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Amyotrophic lateral sclerosis (ALS) is a fatal paralytic disorder characterized by the pro-
gressive and selective loss of both upper and lower motoneurons. The neurodegenerative
process is accompanied by a sustained inflammation in the brain and spinal cord. The
neuron-immune interaction, implicating resident microglia of the central nervous system
and blood-derived immune cells, is highly dynamic over the course of the disease. Here,
we discuss the timely controlled neuroprotective and neurotoxic cues that are provided by
the immune environment of motoneurons and their potential therapeutic applications for
ALS.
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INTRODUCTION
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease
characterized by the selective and progressive loss of upper and
lower motoneurons, with both genetic and sporadic events con-
tributing to the development of the pathological process (reviewed
in Bento-Abreu et al., 2010). The term “neuroinflammation” has
been attributed to the inflammatory response that occurs within
the central nervous system (CNS) concomitantly to neurodegen-
eration (reviewed in Glass et al., 2010). Astrocytes, microglia, and
immune cells are the key cellular modulators of neuroinflam-
mation and have all been shown to actively participate in ALS
pathogenesis (Glass et al., 2010; McCombe and Henderson, 2011;
Philips and Robberecht, 2011). Importantly, recent reports have
highlighted the presence of both neuroprotective and neurotoxic
inflammatory cells in ALS animal models and patients that appear
to be mainly dependent on the stage of disease progression. Seeing
as reviews on the relationship between astrocytic activation and
ALS are numerous, we will focus herein on the dynamic functional
changes of microglia and immune cells that take place during ALS
pathogenesis. A better understanding of these time-dependent
modifications is of utmost importance for the development of ALS
therapeutic strategies aimed at targeting the neuroinflammatory
process.

A ROLE FOR MICROGLIA IN NEUROINFLAMMATION
ACTIVATION PROFILE IN HUMAN AND ANIMAL MODELS OF ALS
Microglia, the resident immune cells of the CNS, constantly
survey the environment and become activated upon alter-
ations resulting from disease or injury eliciting a strong pro-
inflammatory response (reviewed in Hanisch and Kettenmann,

2007). In ALS patients, reactive microglia are observed in
the motor cortex, motor nuclei of the brainstem, the entire
corticospinal tract, the spinal cord, and within the cere-
brospinal fluid (CSF; Engelhardt and Appel, 1990; Kawamata
et al., 1992; Banati et al., 1995). Given the relationship between
astrocytes and microglia and the importance of astrocytosis
in ALS (Davalos et al., 2005; Yamanaka et al., 2008), it has
been hypothesized that microgliosis may also participate in ALS
pathogenesis.

In rodent ALS models, microgliosis occurs in pre-symptomatic
and symptomatic SOD1G93A mice (Hall et al., 1998; Alexianu et al.,
2001; Petrik et al., 2007; Gerber et al., 2012) and at both onset
and early-stage of the disease in SOD1G37R mice (Boillee et al.,
2006). An in-depth in vivo characterization of microgliosis in
SOD1G93A mice shows that microglia are highly reactive in pre-
symptomatic stages while they lose their ability to monitor the
environment as the disease progresses (Dibaj et al., 2011). Indeed,
microglia isolated from either neonatal or early onset SOD1G93A

mice display an activated M2 phenotype and enhance motoneu-
ron survival while microglia isolated from either adult or end
stage mice have a classically activated M1 phenotype and induce
motoneuron death (Weydt et al., 2004; Liao et al., 2012). In the pre-
symptomatic and symptomatic SOD1G93A rat model, microglia
aggregates are detected in both the spinal cord and brainstem
and display a degenerative and apoptotic phenotype at end stage
(Fendrick et al., 2007; Graber et al., 2010). Moreover, microglia of
pre-symptomatic SOD1H46R rats express the proliferating marker
Ki67 and the phagocytic markers ED1 and major histocompati-
bility complex (MHC) class II (Sanagi et al., 2010; Bataveljic et al.,
2011). These data suggest that microgliosis not only typifies ALS
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but that microglia function changes during disease progression,
thus exerting differential effects on motoneurons.

A ROLE FOR MICROGLIA IN ALS PATHOGENESIS
A key finding supporting the contribution of microglia in ALS
pathogenesis is the significant extension in lifespan and delay in
disease progression when the mutant protein is specifically deleted
from macrophages and microglial lineages in both SOD1G37R and
SOD1G85R mice (Boillee et al., 2006; Wang et al., 2009). Simi-
larly, bone marrow transplantation (resulting in donor-derived
microglia) of SOD1G93A microglia into PU.1−/− mice (that
lack CNS microglia at birth) did not induce neurodegeneration
whereas wild-type donor-derived microglia transplantation into
SOD1G93A; PU.1−/−mice improved survival (Beers et al., 2006).

However, phenotypical analysis of microglia in different
regions of SOD1G93A spinal cord suggests that both neuro-
protective and neurotoxic population of microglial cells may
co-exist during the disease and that depletion of proliferative
microglia does not prevent motoneuron degeneration (Gowing
et al., 2008; Beers et al., 2011b). Together, these studies thus
suggest that microglia participates, through a complex balance
between neuroprotective and neurotoxic signals, to ALS disease
progression.

PROPOSED MECHANISMS OF MICROGLIAL-DERIVED NEUROTOXICITY
Various misregulated pathways within ALS microglia have been
identified that may influence motoneuron survival. Endoplas-
mic reticulum (ER) stress is a characteristic of ALS pathogenesis
(reviewed in Lautenschlaeger et al., 2012). In microglia of both
sporadic ALS patients and symptomatic SOD1G93A mice, there is
an increased expression of C/EBP homologous protein (CHOP;
Ito et al., 2009), a member of the apoptotic ER stress pathway
(reviewed in Oyadomari and Mori, 2004). It remains unclear if
it directly participates in microglial neurotoxicity but exposure of
microglia to interferon gamma (IFNγ), which levels are increased
in the spinal cord of ALS mice and patients (Aebischer et al., 2011;
Aebischer et al., 2012), elicits inducible nitric oxide (NO) synthase
(iNOS) expression. The subsequent production of NO can cause
an ER stress response that involves CHOP (Kawahara et al., 2001).
Interestingly, several SOD1 mouse models show initiation of a
specific ER stress response accompanied by microglial activation
(Saxena et al., 2009).

Activation of the ligand-dependent CD14 lipopolysaccharide
(LPS) receptor located at the microglial surface (Lacroix et al.,
1998) initiates a pro-inflammatory Toll-like receptors (TLRs)
dependent cascade (Laflamme and Rivest, 2001; Laflamme et al.,
2001). Importantly, neurotoxic microglia activation by extracellu-
lar SOD1G93A is mediated by the CD14-TLR2 pathway and induces
a subsequent release of pro-inflammatory cytokines, including
tumor necrosis factor alpha (TNFα) and interleukin (IL)-1β (Liu
et al., 2009; Zhao et al., 2010). Moreover, microglia from sporadic
ALS patients show an enhanced TLR2 immunoreactivity (Casula
et al., 2011). Microglia may thus participate in motoneuron loss
following the specific activation of the CD14-TLR pathway by
secreted SOD1 mutant, therefore propagating pro-inflammatory
stimuli.

The release of extracellular nucleoside di- and tri-phosphates,
in particular ATP, by degenerating neurons can elicit microglia
activation through the ionotropic P2X and metabotropic P2Y
purinergic receptors which can subsequently elicit a pro-
inflammatory response, chemotaxis, and phagocytosis (reviewed
in Inoue, 2006; Bours et al., 2011). Notably, P2X is increased
within spinal cord microglia of ALS patients (Yiangou et al., 2006).
Embryonic microglia and neonatal primary microglial cultures
from mutant SOD1 mice display an upregulation of P2X4, P2X7,
and P2Y6 receptors (D’Ambrosi et al., 2009). Further, activation
of P2X7 in SOD1G93A microglia leads to the production of sig-
nificantly higher levels of TNFα, which has a neurotoxic effect on
motoneuron cultures (Ugolini et al., 2003), and of cyclooxygenase-
2 (COX-2), which produces the potent inflammatory mediators
prostaglandins (D’Ambrosi et al., 2009).

Moreover, a reduced ATP hydrolysis activity in mutant SOD1
microglia, suggests a potentiation of a purinergic-mediated
inflammation that can participate to the neuroinflammatory state
of microglial cells. Since ATP induces an astrocytic neurotoxic
phenotype through P2X7 receptor signaling (Gandelman et al.,
2010), one can hypothesize that increased extracellular ATP
in ALS, whether exacerbated by motoneurons and/or microglia
contributes to the pathogenic microgliosis.

THE POTENTIAL INFLUENCE OF MICROGLIA ON NEURONAL
EXCITABILITY
There is presently few assessment of the influence of microglia
on motoneuron electrophysiology. However, studies on periph-
eral nerve or spinal cord injuries show that microglia activation
has prominent effects on neuronal inhibitory control and loss of
inhibitory control is a contributing mechanism to the motoneu-
ron hyperexcitability that typifies ALS pathogenesis in humans
(Bae et al., 2013).

Loss of neuronal inhibitory control occurs by several means
including decrease in gamma-aminobutyric acid (GABA)ergic
interneurons combined with changes in the expression of the
GABAA receptor messenger RNA subunit (Petri et al., 2003;
Maekawa et al., 2004). GABAA and glycine receptors are chlo-
ride (Cl−) channels and the expression of cation-chloride co-
transporter contributes to inhibitory effects of these Cl− currents
(Blaesse et al., 2009). Indeed, the entry of Cl− following the
opening of GABAA and glycine receptor-gated Cl− channels
inhibits neuron excitability by hyperpolarizing membrane poten-
tial. Under physiological condition, low intracellular Cl− con-
centration [Cl−]i is maintained by the potassium (K+)-chloride
co-transporter KCC2 that extrudes Cl− from mature neurons
(Rivera et al., 1999). Stimulation of spinal microglia following
peripheral nerve injury induces a decrease in KCC2 expression
among dorsal horn nociceptive neurons (Coull et al., 2003). KCC2
decrease is induced by the brain-derived neurotrophic factor
(BDNF) and this is consistent with the previous observation
that BDNF can be produced by non-neuronal cells involved in
immune responses, including T and B lymphocytes, monocytes,
and microglia (Kerschensteiner et al., 1999; Coull et al., 2005).
BDNF produces a depolarizing shift in the anion reversal poten-
tial of dorsal horn lamina I neurons due to an increase in [Cl−]i.
This shift prompts an inversion of inhibitory GABA currents that
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contributes to neuropathic pain following nerve injury (Coull
et al., 2005). Decrease in KCC2 expression is thus responsible
for the excitatory effects of GABA on neurons. Microglia activa-
tion and BDNF secretion are mediated through ATP activation
of microglial P2X receptors. As discussed earlier, P2X recep-
tors might be involved in ALS pathology since a higher density
of P2X7-immunoreactive microglial cells/macrophages are found
in affected regions of spinal cords from ALS patients (Yiangou
et al., 2006). Furthermore, levels of BDNF have been found to be
increased in microglial cells isolated from ALS mice at the onset
of disease and KCC2 is decreased in vulnerable motoneurons in
SOD1G93A mice (Fuchs et al., 2010; Liao et al., 2012). Additionally,
BDNF might play a role in the influence of microglia on motoneu-
ron electric activity as suggested by work on spasticity. Spasticity
is characterized by a velocity-dependent increase in muscle tone
resulting from hyperexcitable stretch reflexes, spasms and hyper-
sensitivity to normally innocuous sensory stimulations. Spasticity
develops following spinal cord injury and is also regarded as
an ALS clinical symptom (Rowland and Shneider, 2001). The
main mechanism hypothesized to be responsible for spasticity is
increased motoneuron excitability and increased synaptic inputs
in response to muscle stretch due to reduced inhibitory mecha-
nisms. Recently, it has been demonstrated that, following spinal
cord injury, increased levels of BDNF mediated spasticity, due to
post-transcriptional downregulation of KCC2 (Boulenguez et al.,
2010). Together, these studies suggest that reactive microglia in
ALS may exert an aberrant effect on the electrical activity of
motoneurons and highlight the importance of furthering our
understanding of this functional interaction.

Lastly, a hypothetical scenario relates to the defect in astro-
cytic glutamate transporter and the neurotoxic accumulation
of the excitatory amino acid. It has been demonstrated that
TNFα promotes glutamate release by activated microglia through
the cystine/glutamate exchanger (Xc; Piani and Fontana, 1994).
Though the implication of the Xc system in ALS has not yet been
investigated, it may represent a potential mechanism of microglia-
mediated excitotoxicity that warrants further study (Qin et al.,
2006).

THE DUAL ROLE OF NEUROIMMUNITY IN MOTONEURON
DISEASE
PATHOLOGICAL PHENOTYPE OF THE IMMUNE SYSTEM IN ALS
In addition to astrocytes and microglia, blood-derived immune
cells may also play synergistic and critical functions during disease
progression. Presence of a systemic immune activation is sug-
gested by abnormalities observed in the blood and the CSF of
ALS patients such as increased numbers of circulating lympho-
cytes (CD4+ helper T cells, CD8+ cytotoxic T lymphocytes, CTL,
and natural killer, NK cells), increased expression of MHC class
II molecules on monocytes as well as higher levels of inflamma-
tory chemokines and cytokines (regulated on activation normal
T cell expressed and secreted, RANTES, monocyte chemotactic
protein, MCP-1, IL-12, IL-15, IL-17, and IL-23; Zhang et al.,
2005; Rentzos et al., 2007, 2010, 2012; McCombe and Hender-
son, 2011). Further, post-mortem studies of brain and spinal cord
lesions from ALS patients show that the activation and prolifer-
ation of microglia is associated with an infiltration of activated

macrophages, mast cells and T lymphocytes which are found in
close proximity to degenerating tissues (Engelhardt et al., 1993;
Graves et al., 2004; Lewis et al., 2012). An in-depth autopsy of six
ALS patients reveals an enrichment of T-cell receptor Vβ2-positive
T cells in the spinal cord and CSF, suggesting an antigen-driven
T cell selection (Panzara et al., 1999). Finally, ALS patients with
a more rapidly progressing pathology show decreased numbers
of regulatory T lymphocytes (Tregs), suggesting that the num-
ber of Tregs is inversely correlated with disease progression (Beers
et al., 2011a; Rentzos et al., 2012). Tregs secrete anti-inflammatory
cytokines such as IL-4, IL-10 and transforming growth factor beta
(TGF-β) and has been show to induce the production of the neu-
rotrophic factors glial-derived neurotrophic factor (GDNF) and
BDNF by astrocytes (Reynolds et al., 2007). Tregs are also able to
dampen a T helper (Th)1 pro-inflammatory response and attenu-
ate toxic microglial responses. Contribution of the innate immune
system is also suggested by the presence of immunoglobulins and
complement deposition as well as a significant increase of NK cells
in the blood of ALS patients (Donnenfeld et al., 1984; Engelhardt
and Appel, 1990; Rentzos et al., 2012). While these investigations
of ALS samples and tissues do not assess the contributory role of
the immune system to disease pathogenesis, they do highlight its
active presence.

In support of what is observed in humans, ALS rodent mod-
els also display a particular immunological phenotype. Indeed,
SOD1G93A mice have allowed the demonstration that the inflam-
matory cellular subtypes are phenotypicaly and functionally
different depending upon the disease stage (Liao et al., 2012). Dur-
ing the initial stages, infiltrating CD4+ T cells are mainly Th2
(IL-4+) while there is a skew toward Th1 (IFNγ+) cells and CD8+
T cells (both IL-17A positive and negative) as the disease progresses
(Fiala et al., 2010; Beers et al., 2011b). Alteration in inflammatory
cell subtypes is associated with, and maybe driven by, differences
in Tregs. Interestingly, early symptomatic SOD1G93A mice have an
increased number of Tregs and a decreased proliferation of effec-
tors T lymphocytes (Teffs), whereas a decreased numbers of Tregs
and an increased proliferation of Teffs is found in end stage ani-
mals (Beers et al., 2011a; Zhao et al., 2012). The innate immune
system is also affected in ALS rodents, displayed by the substantial
increase of NKT cells firstly in the liver and then in the spinal cord
of SOD1G93A mice (Chiu et al., 2008; Finkelstein et al., 2011).

Whether neuroinflammation is a cause or a consequence of
motoneuron dysfunction is still debated. It is interesting to note
that inflammation is not limited to the CNS but systemic with a
correlation between disease evolution and levels of plasma LPS
as well as the numbers of activated circulating monocytes and T
lymphocytes (Zhang et al., 2005, 2009). A thymic dysfunction also
parallels the neurodegenerative process in mutant SOD1 mice and
ALS patients (Seksenyan et al., 2010). In the CNS of ALS patients,
TAR DNA-binding protein 43 (TDP-43) displays an increased
expression and interacts with nuclear factor kappa B (NF-κB) in
glial and neuronal cells. LPS-activation of NF-κB in microglial
cells expressing the TDP-43 mutant is associated with the pro-
duction of pro-inflammatory cytokines, including TNFα, IL-1β,
IL-6, and IFNγ (Swarup et al., 2011). NF-κB, is also an important
intermediate of the TLR signaling pathway that contribute to the
initiation of inflammatory responses (O’Connell et al., 2012). The
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central role of inflammation and NF-κB in ALS was recently con-
firmed by the description in familial ALS of mutations in the gene
encoding optineurin, a negative regulator of TNF-induced NF-κB
activation (Maruyama et al., 2010).

Additional regulators of the neuroinflammatory response are
the microRNAs (miRNA), an abundant class of small, non-coding
RNA that regulate gene expression in a wide range of biolog-
ical processes (O’Connell et al., 2012). Recently, a dominantly
inherited mutation in the heterogeneous nuclear ribonucleopro-
tein (hnRNP) A1 has been associated with familial ALS (Kim
et al., 2013). hnRNPA1 is a RNA-binding protein involved in RNA
metabolism, including the regulation of alternative pre-mRNA
splicing, mRNA export, and stability as well as the processing of
miRNA (Guil and Caceres, 2007). Interestingly, hnRNPA1 can
directly interact with TDP-43 (Buratti et al., 2005), and TDP-43
was proposed to contribute to the post-translational processing of
miRNA through interaction with the endonucleases, Drosha and
Dicer (Kawahara and Mieda-Sato, 2012). The activity of Dicer,
which processes miRNA precursors at the RNA-induced silenc-
ing complex (Wilson and Doudna, 2013), is required to maintain
motoneuron functional integrity. Indeed, the conditional dele-
tion of Dicer in vesicular acetylcholine transporter-expressing
cells leads to motoneuron degeneration and denervation atro-
phy in mice (Haramati et al., 2010). Another intriguing link with
the miRNA pathway in the neuro-immune interaction has been
recently revealed by the demonstration that the neurotransmit-
ter acetylcholine can inhibit the production of pro-inflammatory
cytokines, TNFα and IL-6, through induction of miRNA-124 in
macrophages (Sun et al., 2013). In addition, a subset of CD4+ T
cells has been described to produce acetylcholine to modulate the
inflammatory response taking part of the autonomic homeostatic
reflexes (Rosas-Ballina et al., 2011). Regarding ALS pathogene-
sis, a dysfunction of the cholinergic circuit has been reported
in the spinal cord of SOD1 mutant mice, early in the disease
course (Casas et al., 2013). Moreover, the choline acetyltransferase
mRNA is a target of TDP-43 (Polymenidou et al., 2011), and the
decrease in cholinergic input in the neuroinflammatory context of
Alzheimer’s disease was also shown to lead to the down regulation
of hnRNPA1 (Berson et al., 2012). Despite the sequential events
implicating miRNAs and the cholinergic signaling needs to be fur-
ther explored, this evidence concurs toward the contribution of
the neuro-immune interaction in the degenerative process.

The information from pre-clinical models and ALS patients
suggests that systemic immune activation (innate and adaptive)
might play a key role in ALS pathogenesis and may represent an
interesting target for the development of novel treatments. How-
ever, a better understanding of the specific roles played by the
different subtypes of immune cells is of utmost necessity. Indeed,
accumulative evidence suggests that inflammatory cells mediate
both protective and deleterious effects on motoneuron survival
and that these functions vary during disease progression.

THE PROTECTIVE FUNCTION OF THE IMMUNE RESPONSE IN ALS
Protective immunity, a crucial homeostatic phenomenon in the
repair of damaged tissues, results from both the clearance of
debris and the effects of cytokines and growth factors deliv-
ered by inflammatory cells to the site of injury (Hohlfeld et al.,

2000; Schwartz and Moalem, 2001). The neuroprotective ability
of immune cells is also evident in ALS. Indeed, when SOD1G93A

mice are bred with mice lacking functional T cells or CD4+ T
cells, microglia skew toward an M1 inflammatory phenotype and
disease progression accelerates, suggesting that CD4+ T cells pro-
vide neuroprotection by suppressing the activation of cytotoxic
microglia. Accordingly, reconstitution of T cells following bone
marrow transplantation of SOD1G93A mice lacking functional T
and B cells prolonged their survival and suppressed the activa-
tion of M1 microglia (Beers et al., 2008). Further analysis showed
that neuroprotection is mainly supported by CD4+CD25+Foxp3+
Tregs that secrete IL-4, thus promoting M2 protective microglia
and IL-4 secreting Th2 cells, while inhibiting the neurotoxic Th1
response and IFNγ secretion. The passive transfer of Tregs into
ALS mice lacking functional T cells results in lengthened disease
duration and prolonged survival (Beers et al., 2011a). Accordingly,
these neuroprotective Tregs are increased in the peripheral blood
of ALS patients during early stages but their numbers decrease as
the disease progression accelerates and are thus inversely corre-
lated with disease progression rates (Beers et al., 2011a; Rentzos
et al., 2012; Henkel et al., 2013). Furthermore, Foxp3 and CD25
expression is reduced in Tregs from rapidly progressing patients
and are also inversely correlated with disease progression rates
(Henkel et al., 2013). Co-culture experiments showed that Tregs
suppress the expression of cytotoxic factors Nox2 and iNOS from
SOD1G93A microglia through IL-4 secretion and inhibit the pro-
liferation of SOD1G93A Teffs via the combined secretion of IL-4,
IL-10, and TGF-β (Zhao et al., 2012). Hence, Tregs enhance the
neuroprotective properties of the immune system during the stable
disease phase while a switch from a neuroprotective Tregs/M2 to
a deleterious Th1/M1 response characterizes disease progression.
The key role of this balance between protective and deleterious
immune responses in modulating clinical outcome is confirmed
by the temporal and regional association between neuroinflam-
mation and motoneuron injury in ALS mice (Beers et al., 2011b).
Indeed, initial weakness in the hindlimbs is associated with a Th1
proinflammatory infiltrate in the lumbar spinal cord, while a pro-
tective Th2 immune response is observed in the cervical cord and
may explain the delayed motor weakness in the forelimbs (Beers
et al., 2011b). Therefore, the inflammatory infiltrate observed in
ALS lesions appears not simply as a consequence of motoneu-
ron degeneration but is actively involved in the neurodegenerative
process. Tregs and Th2 lymphocytes assume the majority of the
neuroprotective functions of the immune system and targeting
their signaling pathways may be an attractive therapeutic strategy
in ALS.

THE NEUROTOXIC FUNCTION OF THE IMMUNE RESPONSE IN ALS
Cytotoxic T lymphocytes and NK cells are important effector cells
of the immune system that eliminate aberrant cells, classically
virus-infected cells, or tumorigenic cells (Zhang and Bevan, 2011;
Kaur et al., 2012). Interestingly, at symptomatic stage, an increased
number of CD8+ T and NK cells is observed in the blood and
spinal cord of ALS patients (Calvo et al., 2010; Rentzos et al., 2012).
Neurotoxic effects might be associated with a Th1-driven CTL
pro-inflammatory immune response. Accordingly, mutant SOD1
Th1 lymphocytes proliferate to a greater extend and produce more
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IFNγ during the rapidly progressing phase than Th1 lymphocytes
isolated during the slowly progressing phase.

Different death pathways induced by CD8+ CTL lympho-
cytes could potentially lead to motoneuron death in ALS.
CTL are antigen-specific effector cells that express the ligand
for Fas (FasL) and most potential CTL targets express Fas
at their surface. The activation of Fas (CD95) by its cog-
nate ligand FasL commits cells to a death program through
a caspase cascade (Peter et al., 2007). Interestingly, the acti-
vation of Fas triggers a death pathway in motoneurons that
appeared restricted to this cell type (Raoul et al., 1999, 2002, 2006;
Bernard-Marissal et al., 2012; Aebischer et al., 2013). Motoneu-
rons expressing ALS-linked SOD1 mutations showed an increased
susceptibility to Fas-mediated death through activation of a
Fas/NO amplification loop (Raoul et al., 2002, 2006). Accord-
ingly, mutant SOD1 mice with homozygous loss-of-function
FasL mutation present a reduced loss of motoneurons and a
prolonged life expectancy (Petri et al., 2006). It remains to be
determined whether CTL contribute to Fas-induced motoneu-
ron loss. Another cytotoxic mechanism of CTL-mediated killing
of target cells is the perforin-granzyme system. Upon recog-
nition of a target cell by CTL, cytotoxic granules containing
perforin and granzyme are released in the extracellular space.
Perforin is a pore forming protein allowing the entry in the tar-
get cells of granzyme serine proteases that subsequently induce
caspase activation and cell death (van Domselaar and Boven-
schen, 2011). It is noteworthy that increased levels of granzyme
A and B isoforms are increased in the serum of ALS patients
(Ilzecka, 2011). However, the functional significance of such
an increase remains to be determined. IFNγ, which is pro-
duced by CTL cells, can exert both immunostimulatory and
immunomodulatory effects during an immune response. IFNγ

produced by mutant astrocytes and motoneurons can elicit
a death program in motoneurons through the activation of
the lymphotoxin beta receptor (LT-βR) by its ligand LIGHT
(Aebischer et al., 2011, 2012). The genetic deletion of Light in
SOD1G93A mice suggests that the LIGHT pathway contributes
to the progression phase of the disease. Recently, the intracere-
broventicular infusion of neutralizing anti-IFNγ antibody has
been shown to delay the motor function decline in SOD1G93A

mice, suggesting that IFNγ contributes to ALS pathogenesis
(Otsmane et al., 2013). However, The precise contribution of
IFNγ in the neuroinflammatory response remains to be inves-
tigated.

An infiltration of NK cells has been reported in the spinal
cord of symptomatic ALS mice (Chiu et al., 2008). While the
role of NK cells in ALS remains unknown, several hypothetical
mechanisms can be raised about their pathogenic contribution.
Indeed, activated NK cells inhibit neurite outgrowth of cerebel-
lar neurons in a cell contact-dependent manner in vitro (Pool
et al., 2012). In sensory neurons, IL-2-activated NK cells have
a killing activity that requires the perforin-granzyme system
(Backstrom et al., 2000). Further, the production of IFNγ by acti-
vated NK cells might directly trigger motoneuron death through
the LIGHT/LT-βR pathway or potentiate a cytotoxic Th1/CTL
response via the combined action of other NK-related cytokines
such as IL-17 or IL-22 (Cella et al., 2010). NK cells thus represent an

interesting branch of the immunopathology that should be further
considered.

Several studies suggest that humoral immunity and
immunoglobulins could also contribute to the disease. Autoanti-
bodies to voltage-gated Ca2+ or K+ channels have been described
in ALS patients, which induce specific motoneuron alterations
both in vitro and in vivo after passive transfer in mice (Appel et al.,
1991; Engelhardt et al., 1995; Demestre et al., 2005; Pagani et al.,
2006; Nwosu et al., 2010). Abnormal levels of anti-Fas antibod-
ies, able to induce neuronal apoptosis in vitro, have been detected
in the serum of patients with ALS (Yi et al., 2000; Sengun and
Appel, 2003). C5a and other complement activation products
released after activation of the classical complement pathway by
antibodies are elevated in the CSF and spinal cord of ALS mice
and patients and specific inhibition of C5a receptor ameliorates
disease in SOD1G93A mice (Woodruff et al., 2008; Heurich et al.,
2011). Thus, both the innate and adaptive immune system appears
to have deleterious consequences on the survival and maintenance
of motoneurons in ALS (Figure 1).

EXPLOITING THE NEUROPROTECTIVE AND NEUROTOXIC
PROPERTIES OF NEUROIMMUNITY FOR THE DEVELOPMENT
OF THERAPEUTIC STRATEGIES
In light of the dynamic functional changes of microglia and
immune cells discussed above, attempts to develop therapeutic
strategies targeting neuroinflammation have only emphasized the
importance of understanding the temporal neuroinflammatory
events in ALS.

In pre-clinical mouse models, genetic deletion of the P2X7

receptor, which was previously described as being upregulated
in ALS microglia (D’Ambrosi et al., 2009), resulted in increased
motoneuron loss, increased microgliosis, and accelerated disease
progression, thus suggesting an unanticipated protective role for
the P2X7 receptor (Apolloni et al., 2013). Similarly, as mentioned
earlier, genetic depletion of functional T cells or CD4+ cells in
SOD1G93A mice lead to increased disease progression, decreased
survival as well as promoted production of pro-inflammatory
effectors (Beers et al., 2008). Finally, eliminating the expression of
galectin-3, a multifunctional immunomodulator that is increased
in ALS microglia (Norling et al., 2009), in SOD1G93A mice, also
results in aberrant microgliosis and increased disease progres-
sion (Lerman et al., 2012). These alterations (P2X7, immune cells
and galectin-3) were embryonically and permanently induced,
implying that at a certain time-point during the development of
the animal and the progression of the disease, these molecular
and cellular components are necessary for alleviating certain ALS
symptoms and pathological features.

At the clinical level, the failure of certain trials assessing
the influence of drugs that directly or indirectly impact neu-
roinflammation may be due to inappropriate knowledge of
the dynamic changes that occur within microglia and immune
cells. Indeed, drastic immunosuppressive strategies such as
cyclosporine, cyclophosphamide, intravenous immunoglobulin G
treatment, and total lymphoid irradiation did not provide any sig-
nificant benefits to ALS patients (Brown et al., 1986; Drachman
et al., 1994; Gourie-Devi et al., 1997). Similarly, drugs used to tar-
get specific neuroinflammatory effectors that showed promising
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FIGURE 1 | Potential mechanisms by which peripheral and central immunity might contribute to the neurodegenerative process in ALS. Both
neuroprotective and neurotoxic functions can be proposed for the involvement of microglia and lymphocytes in ALS pathogenesis.

results in pre-clinical models such as celecoxib and pioglitazone
(Drachman et al., 2002; Schutz et al., 2005), proved to be ineffec-
tive in improving motor functions and survival in ALS patients
(Cudkowicz et al., 2006; Dupuis et al., 2012).

The progressive spreading, extension and diffusion of the neu-
rodegenerative process that typically occurs in ALS patients may
result from the concurrent progressive invasion of the CNS by
glial cells and most importantly, the functional changes that
take place within these cells. Importantly, an incomplete under-
standing of said changes could lead to undesired and unexpected
results. Indeed, both minocycline and thalidomide (an analog of
lenalidomide) revealed serious harmful effects in patients dur-
ing a randomized placebo-controlled phase III trial and a single

arm, open label phase II study, respectively (Gordon et al., 2007;
Stommel et al., 2009).

As translational therapy targeting neuroinflammatory and
immunomodulatory effectors is rapidly progressing, it has become
clear that a step backward is presently required to better assess
the temporal functional changes that occur within glial and
immune cells in ALS pathogenesis. The cellular environment being
composed of both neuroprotective and neurotoxic functions, spe-
cific therapeutic windows may dictate the choice of drugs and
their pathogenic targets. Alternatively, a combinatory therapeutic
approach may be more efficient at modulating the contributions
of non-neuronal cells to ALS pathology. Thus, while neuroinflam-
mation undoubtedly plays a role in ALS pathogenesis, therapeutic

Frontiers in Cellular Neuroscience www.frontiersin.org November 2013 | Volume 7 | Article 214 | 6

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


“fncel-07-00214” — 2013/11/15 — 21:53 — page 7 — #7

Bowerman et al. Neuroimmunity dynamics in ALS

success will be reached in limiting the activation and amplifica-
tion of toxic glial and immune cells whilst preserving the cellular
subtypes that are beneficial to motoneuron survival.
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