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When is Sirt1 activity bad for dying neurons?
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Sirt1, the class III histone deacetylase, is generally associated with increased life span
and with a pro-survival effect in neurons stressed by pathological factors. Recent work,
however, suggests that Sirt1 silencing could also promote neuronal survival. A possible
reason suggested is Sirt1 silencing enhanced expression of both IGF-1 and IGF-1 receptor,
signaling from which promotes survival. This work adds to the small but steady stream of
findings that are diametrically opposite to the overwhelmingly large amount of evidence
supporting a beneficial effect of sustaining or enhancing Sirt1 activity in neuronal injuries
and diseases. We attempt to reconcile this discrepancy below by noting evidence that
elevated Sirt1 levels and/or activity may not help, and could even adversely exacerbates
demise, during events of acute neuronal damage or death. However, sustained Sirt1
activation will be beneficial in situations of chronic and long-term sub-lethal stresses, and
the status of IGF-1 signaling may influence Sirt1 action in a context dependent manner.
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The yeast Silent Information Regulator 2 (Sir2p)-related family
of proteins, or sirtuins, are NAD+-dependent class III histone
deacetylases that has been extensively investigated in association
with aging and longevity in model organisms ranging from yeast to
invertebrates (Donmez and Guarente, 2010). Albeit controversial,
the life span extension effect of SIR2 orthologs has been proposed
to underlie the almost universal life span extension effect of caloric
restriction (Hu et al., 2011). The mammalian Sirt1 has been linked
to a myriad of physiological functions, as well as pathological
roles in cancer, metabolic diseases, and multiple aging-associated
organ/system disorders (Haigis and Sinclair, 2010). Sirt1 is highly
enriched in the brain, and its role in the brain and central ner-
vous system neurons have received much attention. Its levels in
hypothalamic neurons are critical for metabolic regulation and
energy balance (Ramadori et al., 2011). It is also now clear that
Sirt1 has a role in normal cognitive function (Michán et al., 2010)
and modulates the pathological progression of dementia (Braidy
et al., 2012).

Most prominently, brain Sirt1 has been very strongly implicated
in neuronal survival (Tang, 2009), and an avalanche of findings in
the past few years have linked Sirt1 activation, either by pheno-
lic compounds such as resveratrol or by manipulations of gene
expressions, to be beneficial in various models of neurodegener-
ative diseases (Donmez and Outeiro, 2013; Paraíso et al., 2013).
Sirt1 activity appears to aid neuronal survival in a wide variety
of neurological conditions ranging from Huntington’s disease to
Alzheimer’s disease (Albani et al., 2010). This is not surprising as
several key factors that could modulate cell death in general, such
as p53 and the NF-κB subunit p65/RelA, are all substrates of Sirt1,
and are inactivated by the latter. Intriguingly, however, Sirt1’s per-
ceived neuroprotection appear to occur through a host of different
targets and mechanisms. These range from the enhancement of
clearance of toxic aggregates (Oosterhof et al., 2012), activation

of proteolytic enzymes (Donmez et al., 2010), enhanced expres-
sion of chaperone proteins (Donmez et al., 2012), the reduction of
neuro-inflammation (Nimmagadda et al., 2013) to the regulation
of DNA repair of double strand breaks resulting from genotoxic
stress (Dobbin et al., 2013). In spite of this, there are findings which
clearly run counter to the notion that Sirt1 activation is neuropro-
tective. One of the most recent amongst these is the report by Pucci
and colleagues (Sansone et al., 2013).

NEGATIVE IMPLICATIONS OF Sirt1 ACTIVATION IN
NEURONAL SURVIVAL – THE ACCUMULATING EVIDENCE
While Sirt1 activation’s neuroprotective effect has been extensively
demonstrated, there is also no lack of evidence of a similar effect
resulting from Sirt1 inhibition. For example, earlier studies have
demonstrated that inhibition of Sirt1 by nicotinamide protects
neuronal death from acute anoxic injury (Chong et al., 2005) as
well as fluid percussion injury (Holland et al., 2008). More recent
work from Longo and colleagues also showed that nicotinamide
increased neuronal survival from oxidative damage by exogenous
H2O2 (Li et al., 2008), and brains of Sirt1 knockout mice exhibited
reduced levels of cumulative oxidative damage as assessed by pro-
tein carbonylation and lipid peroxidation. Of note, the authors
found that Sirt1 inhibition increased acetylation and decreased
phosphorylation of the insulin/IGF-1 signaling adaptor IRS-2,
thus reducing the activation of the downstream Ras/ERK1/2 path-
way (which promotes oxidative stress). Two reports from Mattson
and colleagues have also showed that Sirt1 inhibition by nicoti-
namide and sirtinol promotes survival in models of excitotoxic
neuronal death (Liu et al., 2008, 2009).

Other than the above studies using chemical inhibitors of Sirt1,
at least two other studies that utilized genetic manipulation of
Sirt1 levels are also not supportive of its perceived neuroprotective
effect. In Drosophila, ubiquitous transgenic sir2 overexpression
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using the pan-neuronal driver elav-gal4 resulted in premature
death during development (Griswold et al., 2008), and transgenic
overexpression of sir2 in the developing eye in fact resulted in
enhanced apoptosis. Another study, which involves the neuron-
specific transgenic expression of human Sirt1 in mice driven by
the enolase promoter, revealed no enhancement of protection
against ischemia or neurotoxin induced neuronal death (Kake-
fuda et al., 2009). In fact, these mice suffer from a reference
memory deficit. Although transgenic expression models like such
are not particular refined, it does attest to the notion that over-
expression of Sirt1 alone did not help conditions of acute neuronal
injury.

Pucci and colleagues (Sansone et al., 2013) showed very
recently that Sirt1 silencing attenuates, while Sirt1 over-expression
enhances, death of NG108-15 neuroblastoma cells induced by
staurosporine and a host of other apoptotic agents. This effect
is more pronounced in butyrate differentiated cells. Sirt1 activ-
ity is in fact reduced after differentiation, and differentiated cells
were more resistant to death insults. The authors showed that
Sirt1 silencing enhanced the expression of both IGF-1 and IGF-1
receptor (IGF-1R), and signaling from the latter likely promoted
cell survival. These findings are interesting not just in as far as the
addition of another line of evidence “against” a simple notion of
Sirt1 activation being neuroprotective, but it also brought forth an
interesting point of reciprocity between Sirt1 activity and IGF-1
signaling.

WHEN IS Sirt1 ACTIVATION BAD FOR NEURONS?
How does one reconcile the complete opposite findings made on
the role of Sirt1 in neuroprotection? Perhaps the foremost issue
to consider is whether Sirt1 activity could in fact be in anyway
detrimental to neurons. In this regard, a particularly important
point made by Mattson and colleagues in their papers mentioned
above (Liu et al., 2008, 2009) is the role of cellular NAD+ levels,
a determinant of the bioenergetic state of neurons, in influenc-
ing neuronal survival or demise during acute energy-depriving
conditions. Poly(ADP-ribose) polymerase-1 (PARP-1) is a key
mediator of cell death in excitotoxicity, ischemia, and oxidative
stress. NAD+ depletion by PARP-1 appears necessary and suffi-
cient for PARP-1-mediated neuronal death (Alano et al., 2010).
Sirtuins are the other major users of cellular NAD+. A con-
current activation of Sirt1 during the acute phase of neuronal
injury may therefore accelerate the consumption of NAD+ and
exacerbate death. This could effectively precede any survival pro-
moting effects of Sirt1’s deacetylase effect on other substrates,
which may need more time to take effect. In other words, increas-
ing Sirt1 levels or promoting its activity during acute neuronal
death could simply be counterproductive as far as survival is
concerned.

The next question to ponder upon is how does Sirt1 activ-
ity protect neuron against death insults? Sirt1’s protective effect
is of course not limited to neurons, but many other cell types
under stress (Tang, 2011). Other than its deacetylation of classical
death pathway inducers p53 and p65/RelA, one of the major tar-
get substrate of Sirt1 is the forkhead box class O (FoxO) family
of transcription factors. Sirt1’s activation of FoxO has multi-
ple consequences, with the general outcome being the activation

of genes that could counter cellular stress and promote sur-
vival (Giannakou and Partridge, 2004), as well as pro-survival
processes such as autophagy (Lee et al., 2008; Hariharan et al.,
2010). All these processes require response time and the avail-
ability of sufficient energy, neither of which would be in ample
supply during acute neuronal injury. In neurons subjected to
chronic and sub-acute and sub-lethal insults, however, Sirt1 acti-
vation would be beneficial because there are time and energetic
means of triggering Sirt1 activity-induced survival mechanisms.
There is a caveat to this line of thought, as we assumed that
Sirt1’s protective effect occurs solely via its deacetylase activ-
ity. It has been shown that Sirt1’s neuroprotective effect may
not be entirely dependent on its enzymatic activity (Pfister et al.,
2008).

In theory therefore, if there is a way to reconcile the dis-
parate findings, it could be when and how elevated Sirt1 activity
is elevated in the context of injury/insult onset and pathological
progression of the compromised neurons that matters. It would
appear that Sirt1 activity is likely to benefit neurons subjected to
chronic stresses and are dying slowly, rather than those suffering
from acute insults. This is, of course, a gross generalization. Very
recent reports have attested that Sirt1 activity has been shown to
benefit neuronal survival in acute injuries, such as optic nerve
crush (Zuo et al., 2013) and stroke (Hernández-Jiménez et al.,
2013). One should also bear in mind that cytoplasmic Sirt2, which
shares activators and inhibitors with Sirt1, has a well-documented
pro-apoptotic property (Outeiro et al., 2007; Pfister et al., 2008).
Any attempt to inhibit Sirt1 that might also inhibit Sirt2 may have
a context-dependent net beneficial effect, and thus complicates
the outcome and its interpretation. It is also conceivable that the
ability to engage certain signaling pathways may influence Sirt1’s
effects, one of which is insulin/IGF-1 signaling.

AN INTERESTING RECIPROCITY/FEEDBACK LOOP BETWEEN
Sirt1 ACTIVITY AND IGF SIGNALING IMPINGES ON
NEURONAL SURVIVAL
Signaling through the insulin/IGF-1, although largely pro-survival
and neuroprotective, is paradoxically associated with a reduced
overall lifespan (Tang, 2006). Defects in insulin/IGF-1 signal-
ing have been shown to significantly extend lifespan in multiple
animal models (Bartke, 2008). In C. elegans, restoring defects
in the insulin receptor-like gene daf-2 (which extends lifespan)
in neurons alone, but not muscle or intestine, reduces lifespan
to wild-type levels (Wolkow et al., 2000). This pointed toward
the importance of neuronal insulin/IGF-1 signaling in determin-
ing lifespan. The relationship between Sirt1 and insulin/IGF-1
signaling in neurons, both during normal physiological exis-
tence, as well as during stressed conditions, is therefore of
interest.

Sinclair and colleagues has reported in a paper connecting Sirt1
activation to caloric restriction that Sirt1 levels were elevated in
non-neuronal cells grown in serum from rats subjected to caloric
restriction. This elevation was, however, suppressed by the addi-
tion of insulin or IGF-1 (Cohen et al., 2004). On the other hand,
IGF-1 has been shown to increase Sirt1 expression in cardiomy-
ocytes in a c-Jun N-terminal kinase 1 (JNK1)-dependent manner
(Vinciguerra et al., 2012). Conversely, it was reported that Sirt1
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FIGURE 1 | A schematic diagram illustrating the known relationship

between Sirt1 and IGF-1 signaling discussed in text. IGF-1 signaling may
modulate Sirt1 activity in rat hepatoma cells (Cohen et al., 2004) as well as
Sirt1 expression (Vinciguerra et al., 2009) in cardiomyocytes. On the other

hand, Sirt1 have been shown to modulate IGF-1 signaling axis by deacetylation
of IRS-2 in human embryonic kidney cells and rat cortical neurons (Li et al.,
2008), as well as suppressing IGF-1 and IGF-1R expression in NG108-15 (a
mouse neuroblastoma/rat glioma hybrid cell line; Sansone et al., 2013).

activity enhances IGF-1 signaling through deacetylation of IRS-2
in neuronal cells, which may ultimately compromises neuronal cell
survival through oxidative damage resulting from the downstream
Ras/Erk1/2 pathway (Li et al., 2008). Pucci et al. now showed the
opposite, that Sirt1 activity could potentially reduce signaling from
the IGF-1-IGF-1R, at least in some neuronal cell types, by sup-
pressing the expression of both ligand and receptor (Sansone et al.,
2013). These disparate findings are summarized in Figure 1.

Viewed from the cellular and organismal perspective, Sirt1
activity and IGF-1 signaling are diametrically opposite modulators
of lifespan. Inhibition or attenuation of IGF-1 signaling promoted
longevity in multiple animal models (Kenyon et al., 1993; Kimura
et al., 1997; Tatar et al., 2001; Holzenberger et al., 2003; Heidler
et al., 2010). On the other hand, Sirt1 activation has been largely
associated with lifespan extension (Cohen et al., 2004; Ho et al.,
2009; Mercken et al., 2013). Intriguingly, neurons appear to have
critical roles in determination of lifespan in multicellular organ-
isms. As mentioned above, restoring wild type IGF-1 signaling
in neurons alone nullified the lifespan extension effect of IGF-1
signaling deficiency in other tissues (Wolkow et al., 2000). Further-
more, manipulation of respiratory function of neurons appears to

generate, in a non-cell autonomous manner, mitochondrial stress
response in other tissues that enhanced survival (Durieux et al.,
2011). All in all it appears that Sirt1 action is connected to IGF-1
signaling via a rather complex feedback system that could affect
neuronal survival in a cell type- and context-dependent manner.
In other words, the status of IGF-1 signaling, both in terms of
components and pathway activity, at the point of Sirt1 elevation
or activation could influence the outcome of either enhanced sur-
vival or heightened demise. For mouse cardiomyocytes, it was
in fact shown that locally acting IGF-1 increased Sirt1 expres-
sion and activity, whereas circulating IGF-1 isoform did not have
the same effect (Vinciguerra et al., 2009). Granted that the rela-
tionship between Sirt1 action and IGF-1 signaling is complex,
context dependent and not yet completely mapped, we now know
a few ground rules that should be useful to keep in mind when we
attempt to rescue neurons in distress.
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