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We measured the action potential backpropagation delays in apical dendrites of layer
V pyramidal neurons of the somatosensory cortex under different stimulation regimes
that exclude synaptic involvement. These delays showed robust features and did not
correlate to either transient change in the stimulus strength or low frequency stimulation of
suprathreshold membrane oscillations. However, our results indicate that backpropagation
delays correlate with high frequency (>10 Hz) stimulation of membrane oscillations, and
that persistent suprathreshold sinusoidal stimulation injected directly into the soma results
in an increase of the backpropagation delay, suggesting an intrinsic adaptation of the
backpropagating action potential (0AP), which does not involve any synaptic modifications.
Moreover, the calcium chelator BAPTA eliminated the alterations in the backpropagation
delays, strengthening the hypothesis that increased calcium concentration in the dendrites
modulates dendritic excitability and can impact the backpropagation velocity. These results
emphasize the impact of dendritic excitability on bAP velocity along the dendritic tree, which
affects the precision of the bAP arrival at the synapse during specific stimulus regimes,
and is capable of shifting the extent and polarity of synaptic strength during suprathreshold
synaptic processes such as spike time-dependent plasticity.
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INTRODUCTION

Neurons communicate with each other through the generation of
action potentials, which are initiated in the axon initial segment
and propagate to the axon terminal (orthodromic propagation),
and back into the soma and dendrites (antidromic propagation
or backpropagation; Spruston etal., 1995; Stuart etal., 1997b;
Bernard and Johnston, 2003). The discovery of a multitude of
voltage- and ligand-gated ion channels in the dendrites extended
their original concept as passive tubes to include active complex
computational properties (Stuart and Sakmann, 1995; Hausser
and Mel, 2003; Waters etal., 2005; Froemke etal., 2010), estab-
lishing their role as integrative cellular elements. Previous reports
showed that the propagation of the antidromic spike along the
dendritic arbors depends on the type of neuron, and is highly
dependent on Nat conductance along the dendritic tree (Colbert
etal,, 1997; Stuart etal., 1997a) as well as dendritic morphology
(Vetter etal., 2001). Other studies reported on the decremental
fashion of the backpropagating action potential (bAP) invasion to
the dendrites during a spike train and emphasized the contribu-
tion of A-type KT currents in the attenuation of the bAP amplitude
along the apical dendrite (Johnston and Hoffman, 1999; Bernard
and Johnston, 2003), which could also be modified by the cholin-
ergic agonist charbacol (Tsubokawa and Ross, 1997), suggesting
network driven neuromodulation of the antidromic propagation.
On the other hand, a recent in vivo study showed that bAP invasion
to the distal dendrites is highly reliable across a wide range of brain
states, network activity and stimulus conditions and is only mildly
modulated by neuronal firing frequency, hence it is well suited

to provide crucial signals for the control of synaptic plasticity
(Bereshpolova etal., 2007).

In recent years, several studies have shown that the antidromic
propagation of action potentials into the dendrites could signifi-
cantly impact the way signals are processed in the central nervous
system (Hausser and Mel, 2003; Nevian et al., 2007; Sjostrom et al.,
2008). More specifically it has been shown that spike backpropaga-
tion provides an associative link between the axonal output and the
synapses, thus allowing them to follow a “Hebbian learning rule”
such as spike time-dependent plasticity (STDP; Magee and John-
ston, 1997; Dan and Poo, 2004; Nevian et al., 2007). In that regard,
bAP in the dendrites has been demonstrated to be an important
postsynaptic signal for the generation of long-term potentiation
(LTP) in several brain regions such as hippocampus (Magee and
Johnston, 1997) and neocortex (Markram etal., 1997; Stuart and
Hiusser, 2001; Sjostrom etal., 2008). During backpropagation,
the spikes cause depolarization along the dendrite and can inter-
act with orthodromic signals arriving from the synapse to initiate
calcium electrogenesis (Larkum, 1999). Therefore, the precise time
of arrival of the bAP at the location of the synaptic input will deter-
mine the extent and polarity of any change in synaptic strength.
Hence, the precision of the backpropagating spike is most impor-
tant during situations in which the time window between the pre
and postsynaptic signals is very short. In these cases, even slight
alterations in the backpropagation delay, which are due to modi-
fication of the conduction velocity along the apical dendrite, will
impact the delay time of the peak amplitude, which will result in
modifications of the associated calcium electrogenesis and signal
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integration at the synapse, thus shifting the synaptic gain (Dan
and Poo, 2006).

Since Hebbian synaptic plasticity acts as a positive feedback
mechanism, it leads to destabilization of the neuronal network
(Narayanan and Johnston, 2010). A recent simulation study argues
that as a compensation for this instability, there is a modifica-
tion of the synaptic threshold in an activity-dependent manner
(Narayanan and Johnston, 2010), as proposed in the Bienenstock—
Cooper—-Munro (BCM)-like plasticity framework (Bienenstock
etal., 1982), which is achieved through regulation of the Iy, cur-
rent in the dendrites. In this way, the threshold modulation acts
as a negative feedback and returns the stability to the network.
As an outcome of this regulation, it is argued that the mem-
brane excitability will be modified. If so, this would affect the
bAP propagation delay.

As the DAP is context specific (i.e., depends on the state
of Nat and KT channels and the recent history of the mem-
brane potential; see Bernard and Johnston, 2003), and may carry
contextual information, we studied the adaptation of spike back-
propagation delays to various stimuli, including suprathreshold
stimulus currents that mimicked the pairing between the excita-
tory postsynaptic potential (EPSP) and somatic spike as occurs
in the soma during STDP inducing protocols (Dan and Poo,
2004). The bAP delays correlate linearly with high frequency
(>10 Hz) stimulation of membrane oscillations as seen in vivo
(Bereshpolova etal., 2007). Although transient changes in the
suprathreshold sinusoidal stimulus (SSS) frequency (<10 Hz) did
not correlate with bAP delays, persistent injection of low frequency
(7 Hz) suprathreshold sinusoidal current into the soma result
in significant alterations of the bAP delay, suggesting an intrin-
sic adaptation of the bAP, which does not involve any synaptic
modifications.

Some of the results have been published previously in abstract
form (Buskila etal., 2013).

MATERIALS AND METHODS

ANIMALS

For this study, we used 2—5 weeks old Wister rats. All animals were
healthy and handled with standard conditions of temperature,
humidity, 12 h light/dark cycle, free access to food and water, and
without any intended stress stimulations. All experiments were
approved by the University of Western Sydney committee for ani-
mal use and care [Animal Care and Ethics Committee (ACEC)
protocol #A9452].

SLICE PREPARATION AND RECORDING

Wister rats were deeply anesthetized by inhalation of isoflurane
(5%), decapitated, and their brains were quickly removed into ice-
cold physiological solution (artificial cerebrospinal fluid, aCSF)
containing (in mM): 125 NaCl, 2.5 KCl, 1 MgCl,, 1.25 NaH,POy,
2 CaCl,, 25 NaHCOs, 25 dextrose and saturated with carbogen
(95% 0O,-5% CO; mixture; pH 7.4). Parasagittal brain slices
(300 pm thick) encompassing the primary somatosensory cortex
were cut with a vibrating microtome (Camden Instruments, UK)
and transferred to a holding chamber containing carbogenated
aCSF for 30 min at 35°C, which was then allowed to cool to room
temperature for at least 1 h before recording.

ELECTROPHYSIOLOGICAL RECORDINGS AND STIMULATION

The recording chamber was mounted on an Olympus BX-51
microscope equipped with IR/DIC (infrared/differential interfer-
ence contrast) optics. During recordings, the slices were kept at
room temperature, ~22°C, and constantly perfused (2-3 ml/min)
with oxygenated solution as reported previously (Buskila and Ami-
tai, 2010). Simultaneous whole-cell and cell-attached recordings
were made from the soma and dendrites of neurons, respectively.
Whole-cell recordings were performed from the soma of layer
V pyramidal neurons in the somatosensory cortex with patch
pipettes (5-7 M€2) containing (in mM) 130 K-methansulfate, 10
HEPES, 0.05 EGTA, 7 KCI, 0.5 Na,GTP, 2 NayATP, 2 MgATP,
7 phosphocreatine, 0.1 Alexa Fluor-488 (Molecular Probes) and
titrated with KOH to pH 7.2 (~285 mOsm). Cell-attached record-
ings from the apical dendrites were performed using patch pipettes
(10-12 M) filled with the same internal solution, excluding
the fluorescent dye. The use of cell-attached patch recordings
rules out the possibility that the findings are caused by washout
of cytoplasmic constituents or capacitive load imposed on the
cell by the patch pipettes. Stimulation protocols were designed
using pClamp 10 software suit (Molecular Devices, Sunnyvale,
CA, USA) and stimulation currents were injected through the
recording electrodes. Voltages were recorded in current clamp
mode using a multiclamp 700B dual patch-clamp amplifier (Axon
Instruments, Foster City, CA, USA), digitally sampled at 30-
50 kHz, filtered at 10 kHz, and analyzed off-line using pClamp
software. The access resistance was corrected on-line and record-
ings were included in the analysis if the access resistance was
<30 M, and were considered stable and suitable for analysis
if the access resistance, input resistance, and resting membrane
potential did not change by more than 20% from their initial
value during recording. At the termination of each experiment,
the location and morphology of neurons were examined by
fluorescence microscopy and digitally recorded (ROLERA-XR,
Q-Imaging).

DETERMINING THE RESONANCE FREQUENCY

In order to reveal the resonance frequency of the cells, we used the
impedance analysis described by Gutfreund etal. (1995). In short,
a20-s subthreshold sinusoidal current with a linear increase in fre-
quency from 0.1 to 20 Hz (chirp stimulation) was applied through
the recording electrode. The impedance amplitude profile (ZAP)
was generated by transforming the input current (I) and the volt-
age response (V) into the frequency domain using a fast Fourier
transform (FFT), and then dividing the voltage transformation
FFT(V) by the current stimulus transformation FFT(I). The stim-
ulus file was generated by Python-based software, imported into
pClamp, and applied as described above. The resonance frequency
(fr) was determined as the peak of the ZAP profile.

SUPRATHRESHOLD SINUSOIDAL STIMULUS PROTOCOL

We wanted to introduce a persistent stimulus, which would mimic
the pairing of the synaptic potential (EPSP) and the backpropa-
gating spike in the soma, while avoiding actual synaptic plasticity
that could complicate the interpretation of the results. We there-
fore designed a SSS protocol that elicited a single spike each
cycle, coinciding with the rising phase of a sinusoidal current
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injected directly to the soma (Figure 3A). The stimulus proto-
col consists of 10 episodes of 10-s long suprathreshold sinusoidal
current at 7 Hz with an inter-episode interval of 5 s, injected
through the somatic recording electrode. To determine the stim-
ulus strength, graded sinusoidal currents (10 pA increments)
were injected into the soma until a single spike was initiated
(sinusoidal rheobase — Rhgin; see Figure 1). To ensure spike gen-
eration in more than 80% of cycles, the stimulus strength was
set to 120-140% of the Rhg,, ensuring a single spike at each
cycle. The delay of the bAP from the soma to the dendrite was
measured from the peak of the intracellularly recorded somatic
AP to the peak of the bAP from cell-attached recordings in the
dendrites.

STATISTICAL ANALYSIS
Data is reported as mean + SEM. Statistical comparisons were
done using two-tailed unpaired Student’s ¢-test.

RESULTS

We have studied the alterations in spike backpropagation delays in
layer V pyramidal neurons of the somatosensory cortex. The aver-
age somatic resting membrane potential and spike amplitude were
—62 £ 1and 97.5 &+ 4.6 mV (n = 9), respectively. Somatic input
resistance and time constant were 120 = 23 MQ and 25 £ 4 ms
respectively. The average propagation velocity of bAP evoked by
step current (0.2-0.5 nA) was 0.68 £+ 0.27 m/s (n = 9), consis-
tent with previous reports on large layer V pyramidal neurons
in the somatosensory and prefrontal cortex (Stuart etal., 1997a;
Gulledge and Stuart, 2003; Bereshpolova etal., 2007). The aver-
age resonance frequency in the soma ranges between 1 and 3 Hz

(average 2 £ 0.2 Hz; n=9) and did not change significantly follow-
ing the injection of suprathreshold sinusoidal current protocols
(Figure 1B).

bAP DELAY IS NOT SUSCEPTIBLE TO TRANSIENT STIMULI
To assess the bAP timing precision and adaptation to alterations
in inputs from the cortical network, we measured the peak-to-
peak bAP delay via simultaneous recordings from both soma
(whole cell) and dendrites (cell attached, up to 500 pm from
the soma). Previous studies reported on frequency dependence
of the spike backpropagation (Spruston etal., 1995; Colbert et al.,
1997; Gulledge and Stuart, 2003; Williams, 2004; Williams et al.,
2007), in which persistent increase of firing frequencies (>10 Hz)
correlated with higher attenuation of the bAP amplitude. On the
other hand, a recent in vivo extracellular study showed that bAP
invasion to the dendrites is highly reliable across a wide range of
brain states, network activity and stimulus conditions and is only
mildly modulated by neuronal firing frequency (Bereshpolova
etal,, 2007). To examine the dependence of spike backpropa-
gation delay on transient changes in spike firing frequency, we
injected a suprathreshold sinusoidal current with increasing fre-
quencies from 0.1 to 100 Hz (chirp stimulation, Figure 2B) into
the soma, which imitates a change in network input, such as the
fluctuations in membrane potential (“up” and “down” states),
in a more realistic fashion than the step current used previ-
ously (Waters and Helmchen, 2004). We then measured the bAP
delay time and tested the correlation between the backpropaga-
tion delay and the stimulus frequency in which the spikes were
initiated.

As seen in Figure 2C, at low frequencies (less than 10 Hz),
there was a fairly weak correlation between the bAP delay and the

A

FIGURE 1 | Determining the resonance frequency and stimulus
strength for SSS protocols. (A) The experimental design. Increasing
sinusoidal currents (10 pA steps) were injected into the soma until
threshold was reached (Rhgj,). The stimulus strength was set 20-40%
above the Rhgj, to ensure a spike was elicited in >80% of the sine
cycles. (B) A chirp stimulation was injected into the soma to reveal the
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resonance frequency (fg; black bottom trace). The membrane potential
response to the chirp stimulus before and after the injection of the SSS
protocol is shown (top and middle traces, respectively). The bottom
graph shows the ZAP profiles as calculated from dividing the response
FFT(V) by the stimulus FFT(/) revealing the resonance frequency (arrow),
which did not differ following SSS protocols.
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FIGURE 2 | The impact of stimulus intensity and frequency on spike
backpropagation delay. (A) Fluorescent image of a layer V pyramidal
neuron following intracellular loading with Alexa Fluor488, showing the
cell morphology and placement of the recording electrodes at the soma
and dendrite. (B) Propagation delay adaptation following alterations in the
stimulus oscillation frequency. Sample traces [200 um from the soma,
baseline propagation velocity (PV) = 0.53 m/s] depict the experimental
protocol. A sinusoidal chirp stimulation (bottom trace) was injected into
the soma and the spike timing was recorded in both soma and dendrites
(top and middle traces, respectively). (C) Scatter plot depicting the
correlation between the bAP delay and the stimulus frequency (n = 5).
Linear correlation was found only at frequencies >10 Hz (gray regression
line). The propagation delay in the first cycle was used as the baseline.

C E
16 7 ) 1.6 1
= Rz =0.13501 R*=0.60215 : R2 =0.24225
@ 14 A ° 14 [ ]
= ] A g ° [ ]
§ 12 ¢ 90 g 127 /
i LN
Q 4 e [ ] o o
5 1 —a__ § 1 ° .
X 08 o S 0.8
g 06 : g
g A . E. 0.6
o 047 8 04 A
02 - & 02 A :
0 i 0 . y .
0 5 100 120 140 160

Frequency (Hz)

Stimulus Current (pA)

Inset — sample traces from (B) were superimposed to show the
peak-to-peak delay (scale bar — vertical — 40 mV for somatic spikes in
black and 2 mV for dendritic spikes in gray; horizontal — 2 ms).

(D) Increasing suprathreshold current steps (500 ms, bottom traces) were
injected into the soma through the recording electrode and recorded in
both soma (top traces) and dendrites (middle traces). The first spike
following the stimulus onset was used for comparison in (E). The
propagation delay at the lowest stimulus amplitude (110 pA) was used as
baseline. (E) Scatter plot depicting the relationship between the injected
current intensity and the bAP delay (n = 7). Line represents linear fit.
Inset — sample traces of the bAP as recorded in the soma and dendrite
(350 wm from the soma, baseline PV = 0.46 m/s) are superimposed to
show the lack of significant change in each. Scale bar as in (C).

stimulus frequency (Linear fit R* = 0.13, n= 5), implying that the
spike backpropagating delay is not modified by transient changes
in the stimulus firing frequency, nor by slow membrane potential
oscillations in that range. These results are aligned with a pre-
vious in vivo study, which found that firing frequencies below
10 Hz had only little effect on the extent of backpropagation
(Bereshpolova etal., 2007). In contrast, during stimulus frequen-
cies higher than 10 Hz, the bAP delay showed stronger correlation
(Linear fit R* = 0.6, n = 5) to the stimulus frequency as previously
reported for both in vivo and in vitro studies (Spruston etal., 1995;
Bereshpolova etal., 2007).

The mechanism underlying STDP involves the coincidence of
bAP and EPSP. Previous studies showed that increase in synap-
tic current reaching the soma could increase the amplitude of
bAPs (Sjostrom etal., 2001; Stuart, 2001; Stuart and Hiusser,
2001) and thereby impact LTP induction. Moreover, it has been
shown that increased EPSPs reaching the soma did not affect the

action potential amplitude in the soma, but increased its afterde-
polarization, which could be associated with bAP amplification.
Yet, it is not clear whether modifications of bAP amplitude were
due to an increase in the current arriving to the soma per se,
or caused by the impact of the increased EPSP along the den-
drites and the processes associated with its increase (i.e., calcium
influx). The amplitude of EPSP reaching the soma can be mim-
icked by simple inward current injections into the soma. To assess
the impact of the stimulus strength on the spike backpropaga-
tion delay, we injected increasing step currents into the soma,
which initiated action potentials with decreasing latencies from the
stimulus onset as well as steeper increase of the membrane poten-
tial rising slopes and increasing afterdepolarizations (Figure 2D),
and tested the correlation between the step stimulus strength
and the backpropagation delay (Figure 2E). The linear regres-
sion line showed only a weak correlation between the stimulus
strength and the backpropagation delay (R?> = 0.24), which is not
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surprising given the fact that the Na* somatic spike has all or none
characteristics.

bAP VELOCITY DECREASES DURING SUPRATHRESHOLD SINUSOIDAL
STIMULATION

The above results indicate that under low frequency stimulation
(<10 Hz), the bAP delay is robust and not affected by tran-
sient changes of either stimulus frequency or stimulus amplitude
injected to the soma. However, previous studies showed that
persistent stimuli, such as an increase in the firing frequency
(Spruston etal., 1995; Colbert etal., 1997; Gulledge and Stuart,
2003; Williams, 2004; Williams etal., 2007) or LTP (Dan and
Poo, 2004; Sjostrom and Hausser, 2006; Williams etal., 2007),
that modify the internal cellular environment (i.e., calcium influx
and A-type KT inactivation) can result in amplification or atten-
uation of the bAP amplitude. To study the adaptation of spike
backpropagation delay following persistent constant changes in
the input stimuli, we injected a suprathreshold sinusoidal current
into the soma through the recording electrode, which elicited a
single spike each cycle coinciding with the rising phase of the sinu-
soidal current (Figure 3A). To avoid bAP amplitude attenuation

resulting from repetitive high firing rates (>10 Hz), or bAP ampli-
tude amplifications due to cell resonance, we chose a stimulus
frequency that did not result in the attenuation of the bAP ampli-
tude, yet was different from the initial resonance frequency in the
soma.

During each episode, the spike initiation phase changed in a
constant pattern, starting before the stimulus peak (off-phase) and
reaching a steady state after 1 s (Figures 3B,E). Despite the modi-
fications in the spike initiation phase, the spike shape remained
stable in both soma and dendrites during individual episodes
(Figure 3D). However, across episodes, a gradual decrease of the
average action potential rising slope (10-90%) was detected in the
soma, reaching a significant decrease of 6.3 £ 0.4% in the fifth
and 8.9 & 0.7% in the last episode (n = 6; p = 1.3 x 10~!7 and
2 x 10717, respectively, two-tailed Student’s t-test; Figures 3C
and 4C). Although previous studies indicated that the sinusoidal
phase of the membrane potential at which the spike was initiated
affected the bAP amplitude (Bernard and Johnston, 2003), the
sensitivity to small alterations in phase was very minor (compare
bAP amplitudes in Figure 2F in Bernard and Johnston, 2003),
which is consistent with our results that show no correlation
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FIGURE 3 | Intrinsic plasticity inducing protocols modify the bAP
initiation phase. (A) The experimental design depicting the recording
traces from both soma and dendrites during the suprathreshold sinusoidal
stimulus protocol, which consists of 10 episodes. In each episode a 10-s
suprathreshold sinusoidal current was injected into the soma (bottom
trace) at 7 Hz and elicits spikes in the soma (middle trace), which paired
with the peak of each rising cycle and propagated to the dendrites (top
trace). (B) A plot depicting the somatic spike-timing phase during SSS
protocol. Gray — single episodes, black — average. The horizontal bars
represent the first spike in each episode (from left to right, x-axis
represents episode number), to show the shift of the first spike across
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episodes. (C) Expansion of the sample average spike rising slopes of the
1st, bth, and 10th episodes recorded in the soma depict a decrease of
the rising slope across episodes. (D) Expansion of action potentials
recorded in the soma (black) and apical dendrite (gray, 350 pm from the
soma, PV = 0.41 m/s) during one episode. Note the consistent shape
and amplitude of spikes during one episode. Scale bar — horizontal 1 ms;
vertical — 20 mV black traces and 2 mV gray traces. (E) Expansion of the
first 3 s in (B). Solid line represents the average somatic spike-timing
phase. Dashed line represents the average propagation delay time (values
on the right ordinate in milliseconds), which did not correlate with the
change in the spike initiation phase.
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between the spike initiation phase and the propagation delay
(Figure 3E).

The average backpropagation delay gradually increased across
sinusoidal stimulus episodes, reaching a significant rise in the third
episode. The delay increased by 9 £ 1% in the third episode
and by 20 &+ 2% in the 10th episodes (n = 6; p = 0.005 and
1.2 x 10712, respectively, two-tailed Student’s #-test; Figure 4A),
and was accompanied with a significant reduction of the rising
slope (10-90%) of the bAP amplitude in dendrites (12 &+ 1%, n=6;
p=17x 10~ two-tailed Student’s t-test; Figures 4B,C) and
soma (Figure 4D). The average bAP half-width spike amplitude
(HWSA) in the dendrite was 2.39 & 0.04 ms in the first episode and
increased significantly (by 12 & 1%) in the 10th episode (p = 0.04,
two-tailed Student’s t-test). As the immediate effect of bAP is the
increase in calcium concentration in the dendrites, and previous
studies indicated that the intrinsic excitability in the dendrites is
calcium dependent (Berridge, 1998), we tested the impact of cal-
cium decrease on bAP during SSS protocol. The addition of the
calcium chelator BAPTA (10 mM) into the recording electrode
abolished the significant increase of the bAP delay across episodes
(n=4, p=0.55, two-tailed Student’s ¢-test, comparing the 1st and
10th episode; Figure 4A), implying a calcium-dependent process

in the change of bAP delay. As seen in Figures 4E,F, during the
application of the SSS protocol in the presence of BAPTA, the
average somatic HWSA increased by 11.7 £ 0.2% (p < 0.05, two-
tailed t-test) and was also accompanied with a significant decrease
of the rising slope (10-90%) by 17.3 £ 0.3% (p < 0.05, two-tailed
t-test). However, calcium chelation by BAPTA had a profound
impact on both HWSA and rising slope of the dendritic bAP,
eliminating the significant modifications across episodes (compare
Figures 4C,F).

DISCUSSION

We have studied the adaptation of spike backpropagation delays
in layer V pyramidal neurons of the somatosensory cortex during
membrane oscillatory regimes.

Under our experimental conditions, the average propagation
delay across episodes of SSS protocols increased in an accumu-
lative fashion, until it reached steady state in the fifth episode
(>300 spikes; Figure 4A). The phase of spike initiation within
each episode changed in a unique pattern which was similar to the
somatic action potential repolarization curve following a train of
action potentials, described previously by Fleidervish etal. (1996).
Thus we assume that the modifications in the spike initiation
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FIGURE 4 | Suprathreshold sinusoidal stimulus protocols modify spike soma, aligned to the peak) at the 1st, 6th, and 10th episode show the
backpropagation delays. (A) Average propagation delay (shown as % of changes in the slope. Scale bar (1 ms; 0.4 mV). (C,F) The average rising slope
baseline) during the SSS protocol. Each dot represents the average delay in (10-90%) and HWSA of the bAP recorded in the dendrite during SSS show
the episode. The average delay in the first episode was used as baseline. decreases and increases, respectively, across episodes as a % of baseline,
Significant alterations from baseline were noticed from the third episode which determined as the average rising slope in the first episode.
onward (*p < 0.005, two-tailed Student’s t-test). The calcium chelator BAPTA (D,E) Modifications of the spike waveform across episodes plotted as a
abolished the significant increase in propagation delay in the last seven change from baseline. Black — HWSA, gray — 10-90% rising slope. (F) The
episodes, implying a calcium dependence (n = 4, p > 0.3; two-tailed addition of BAPTA to the recording electrode modified the significant
Student's t-test). (B) Average bAP traces in the dendrite (250 wm from the alterations in the spike waveform.
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phase within each episode (Figure 3B) resembles spike frequency
adaptation, which may be attributed to the fast inactivation of
the Na™ current and positive shift of the threshold potential. We
also observed a gradual modification of the first spike initiation
phase of each episode within the SSS protocol (bars in Figure 3B),
which might be attributed to the slow recovery of the Na* chan-
nels from inactivation as reported previously (Fleidervish etal.,
1996; Colbert etal., 1997). Yet, the alterations in the spike initia-
tion phase during the episode did not affect the backpropagation
velocity (Figure 2E). Moreover, at low frequencies (<10 Hz),
transient alterations in the stimulus oscillation as well as modi-
fications of the stimulus strength (Figure 2) showed only weak
correlation to the backpropagation delay, implying that the bAP
delay has robust features, which are not easily modified. These
findings are aligned with previous in vivo study showing that at
low frequencies the degree of bAP under varying conditions is
quite uniform (Bereshpolova et al., 2007). However, during higher
suprathreshold stimulus frequencies (10-25 Hz), the relationship
between stimulus frequency and bAP delays showed higher corre-
lation, which could be attributed to a calcium “dendritic switch”
(reviewed by Sjostrom etal., 2008), in which calcium influx into
the apical dendrite is stronger with increasing network activ-
ity, hence boosting spike backpropagation. This further suggests
that backpropagation can be modulated by the network state to
play a role in cortical plasticity (Waters and Helmchen, 2004;
Bereshpolova et al., 2007; Sjostrom etal., 2008).

Alterations in the bAP delay could potentially be measured
using two components. The first component can be detected
through changes in the bAP waveform (i.e., decrease in the rising
slope as seen in Figures 4B,C and widening of the HWSA), which
are mainly due to modifications of the voltage-gated sodium cur-
rent and Ca?*-dependent K channels. The second component
is the propagation time along the dendrite, which can be mea-
sured by subtracting the changes in bAP rise time recorded in the
dendrite from the total propagation and compare it to the origi-
nal propagation delay. During the SSS protocol, the average rising
slope of the bAP in the dendrite at the tenth episode decreases
by 12 £+ 1%, while the total increase in the propagation delay
was 20 £ 2%. These results signify that under our experimen-
tal design, the alterations in the propagation delay include both
components.

Migliore (1996) suggested two possibilities for spike attenu-
ation and active propagation in the dendrites (see also Magee
etal,, 1998). The first is slow inactivation of the Na™ channels
(due to the repetitive firing) which was experimentally reported
(Colbertetal., 1997; Jung et al., 1997; Colbert and Johnston, 1998),
and the other is through activation and inactivation of the calcium-
dependent K™ channels (Jaffe etal., 1992; Bekkers, 2000), also
called shunting conductance. Other factors that might impact the
bAP propagation involves the increase in calcium concentration
along the dendrite, which can boost the amplification of depolar-
izing events as well as voltage-dependent currents (such as Ij,) that
are activated during the membrane oscillation.

bAP DELAY IS AFFECTED BY CALCIUM-DEPENDENT PROCESSES
Various modulators may regulate spike backpropagation
(Colbert etal., 1997; Astman etal., 1998; Hoffman and Johnston,

1998; Sjostrom etal., 2008), yet, the principal factor govern-
ing spike initiation and propagation is the ratio between the
Na®/K" currents available at each location. The immediate
effect of bAP is the increase in calcium entry into the dendrites
through voltage-gated Ca?* channels, which then affects Ca?*-
dependent downstream processes such as Ca** -activated K+
conductance as well as slow inactivation of the Nat conduc-
tance (Jaffe et al., 1992; Markram et al., 1997; Tsubokawa and Ross,
1997). That the gradual enhancement in propagation delay across
episodes of the SSS protocol was due to a calcium-dependent
process was shown by its ablation by the addition of the cal-
cium chelator BAPTA to the recording electrode in the soma
(Figure 4A). As calcium is involved in numerous processes that
can influence dendritic excitability over a time period of min-
utes (Berridge, 1998), and it affects both rising slope and HWSA
of the bAP in the dendrite (Figure 4F) we assume that multi-
ple processes and not a single mechanism disrupt the adaptation
of the bAP delay under BAPTA. These results are also aligned
with a previous study by (Su etal., 2001), which suggests that
a decrease in calcium concentration enhances intrinsic burst-
ing via an increase of the persistent Na™ current. Hence, a
reduction in calcium concentration upmodulates the persistent
Na® current by shifting its activation threshold (Li and Hat-
ton, 1996), thus enhancing propagation velocity and reducing the
delay.

The time course of the delay alterations were in the order
of tens of seconds to minutes (Figures 4A,B), implying that
the mechanism underlying this modification is probably medi-
ated through a second messenger system, such as modulation
of KT channels by protein kinase A (PKA), or inactivation of
Na*t channels by the Ca?*-dependent protein kinase C (PKC),
as suggested by Hoffman and Johnston (1998). Activation of
PKC has a dual impact on Nat currents. On one hand it
modulates the inactivation of Nat channels, thus decreases
their immediate availability, while on the other hand, on time
scale of minutes, it shifts their voltage-dependent activation
curve toward a more hyperpolarized potential (Astman etal,
1998), thus reducing spike threshold and changing both spike
backpropagation amplitude and delay (Colbert and Johnston,
1998).

We therefore propose that following persistent repetitive inva-
sion of bAPs to the dendrites, there is an increase in calcium
influx, activation of Ca?*-dependent KT currents (Bekkers, 2000)
and fast inactivation of Na™ channels. These processes have fast
kinetics, which alter the spike initiation phase in each episode
as seen in Figure 3D. At later stages, the calcium influx leads
to activation of PKC- and cAMP-dependent pathways as sug-
gested previously (Astman etal., 1998; Colbert and Johnston,
1998; Hoffman and Johnston, 1998). These modifications further
result in phosphorylation (and slow inactivation) of voltage-
gated Na™ channels in both soma and dendrites. As dendritic
and somatic Na™ currents recover with different time constants
(5.6 and 4.1 s, respectively; see Colbert etal., 1997), the dis-
crepancy between the dendritic recovery time to the somatic
one shifts the Na™/K* conductance ratio, which could explain
the delay adaptation we are seeing across episodes. As the bAP
is a regenerative process, a change in its voltage threshold due
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to different ratios of Na*/K' conductance’s will result in a
change of the propagation delay. Further investigation into the
kinetics and range of the backpropagation delay adaptation fol-
lowing SSS will enhance our understanding of the underling

processes.
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