca?* fingerprint was used to identify specific
cell types (Laranjeira et al., 2011). Indeed, enteric neurons dis-
play a strong and fast Ca’* response to high K* depolariza-
tion, electrical field stimulation (EFS) and the nicotinic agonist
dimethylphenylpiperazinium (DMPP). Enteric glial cells, on the
other hand, do not respond to these stimuli directly, but show
delayed responses that can be modulated by intervening with
several components of purinergic signaling (Gomes et al., 2009;

Laranjeira et al,, 2011) (Figure3). Due to these timing dif-
ferences, it is possible to construct “activity-over-time” (AoT,
Figure 3D) images that identify cells which exhibit a change in
fluorescence intensity above baseline noise. These images appear
similar to immunostainings, but a physiological response is rep-
resented instead of the structural information (custom developed
algorithm in Igor Pro, Wavematrics).

To further characterize the timing of the responses, we devel-
oped a routine in which the shortest distance to an active neuronal
fiber was computed and transformed in a color coded image
(Figures 3F-J). The computation of distance can be performed
either on an immunochemical staining or on one of the AoT
images generated from live recordings. In this way we are able to
test whether secondary responses, for instance responses in glial
cells, emerge earlier if they are physically closer to active neu-
ronal fibers. We found that the timing of glial responses does
correlate with spatial aspects since cells closer to a neuronal com-
ponent have a higher likelihood of responding to a neuronal
stimulus (Figure 31), thus further corroborating the fact that it is
a diffusible factor that mediates the communication from enteric
neurons to glia.

Taking all these technical issues into consideration, it is pos-
sible to isolate the net responses from neurons and glial cells in
complex tissues. This reveals that the Ca** transients in both
cell types have typical shapes and kinetics to stimuli like EFS,
high KT depolarization and fast neurotransmitters: in neurons,
fast and linear upstrokes reaching their maximum in a couple
of seconds are followed by a (bi)-exponential decay, while in
glia a secondary close-to-Gaussian shaped response is observed.
This typical fingerprint can thus be used also in tissue to iden-
tify different cell types (Figure 4). Provided that sufficient spatial
resolution is achieved, fast imaging approaches (Michel et al.,
2011; Martens and Vanden Berghe, 2012) can help discriminating
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FIGURE 3 | Ca?t imaging of enteric neuron-glia interactions in primary
enteric nervous system cultures. (A,B) Gray scale images of a patch of
cultured mouse enteric neurons and glia loaded with Fluo4 at rest (A) and
depolarized by 75mM KT application 5s, (B). Note the large increase in
fluorescence of the group of neuronal cell bodies in the center of the
image. (C) Magnification of the frame indicated in (B) showing in detail
the neuronal fibers and varicosities as depolarized by 75mM K*. (D)
Activity over time (AoT) images of the primary (red) and secondary (green)
responses to nicotinic receptor stimulation (DMPP 10 uM, 20s) of the
same group of cells as indicated in (C). (E) Ca?t responses of 2 neuronal
boutons (1, green and 2, red) and 2 glial cells (3, yellow and 4, blue) upon
DMPP application [colorcoded numbers in (C) and numbers in (D)]. Note
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70

R

.

the fast upstroke and reverberating activity in neuronal varicosities and the
delayed secondary Ca®* transients in enteric glial cells. See also
Supplementary movie 1. (F) Gray scale image of a patch of cultured
mouse enteric neurons and glia loaded with Fluo4 at rest. (G,H) AoT
images of the same patch of cells as in (F) in which neuronal fibers
responding directly (G) and cells displaying a slow Ca%* response (H) to
electrical field stimulation (2s, 20Hz) are shown. (I) Histogram displaying
the distances (um) from an active neuronal component to cells with (red,
n=135) and without (black, n= 134) secondary responses to nerve
stimulation (p < 0.05, Fisher's exact). (J) Image of the same cells as in (F)
in which the distance from each pixel to an active neuronal component is
color-coded. Scale bars: 50 um (A,F), 20um (C,D).

pm °

between neuronal and glial signals because the extra data points
allow more reliable fitting of the response upstroke.

It is of note that enteric glial cells display higher baseline flu-
orescence after Fluo4 loading compared to neurons (arbitrary
fluorescence units, neurons: 260.7 vs. glia: 339.6, p < 0.05, n =
103, data from three animals, unpaired ¢-test), a difference that
is more pronounced in ex-vivo tissue preparations in compar-
ison to primary culture. Using the ratiometric dye Fura2, we
tested whether this difference was due to higher resting level
of intracellular Ca?t. We found the differences (340/380 ratio,
neurons: 0.3442 vs. glia: 0.3623; p < 0.05, n = 120, data from
three animals, unpaired ¢-test) to be only very small and def-
initely not sufficient to explain the large differences in resting
Fluo4 fluorescence. This was further confirmed by using Rhod2,
a non-ratiometric Ca’* indicator with an even higher K;, which
is classically used in astrocyte research (Mulligan and Macvicar,

2004; Takano et al., 2006) and can also be used to load enteric glial
cells (Gulbransen and Sharkey, 2009). Again, higher resting levels
were observed in glial cells compared to neurons (arbitrary fluo-
rescence units, neurons: 330.8 vs. glia: 419.4, p < 0.05, n = 113,
data from three animals, unpaired t-test). Taken together, this
suggests that glial cells take up and/or metabolize the AM ester
more easily, which is probably a reflection of a higher metabolism.

NOVEL GENETIC TOOLS FOR STUDYING ENTERIC
NEURON-GLIA INTERACTIONS

Apart from identification during live recordings and post-hoc
analysis, many new genetic tools are available to label specific
cells. Given the analogy between enteric glia and astrocytes,
transgenic animals in which reporter proteins, such as green
fluorescent protein (GFP) derivatives, have been placed under the
direct control of GFAP or SI008 regulatory elements to study
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FIGURE 4 | Detection of neuronal vs. glial signals in ex vivo enteric
nervous system preparations. (A) Gray scale image of a colonic
myenteric plexus ganglion loaded with Fluo4 at rest. (B-D)
Magnification of the square region marked in (A) before (B) and after
(C,D) electrical stimulation (ETS, 25s, 20Hz) of an interganglionic
connective. (E) Activity over time (AoT) image of the region in which
pixels responding immediately (red) or with a delay (green) to ETS are
false colored. Arrowheads point to enteric glial cells that display a CaZ*
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seconds

transient secondary to neuronal stimulation. Dashed line (1) and (2)
mark the neuronal fiber and glia cell used in (F) and (G). (F) Fluo4
traces of the regions of interest (colorcoded in B-D) showing
responses upon ETS. (G) Magnification of the squared box in (F).
Although the initial increase in the purple and green trace is due to a
neuronal fiber (1) crossing the glial cell (2) it is still possible, because
of the differences in upstroke speed to distinguish between neuronal
and glial cell types. Scale bars: 50um (A), 20um (B,E).

astrocytic function can also be used to visualize enteric glial
cells in live imaging experiments. Furthermore, the conditional
expression of fluorescent reporters by Cre-Lox recombination
technology enables identification of enteric glia as illustrated
by Joseph et al. (2011), who combined GFAP-Cre (Zhuo et al.,
2001) and GFAP-CreERT? (Hirrlinger et al., 2006) mice with
Rosa26ReYFP reporter mice (Srinivas et al., 2001) for lineage
tracing purposes. Time-dependent induction of Cre in the Sox10-
iCreER™? transgenic mouse line generated by Laranjeira et al.,
not only allows fate mapping of multilineage ENS precursors and
labeling of enteric neurons (Sasselli et al., 2013), but also ele-
gantly enables marking enteric glial cells only (Laranjeira et al.,
2011). A big advantage of such a genetic system is the fact that
individual cells can be labeled, thus allowing appreciation of the
cellular morphology as opposed to immunostaining of adjoining
cells. These transgenic mouse lines can aid in the examination of
enteric neuron-glia interactions in several ways. A non-exhaustive
overview of mouse lines that could be used to visualize enteric
glial cells is listed in Table 1.

Fluorescent reporter lines are favorable over post-hoc immuno-
histochemistry for the identification and localization of glia in live
imaging experiments since imaging can be performed directly in
the cells of interest. It is for these reasons that S1008-eGFP mice
have (Vives et al., 2003) been used in Ca?* and nitric oxide (NO)
imaging studies (Gulbransen and Sharkey, 2009; Lavoie et al,
2011; Maceachern et al., 2011). Also, ENS cultures have been gen-
erated from Sox10-iCreERT?:R26RF®* mice to characterize the
Ca’T responses of newborn neurons and genuine enteric glial
cells upon a number of stimuli (Laranjeira et al., 2011). Here,
the conditional expression of the red fluorescent protein FP635
(Shcherbo et al., 2009) was used to identify neurons that were
derived from cultured enteric glial cells.

Another application of transgenic methods lies in the recent
development of several optogenetic tools, an opportunity that

Table 1 | Non-exhaustive list of mouse lines that can be used to
visualize enteric glial cells.

Enteric glia Mouse line References

promoter

S1008 S1008-GFP Vives et al., 2003; Zuo et al., 2004

GFAP GFAP-Cre Zhuo et al., 2001
GFAP-CreER™  Ganat et al., 2006; Hirrlinger et al., 2006
GFAP-GFP Zhuo et al., 1997; Kuzmanovic et al., 2003
GFAP-tTA Wang et al., 2004
GFAP-DsRed Noraberg et al., 2007

Sox10 Sox10-iCreER™  Laranjeira et al., 2011; Simon et al., 2012

Tissue of each of these mouse lines (or in case of Cre and tTa lines: tissue
from the correct offspring obtained from crosses with reporter lines) can be
used either as a source of primary cell cultures, or to directly visualize enteric
glia in whole mount preparations for live imaging, or finally, to combine with
immunohistochemistry after fixation.

has yet to be exploited in ENS research. The core instruments of
these novel techniques are genetically-encoded optical indicators
(Knopfel, 2012) and actuators (Fenno et al., 2011) that enable
interrogation and manipulation of cell-to-cell interactions with
cellular to subcellular resolution (Miesenbock, 2009). Among
the optogenetic reporter molecules, genetically-encoded Ca®*
indicators (GECIs), such as GCaMPs, allow imaging of Ca* sig-
naling in genetically defined cell populations, thus providing a
powerful means to study neuron-glia interactions in the ENS.
Recently, a reporter mouse was developed that expresses GCaMP3
(Tian et al., 2009) in a Cre-dependent manner in the Rosa26
locus (Zariwala et al., 2012). By using the WntI-Cre transgene
(Danielian et al., 1998) to conditionally express GCaMP3 in neu-
ral crest derivatives, we found that this system can also be used
to perform Ca®" imaging in enteric neurons and glia (Figure 5).
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FIGURE 5 | Optogenetic Ca?t imaging of enteric neuron-glia crosstalk.
(A) Gray scale image of myenteric plexus ganglia dissected from a
Whnt1-Cre;R26R-GCaMP3 mouse colon displaying baseline GCaMP3
fluorescence. (B) False-colored image of fluorescence response to 75 mM
K* depolarization (5 s) of the same ganglia as shown in (A). (C,D) Activity
over time (AoT) images of the myenteric ganglion in the frame indicated in
(A) in which only pixels responding to electrical stimulation (ETS, 2's, 20 Hz)
of an interganglionic connective (C, red, see also Supplementary movie 2)
or local ATP (10 M, 20's) stimulation (D, blue, see also Supplementary
movie 3) are shown. (E) GCaMP3 fluorescence image of the same ganglion
as in (C) and (D) immunostained for Sox10 (magenta). Arrows indicate
enteric neurons displaying a Ca2* transient upon electrical stimulation only.
Arrowheads point to enteric glial cells responding to ATP stimulation.
Asterisk indicates an enteric neuron that responds to both electrical and
purinergic stimulation. (F) Gray scale images of a patch of cultured
myenteric neurons and glia established from a Wnt1-Cre,R26R-GCaMP3
animal, before (0”), during (12”), and after (20", 40”) stimulation with 75 mM
K* (55). (G) AoT image of the cells shown in (F) responding immediately
(red) or with a delay (green) to 75 mM K*. See also Supplementary

movie 4. (H) Recordings of the GCaMP3 responses to 75 mM K* of one
neuron and four surrounding enteric glial cells [colorcoded numbers in (G)].
Neurons typically show an immediate Ca2* transient to 75 mM K+t while
enteric glial cells only respond with a delay, thus indicating neuron-to-glia
communication. The slow downstroke of glial cell 4 (blue) could potentially
be a sign of perturbed Ca?* homeostasis or a general decline in cellular
health. Note that post-hoc examination of cellular identity is redundant
because of the genetically-imposed reporter expression. Scale bars: 50 wm.

Because tissue loading steps are omitted, tissue viability can
be increased and background signals (e.g., from the underlying
smooth muscle layers) reduced. However, to fully employ the
advantages of these genetically-encoded indicators, they should
ideally be expressed in enteric neurons or glial cells specifically.
This will help to overcome the earlier illustrated problems caused
by the close proximity between enteric neurons and glia. In
addition, depending on the specifics of the transgenic method
used, they can potentially enable monitoring of events in cellular
subtypes. GECIs that tether to specific membrane proteins can

be used to examine activity in thin glial processes and endfeet
(Shigetomi et al., 2012, 2013). These are the cellular compart-
ments that most likely interact with varicose fibers but are difficult
to study using bulk loading dyes or normal cytosolic GECls.
This would yield important information about the signaling
events in potential glial release sites and microdomains near the
membrane.

IMAGING NEURON-GLIA CROSSTALK IN THE HUMAN
ENTERIC NERVOUS SYSTEM

Because most investigations have been carried out using in vitro
and ex vivo animal models, and given the difficulty to obtain
healthy human gut tissues for experimental purposes, our current
knowledge about enteric neuron—glia interactions in the human
gut is rather poor. The limited information about human enteric
glia function originates from in vitro studies using enteric glia
isolated from surgical resection specimens. These studies indi-
cated that human enteric glia actively participate in inflammatory
responses (Cirillo et al., 2011) and host-bacteria crosstalk (Turco
etal., 2013). However, even though these glial cells were obtained
from ‘macroscopically normal’ tissues, there is still the possibility
that measurements were influenced by the fact that the resection
specimens were collected from patients suffering from a variety of
severe diseases.

For these reasons we have recently developed a method to
culture human enteric glial cells isolated from routine intesti-
nal biopsies (Boesmans et al., 2013). After careful removal of the
mucosa, the submucosal plexus is enzymatically digested follow-
ing previously described procedures (Cirillo et al., 2011), ganglia
are selected and cells cultured on glass coverslips to perform
live imaging studies. By implementing this technique we found
that similar to rat enteric glia, also human enteric glial cells can
be activated by neurotransmitters known to elicit fast excitatory
responses in the ENS (Boesmans et al., 2013).

Of course, in order to fully understand neuron-glia interac-
tions in the human gut, also these should ideally be studied
in intact ex vivo preparations. Although the interplay between
enteric neurons and glia was not specifically envisaged, Mueller
and colleagues were able to record enteric glial cell activity in
resection specimens obtained from patients undergoing surgery
(Mueller et al., 2011). With the recently developed optical imag-
ing approach (Cirillo et al., 2013), we have shown that it is also
feasible to record neuronal activity by means of Ca?* imaging in
submucosal ganglia dissected from duodenal biopsies obtained
from healthy volunteers. This technique also allows exploring
human enteric glia function (Figure6). Again, analysis is not
straightforward, even in comparison to the ENS of animal mod-
els, as the cells in the human enteric ganglia are organized in a
far more three dimensional manner than in small animals. Nerve
bundles and glial projections together form a complex structure
(the ganglionic capsule) that surrounds neurons and glial cells
(Figures 6A,B). Moreover, the presence of fasciculated bundles
interconnecting adjacent ganglia adds to the intricacy of optical
recordings from such ganglia. This makes correct interpreta-
tion of glial activation and discrimination between neuronal and
glial signaling difficult, but not impossible. By analogy with the
animal tissue experiments, it is still feasible, with careful attention
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FIGURE 6 | Interactions between enteric neurons and glia in the human
enteric nervous system. (A) Individual confocal images of a human
submucosal ganglion obtained from a duodenal biopsy in which enteric
neurons are labeled with antibodies for HuCD (green) and NF-200 (red) and
enteric glia are immunostained for S100 (blue). (B) Maximum projection of
the same ganglion as in (A) with orthogonal X (bottom) and Y (right) views.
Note how enteric neurons and glial cells are closely packed together within a
dense ganglionic capsule. (C) Gray scale fluorescence image of a human
submucosal ganglion loaded with the Ca2* indicator Fluo4. (D) Image of the
same ganglion as in (C), immunostained for HUCD (green) and S1008
(magenta). (E) CaZ* responses of a neuronal cell body and two glial cell
processes [colorcoded numbers in (C) and numbers in (D)] upon 75 mM K+
depolarization. Scale bars: 25 um (A,B), 50 um (C).

to focus, movement, and analysis issues, to distinguish between
signals originating from glia and neurons (Figures 6C-E). Here
again, glial signals are delayed with respect to the responses
observed in neuronal compartments.

CONCLUSIONS AND PERSPECTIVES

Despite significant progress in understanding enteric glia
function, the exact signaling mechanisms and possible “glio-
transmitters” that act in a physiological context such as during
the different gastrointestinal motility patterns remain elusive.
Nonetheless, several studies indicate that enteric glial cells are
active partners in enteric neurotransmission. In particular, the
aforementioned live imaging studies have provided invaluable
information about how enteric glial cells can detect neuronal
activity (Gomes et al., 2009; Gulbransen and Sharkey, 2009;
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