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Depression is a common chronic psychiatric disorder that is also often co-morbid
with numerous neurological and immune diseases. Accumulating evidence indicates
that disturbances of neuroplasticity occur with depression, including reductions of
hippocampal neurogenesis and cortical synaptogenesis. Improper trophic support
stemming from stressor-induced reductions of growth factors, most notably brain derived
neurotrophic factor (BDNF), likely drives such aberrant neuroplasticity. We posit that
psychological and immune stressors can interact upon a vulnerable genetic background
to promote depression by disturbing BDNF and neuroplastic processes. Furthermore,
the chronic and commonly relapsing nature of depression is suggested to stem from
“faulty wiring” of emotional circuits driven by neuroplastic aberrations. The present review
considers depression in such terms and attempts to integrate the available evidence
indicating that the efficacy of current and “next wave” antidepressant treatments,
whether used alone or in combination, is at least partially tied to their ability to modulate
neuroplasticity. We particularly focus on the N-methyl-D-aspartate (NMDA) antagonist,
ketamine, which already has well documented rapid antidepressant effects, and the
trophic cytokine, erythropoietin (EPO), which we propose as a potential adjunctive
antidepressant agent.

Keywords: depression, relapse, ketamine, erythropoietin, combined treatment, neurogenesis, BDNF

This special issue entitled “Neuroimmune modulation for brain
plasticity and repair” essentially deals with how immune and
trophic factors differentially influence pathological brain sit-
uations, with a view towards informing the development of
novel disease-modifying therapies. In particular, whereas cer-
tain key growth factors such as brain-derived neurotrophic
factor (BDNF) have pro-neuroplastic and neuroprotective
actions, pro-inflammatory stimuli (particularly certain cytokines)
exert predominantly anti-neuroplastic and pro-death effects.
This relationship appears to hold across a range of cen-
tral conditions, including major depression, anxiety disorders,
Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple
sclerosis (MS), and traumatic brain injuries. Immune-based
strategies aimed at limiting the actions of pro-inflammatory
factors and/or stimulating those of key growth factors may
therefore hold particular promise for treating chronic brain
disease.

In this review article we focus specifically on recent advances
in the treatment of depressive illness, exploring in detail how
trophic mediators, modulators and mechanisms may be rele-
vant for antidepressant action. Depression is particularly ger-
mane to this special issue given not only its strong link with
trophic/inflammatory factors, but also the fact that the disorder is
highly co-morbid with most neurological diseases. Indeed, one-
third to one-half of all PD patients has major depression (Rojo
et al., 2003; Yamanishi et al., 2013), and a similar proportion of

AD and MS patients likewise suffers from the condition (Holtzer
et al., 2005; Siegert and Abernethy, 2005). It is very likely that
such high rates of co-morbid depressive symptomology are at
least partially attributable to the common pro-inflammatory state
evident in these brain conditions. In fact, during MS relapses
(in the most common relapsing-remitting form of the disease)
when pro-inflammatory levels are highest, depressive symptoms
also tend to peak (Kahl et al., 2002; Koutsouraki et al., 2011).
Moreover, in PD patients, retrospective studies indicated that
signs of depression were often evident years before the onset of
motor symptoms or PD diagnosis (Jacob et al., 2010). Hence,
depression in at least a subset of PD cases probably stems from
antecedent pathological changes (during the so-called prodro-
mal period) occurring most likely outside of the basal ganglia
motor circuitry (Litteljohn et al., 2010). There is in this regard
a growing recognition that, in the PD brain, Lewy body pathology
occurs early—and probably even starts—in brainstem and limbic
nuclei (Goedert et al., 2013). As is the case for senile plaques
in AD, these α-synuclein-containing inclusion bodies, which are
hallmark signs of PD, are almost universally associated with
robust microglial activation and elevated levels of inflammatory
cytokines (Reynolds et al., 2008; Phani et al., 2012). Thus, early-
occurring pro-inflammatory changes might be one common
mechanism accounting for co-morbid depressive and potentially
other neuropsychiatric symptoms across a range of neurological
disease states.
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It could be argued that an enhanced neuroinflammatory
tone stemming from primary disease pathology or possibly
even psychosocial stressor exposure might set the stage for
depression by causing alterations in the function or abun-
dance of key trophic factors implicated in normal neuroplas-
tic and pro-survival events (or by simply overtaxing them).
Indeed, depressive behaviors provoked by interferon-α (IFN-α)
and interleukin-1β (IL-1β) were associated with reduced BDNF
levels and reductions of hippocampal neurogenesis, and these
effects normalized upon administration of the IL-1β receptor
antagonist, IL-1ra (Anisman et al., 2008; Dedoni et al., 2012).
Similarly, treatment with the bacterial endotoxin, lipopolysac-
charide (LPS), or the viral mimic, polyinosinic-polycytidylic
acid (polyI:C), augmented central (hippocampus, frontal cortex)
and peripheral pro-inflammatory cytokine concentrations whilst
reducing BDNF levels, and these effects coincided with pro-
nounced memory deficits (Kranjac et al., 2012) and depressive-
like behaviors (Gibney et al., 2013). In fact, infection with live
influenza virus induced changes analogous to those provoked
by the LPS and polyI:C challenges (Jurgens et al., 2012), and
a recent study by Ji et al. (2011) likewise implicated disturbed
pro-inflammatory cytokine-neurotrophin crosstalk in the cog-
nitive impairment following chronic amyloid-β treatment in
mice.

Secondary to or at least facilitated by such inflammatory-
driven perturbations of trophic signaling, inadequate or improper
neural connections could conceivably be recruited and engaged
to deal with the “wear and tear” of life’s stressors. If one
takes the point of view that depression stems, at least in
part, from faulty wiring of emotional and fear sensitive cir-
cuitry within the brain, then it stands to reason that find-
ing the means to “re-wire” such circuitry and maintain these
changes is the key to addressing the fundamental biologi-
cal basis for the condition. Hence, using cognitive behavioral
and other psychotherapeutic methods in addition to phar-
macological treatments that directly target biological processes
linked to faulty neural wiring may be essential for adequate
treatment.

Consistent with the theme of this special issue, it is our con-
tention that immune- and- stressor-induced changes in neuro-
plasticity, involving adult neurogenesis, synaptogenesis, dendritic
remodeling, and trophic signaling, are ultimately responsible for
the biological manifestations of the “faulty wiring” posited to
occur in depression. The present review will target two key aspects
of this hypothesis. Firstly, we will review the data in favor of
a neuroplastic-trophic hypothesis for depression and integrate
them with new evidence indicating that traditional monoamine
acting drugs act through neuroplastic processes to provoke ther-
apeutic effects. Secondly, we explore in detail novel emerging
treatments for depression that may more directly target neuro-
plastic circuits and act to at least temporarily “re-wire” neural
circuits at the systems levels. As an example, emerging evidence
suggests that certain agents with novel antidepressant proper-
ties, such as ketamine, might modify the connectivity of diverse
cortical circuitry involved in the generation of consciousness,
sense of self and potentially rumination. We will also introduce
the possibility that certain immune cytokines that have trophic

properties [e.g., erythropoietin (EPO)] might contribute novel
antidepressant properties consistent with a neuroplastic view of
depression.

NEUROPLASTICITY AND DEPRESSION: A ROLE FOR
EXISTING ANTIDEPRESSANTS
NEUROPLASTICITY AND RUMINATION
Neuroplastic changes at the molecular and cellular level must
eventually come to reverberate through neural circuits at the
systems level. Indeed, meaningful changes in behavior, thought
patterns and emotions are complex and require concerted com-
munication between multiple brain regions. In this regard, the
recent breakthrough in our understanding of the basic neuronal
circuitry that gives rise to our “default” or “resting state” has
caused a substantial paradigm shift in how we view consciousness,
self-referential thinking (introspection) and ruminative processes.
The so-called default mode network (DMN) comprises a series of
interconnected cortical brain regions that are highly active during
restful or un-challenged states (e.g., insula, cingulate, frontal
and parietal regions). However, during goal- and- task-oriented
activity, when specific thalamo-cortical pathways are engaged to
appropriately deal with the task at hand, the DMN regions de-
activate or reduce their metabolic activity (Raichle et al., 2001).
Interestingly, this task-associated shifting between DMN rest state
and alternative activation pathways appears to be disrupted in
depressed patients (Sheline et al., 2009; Sliz and Hayley, 2012).
Specifically, such individuals fail to appropriately down-regulate
DMN activity and, hence, get “stuck” in self-focused states and
have difficulty smoothly shifting to the required task. This is likely
the neural machinery that contributes to the increased negative
ruminations evident in depression.

It is possible that disturbances of neuroplasticity within
DMN brain regions could contribute to faulty reverberations
of this circuit, which with repeated activation would only serve
to strengthen negative ruminations in depressed individuals.
However, a very recent study offers hope that antidepressant
drug treatments might target the DMN to help “re-wire” faulty
circuitry. Specifically, Scheidegger et al. (2012) reported that
ketamine treatment reduced DMN metabolic activity and dimin-
ished DMN connectivity within the cingulate and prefrontal
cortices, albeit in healthy non-depressed participants. One could
easily imagine that such an effect of ketamine and potentially
other antidepressant drugs could help give depressed patients
the needed “push” to move them out of a current negative
ruminative state, and enable them to derive benefit from com-
pleting external tasks or otherwise focusing on or engaging with
positive environmental stimuli. Ultimately, such positive interac-
tions would be expected to help foster or strengthen appropriate
emotional neural connections and promote synaptogenesis (as
has been reported with ketamine treatment) in brain regions
adversely affected by the stress and negative thinking associated
with depression.

The importance of rumination in the depressive response must
not be underestimated, and the sad fact is that excessive rumina-
tion over one’s negative plight and ways to “fix” the situation actu-
ally likely strengthens the very depressiogenic pathways that give
rise in the first place to the low mood and host of other depressive
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symptoms. Hence, a better understanding of how neuroplastic
changes at a cellular level translate into reverberations of systems
that influence and/or underpin rumination is key to finding more
effective and rapid means of ameliorating depression, as well as
its co-morbid anxiety symptoms. Although cognitive behavioral
techniques for learning how to break out of ruminative cycles
are undoubtedly of substantial importance, when in the throes
of depression such strategies may seem entirely untenable and are
therefore perhaps more useful during continuation and mainte-
nance stages to prevent relapse once the illness is more under
control. To this end, ketamine and the development of similar
rapid neuroplastic modulator drugs could be just the solution to
the ruminative crisis.

NEUROPLASTICITY, DEPRESSION AND RELAPSE
An important but often overlooked aspect of depression is the
high degree of relapse that occurs even in individuals that initially
responded well to antidepressant drugs. As such, some enduring
neural changes might underlie the presumed pathological brain
circuits. In this regard, considerable evidence has supported the
contention that protracted disturbances of neuroplasticity might
occur in depression. In particular, major depression is associated
with both structural and functional changes within discrete brain
regions, including the hippocampus, amygdala and prefrontal
cortex (PFC; Drevets et al., 2008; Sacher et al., 2012). Particular
attention has focused on the reduced hippocampal volume often
observed in patients diagnosed with major depression, and post-
mortem as well as brain imaging analyses indicated that the extent
of the hippocampal reduction was related to illness duration
(Bremner et al., 2000; MacQueen et al., 2003; Colla et al., 2007).
Recent evidence has highlighted the possibility that persistent
alterations of neuroplasticity result in faulty communication
between anterior cingulate cortex (ACC), PFC, hippocampal, and
amygdaloid regions–thus giving rise to disturbed processing of
emotionally salient information (Schlösser et al., 2008; Carballedo
et al., 2011).

A particularly important point to consider is the fact that the
reductions in regional brain volume that are evident in depression
can be effectively reversed with successful treatment to remission
(Banasr et al., 2011; Arnone et al., 2012). Thus, structural anoma-
lies in depression need not necessarily be permanent, underscor-
ing the importance of early intervention to stave off enduring
and potentially even progressive brain damage. The possibility has
been entertained that reductions of neurogenesis and their cor-
rection with antidepressant treatment might be one mechanism
accounting for hippocampal volume variations (Malberg, 2004;
Boldrini et al., 2009). Of course, the relatively low number of new
neurogenic cells normally produced in adulthood suggests that
this is not the only process involved [the exciting recent discovery
by Spalding et al. (2013) that a full third of hippocampal neurons
are subject to exchange across the human lifespan strongly hints,
however, at an important functional role of adult neurogenesis in
health and disease]. Other findings have indicated that changes
in glial cell density and the complexity of dendritic arbors might
also account for volumetric changes in depression (Tata and
Anderson, 2010; Gittins and Harrison, 2011). Indeed, reduc-
tions of cortical and/or hippocampal astrocytes were reported in

depressed patients (Rajkowska et al., 1999; Rajkowska, 2000, as
well as in stressor-based animal models of the disease (Banasr
et al., 2010; Liu et al., 2011). Stressors also have well known
inhibitory actions on dendritic branching (e.g., Son et al., 2012),
raising the possibility that grey matter shrinkage may be related at
least in part to the considerable stress experienced by depressed
patients. In fact, Hercher et al. (2010) reported that depressed
patients who committed suicide displayed reduced dendritic
length of pyramidal neurons in the ACC.

These different scenarios are not mutually exclusive; whatever
the case, it is still unclear as to whether regional brain volume
reductions are causally implicated in depression or arise from
some secondary aspect of the illness. At the very least, grey and/or
white matter volumetric changes provide a useful biomarker for
the structural state of the brain and potentially the duration of
depressive illness (Cheng et al., 2010; Arnone et al., 2012). Further,
the degree of volume reduction could possibly provide informa-
tion regarding the likelihood of positive treatment responses and,
conversely, the risk of relapse. Future studies are needed to assess
if and how such structural changes map onto the probability
of relapse, especially since it is easy to envision that volumetric
reductions could give rise to faulty processing of emotional stim-
uli, as well as potentially contribute to ruminations.

In addition to reductions of neuroplasticity, it should be
underscored that increased neuroplasticity could, in certain cases,
contribute to depressive symptomology and relapse. This is anal-
ogous to the case of addictive behaviors, wherein “negative”
plasticity represents a re-wiring of hedonic and craving pathways.
This point is perhaps best illustrated in the case of the amyg-
dala, which displays increased dendritic arborization in response
to stressors rather than the reductions observed in the PFC
and hippocampus (Vyas et al., 2002). Stressors were likewise
reported to increase BDNF levels in the amygdala whilst reducing
them in the hippocampus (Lakshminarasimhan and Chattarji,
2012). Similarly, while BDNF had antidepressant-like effects when
administered directly into the hippocampus (Shirayama et al.,
2002; Ye et al., 2011), it actually provoked depressive-like behav-
iors when infused into the ventral tegmental area (VTA) (the
source of dopaminergic innervation of the PFC and limbic nuclei)
(Eisch et al., 2003). Enhanced plasticity of amygdaloid nuclei
could increase vulnerability to depression by virtue of augmented
“fear” or threat processing. In fact, BDNF signaling is known
to be required for amygdala-dependent fear learning in rodents
(Rattiner et al., 2004; Ou and Gean, 2006). This would be espe-
cially important in the context of relapse given that depressed
individuals in remission often display heightened vigilance and
arousal; even modest stressors could engender small relapses
that if not immediately dealt with could progress to full-fledged
relapse. It may be that enhanced negative plasticity persists in
the VTA or amygdala among some (or all) individuals with a
history of depression, and underlies these individuals’ heightened
vulnerability to relapse.

NEUROTROPHIC FACTORS, DEPRESSION AND ANTIDEPRESSANT
RESPONSES
Several reports have indicated that platelet and serum BDNF
protein concentrations are suppressed in depressed subjects, with
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levels of the growth factor correlating with symptom severity
(Pandey et al., 2010; Yoshida et al., 2012). BDNF mRNA expres-
sion was similarly decreased in leukocytes of depressed patients,
and treatment with the selective serotonin reuptake inhibitor
(SSRI), escitalopram, normalized this deficit (Cattaneo et al.,
2010). Moreover, in clinical populations, patient improvement
coincided with plasma and serum BDNF returning to normal
levels (Piccinni et al., 2008; Teixeira et al., 2010). Interestingly,
BDNF in circulating lymphocytes was even suggested as a possible
biomarker to predict antidepressant treatment response (ven-
lafaxine) (Rojas et al., 2011).

Animal models have extended the human findings to include
impaired hippocampal neurogenesis and aberrant neuronal
morphology in the discussion of neurotrophic and neuroplastic
mechanisms in depression. Indeed, impaired hippocampal neuro-
genesis was evident in rodents exposed to a chronic corticosterone
or stressor regimen (McEwen, 2005; Diniz et al., 2013), and
hippocampal implantation of cortisol pellets among vervet mon-
keys induced irregular cell layers, soma shrinkage and dendritic
atrophy (Sapolsky et al., 1990). Likewise, in subordinate male tree
shrews, psychosocial stress caused a reduction in the complexity
of apical dendrites (both dendrite length and number of branch
points) on pyramidal hippocampal and PFC neurons (Magariños
et al., 1996). Importantly, stressor exposure in animals (using a
wide variety of stressor preparations) has been routinely found
to alter central BDNF protein and/or mRNA levels, and these
BDNF changes are considered to be instrumental for the negative
effects of stressors on neurogenesis and neuronal morphology and
cytoarchitecture (Masi and Brovedani, 2011).

Besides their potentiating effects on circulating BDNF, sev-
eral clinically beneficial therapies, including SSRIs, tricyclics, and
electroconvulsive therapy (ECT), were reported to augment hip-
pocampal BDNF expression (Castrén et al., 2007). In fact, it
would appear that the vast majority of known effective antide-
pressant treatments stimulate BDNF and affect neurogenesis. For
instance, all SSRIs and tricyclic antidepressants, as well as new
alternate treatments such as vagal stimulation and deep brain
stimulation (DBS), positively influence hippocampal neurogen-
esis (Castrén and Rantamäki, 2010; Encinas et al., 2011; Yan et al.,
2011). Similarly, aerobic exercise and enriched environments typ-
ically increase hippocampal BDNF, and their antidepressant-like
effects in the context of a stressor depend upon intact neurogene-
sis (Ernst et al., 2006; Schloesser et al., 2010). Furthermore, direct
brain infusion of BDNF (considered a neurotrophic cytokine
itself) promoted sprouting of central serotonin (5-HT) neurons
(Mamounas et al., 1995) and, when administered directly into
the hippocampus, the neurotrophin produced antidepressant-like
behavioral effects (Shirayama et al., 2002).

Despite the rather strong evidence linking antidepressant drug
responses to BDNF, recent work has uncovered several notable
exceptions. For instance, the tricyclic desipramine did not affect
PFC or hippocampal BDNF, and escitalopram actually decreased
BDNF levels in these brain regions (Jacobsen and Mørk, 2004).
Further, while one week of escitalopram increased BDNF mRNA,
three weeks led to a reduction of transcript levels in the hip-
pocampus (Alboni et al., 2010). These findings clearly contrast
with other studies demonstrating antidepressant drug-induced

elevations of BDNF both in the basal state and in response to
chronic stress (Balu et al., 2008; Zhang et al., 2010). Some of
the discrepancies between findings in BDNF studies might be
related to the fact that the protein is enzymatically processed
in such a complex manner. Indeed, there are believed to be
nine different promoters controlling BDNF transcription and
it has been predicted that there may be 22 different BDNF
mRNA isoforms (Zheng et al., 2012). There is also evidence to
suggest that BDNF protein and mRNA follow distinct temporal
patterns of induction upon antidepressant administration. For
instance, Musazzi et al. (2009) showed that BDNF protein levels
were increased in the hippocampus and PFC after 1–2 weeks of
reboxetine treatment, whereas the BDNF mRNA elevation only
became apparent after 3 weeks. A further complicating issue is
the fact that typical antidepressant treatments appear unable to
influence BDNF release in an activity-dependent manner. This
could help explain the characteristic time lag in therapeutic action
of many of these drugs, given that rapid antidepressant actions
have been linked to a rapid BDNF response (Duman et al., 2012).
Ultimately, differences in the timing of exposure and the nature
of the antidepressant or other eliciting stimulus likely uniquely
influence the post-translational processing of BDNF, as well as the
transcriptional machinery recruited to the BDNF promoter and
other regulatory regions.

Although BDNF has undoubtedly received the most attention,
emerging and recent evidence indicates that other growth factors,
most notably glial cell-line derived neurotrophic factor (GDNF)
(a member of the transforming growth factor beta family) is also
likely involved in depression. Indeed, GDNF protein and mRNA
levels were diminished in the blood of depressed patients (espe-
cially in later life) (Takebayashi et al., 2006; Otsuki et al., 2008;
Diniz et al., 2012; Tseng et al., 2013), and successful antidepressant
treatment (e.g., with SSRIs, ECT) caused a return to normal
levels (Zhang et al., 2008, 2009). Yet, Wang et al. (2011a) found
that higher levels of plasma GDNF correlated with cognitive
impairment in late-onset depression, and Michel et al. (2008)
reported finding increased GDNF concentrations in the parietal
cortex among autopsied depressed patients. Thus, similar to the
case of BDNF, it appears that the relationship between GDNF
and depression may be more nuanced and complex than perhaps
initially thought, and compensatory processes are likely involved.

Nonetheless, in rodents, antidepressants were found to not
only normalize stressor-induced reductions in circulating GDNF
(Angelucci et al., 2003) but also to induce the neurotrophin’s
synthesis and release from cultured glioma cells and astrocytes
(Mercier et al., 2004; Golan et al., 2011; Di Benedetto et al., 2012).
Similarly, hippocampal GDNF levels were markedly diminished
in rats exposed to chronic stress, and clomipramine treatment
(a tricyclic agent) reversed this deficit whilst ameliorating the
stressor-induced behavioral symptoms (Liu et al., 2012). Interest-
ingly, Uchida et al. (2011) recently reported that chronic stress
caused changes in histone modification and DNA methylation
of the GDNF gene promoter within the mouse ventral striatum.
What’s more, these epigenetic modifications proved to be critical
in determining susceptibility (or resistance) to the depressive-
and- anxiety-like behavioral effects of the stressor (Uchida et al.,
2011). In light of these findings and given the critical role ascribed
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to GDNF in the development and function of hippocampal
cells, it is possible that alterations of GDNF are relevant for the
“plasticity deficit” that appears in depression. Indeed, continuous
infusion of GDNF into the striatum markedly increased cell
proliferation and neurogenesis in the adult canine hippocam-
pal dentate gyrus (Chen et al., 2005). And more recently, Kohl
et al. (2012) showed that chronic fluoxetine treatment robustly
stimulated adult hippocampal neurogenesis among α-synculein-
overexpressing mice (which display profound basal impairments
in neurogenesis) via the induction of hippocampal BDNF and
GDNF.

POLY-TREATMENT APPROACHES IN DEPRESSION
It has become clear that poly-drug treatment strategies often lead
to a greater likelihood of remission and reduce the risk of depres-
sive relapse (Blier et al., 2010; El Mansari et al., 2010). This is
not altogether surprising given the wide spectrum of physical and
emotional symptoms typically experienced by patients. Indeed,
the neurovegetative symptoms of depression, which include dis-
turbed sleep and feeding, as well as agitation and psychomotor
retardation, are clearly rooted in neural pathways that are distinct
from those subserving the cognitive and emotional aspects of the
disease (e.g., melancholia, anhedonia). A polypharmacy approach
in depression thus allows for the tailoring of treatment to the indi-
vidual (i.e., based on the specific symptom clusters exhibited by
each patient). For instance, augmentation of SSRI and serotonin-
norepinephrine reuptake inhibitor (SNRI) treatments with low-
dose atypical antipsychotics (e.g., risperidone, aripiprazole) has
been shown to not only boost the basic antidepressant response
on mood (especially among treatment-resistant and/or suicidal
patients) but also to greatly diminish anxiety and neurovegetative
symptoms (Reeves et al., 2008; Trivedi et al., 2008; Blier and
Blondeau, 2011; Chen et al., 2011; Owenby et al., 2011). At
the same time, combining SSRIs with atypical antidepressants
such as mirtazapine also greatly alleviates certain neurovegatative
features, particularly disturbed sleep (Holm and Markham, 1999;
Blier et al., 2009; Jindal, 2009). Ultimately, the heterogeneity in
both symptom profile and response profile to the various SSRIs
probably stems from the complexity of genetic backgrounds in
depression, as well as wide variation in depressed patients’ history
of prior stress.

Besides having the advantage of affecting—at times
synergistically—multiple different mood-relevant neurotrans-
mitter systems (e.g., 5-HT, norepinephrine (NE) and dopamine
(DA); El Mansari et al., 2010; Masana et al., 2012), evidence is
beginning to suggest that multi-drug treatments may induce
more robust, rapid and/or long-lasting neuroplastic changes
than single-drug treatments. For instance, imipramine-plus-
metyrapone (a glucocorticoid synthesis inhibitor), which showed
therapeutic promise in animal models and a treatment-resistant
human sample, caused a synergistic increase in BDNF mRNA
expression within rat hippocampus and cortex (Rogóz and
Legutko, 2005). More recently, augmentation of fluoxetine
with the 5-HT2A receptor antagonist, ketanserin, induced a
more potent increase of hippocampal BDNF mRNA and β-
catenin protein (which is important for cellular proliferation
and differentiation during development and repair) than either

drug alone, and these effects coincided with diminished forced
swim immobility (Pilar-Cuéllar et al., 2012). Similarly, Marchetti
et al. (2010) demonstrated that subchronic combinatorial
imipramine and rolipram (a phosphodiesterase type 4 inhibitor)
synergistically reduced immobility in the forced swim test
(FST) and potentiated activity-dependent transcription in the
hippocampus. Moreover, the combination treatment augmented
glutamatergic transmission in hippocampal CA1 pyramidal
neurons and increased the dendritic spine density of these cells;
long-term potentiation at CA1 synapses was also enhanced
Marchetti et al. (2010). And finally, using a chronic stress rat
model of depression, Xu et al. (2006) revealed that the atypical
antipsychotic, quetiapine, and the SNRI, venlafaxine, acted
synergistically and at relatively low doses to prevent the stressor-
induced reductions in hippocampal neurogenesis and BDNF
expression. Thus, it is likely that the heightened therapeutic
response engendered by multi-drug preparations stems, at
least in part, from the additive and synergistic effects of these
treatments on a range of cellular and molecular neuroplastic
processes.

Evidence is also beginning to suggest that atypical and second-
generation antidepressants, aside from being useful as “add-
ons” in augmentation therapy (or as later-line but sometimes
even first-line monotherapies), could be helpful in alleviating
some of the side effects induced by traditional antidepressant
medicines [see Bauer et al. (2013) for a good recent review of
the major side effects associated with typical and newer gen-
eration antidepressants]. For instance, Ozmenler et al. (2008)
reported that mirtazapine augmentation in remitted depressed
patients with SSRI treatment-emergent sexual dysfunction led to
a significant reduction of depressive symptoms and, in nearly
half the cases, completely ameliorated the SSRI-induced sexual
problems. More generally, it was suggested that combination
antidepressant therapy might allow for lower doses of the separate
component drugs to be used (relative to monotherapy), which
could improve patient tolerability and adherence to treatment
(Goodwin et al., 2009). Yet, it should be underscored that many
of the prospective and accepted adjunctive agents, particularly the
atypical antipsychotics, are themselves associated with potentially
severe adverse effects (Nelson and Papakostas, 2009; Bauer et al.,
2013). Moreover, a polypharmacy approach to treating depression
is necessarily associated with an increased risk of drug-drug
interactions; this is especially so among individuals already taking
multiple medications—older persons and HIV-infected patients
receiving antiretroviral therapy, for instance (Hill and Lee, 2013).

Another strategy for treating depression that has garnered
substantial clinical and research interest is the combining of
pharmacological and psychotherapeutic modalities (usually inter-
personal or cognitive behavioral therapy; CBT). Over the years
there have been numerous studies supporting the clinical effec-
tiveness of such an approach, especially in cases of chronic major
depression (de Maat et al., 2007). Recently for instance, Köhler
et al. (2013) reported that CBT augmentation markedly improved
clinical outcomes among acutely depressed patients receiving
pharmacological treatment in a naturalistic psychiatric setting.
Moreover, a large-scale randomized controlled trial of the effec-
tiveness of CBT augmentation to pharmacotherapy in treatment-
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resistant depression yielded strikingly positive results (Wiles et al.,
2013). Data pointing to a beneficial effect of antidepressants-
plus-psychotherapy in the initiation and/or continuation phases
of treatment likewise exist for child and adolescent populations
(Kennard et al., 2008; Lynch et al., 2011), as well as for depressed
geriatric patients (Hollon et al., 2005). It is somewhat surprising
then that several recent meta-analyses failed to provide com-
pelling evidence (either sparse or none at all) in support of com-
bined psychotherapy and pharmacotherapy in depression (Imel
et al., 2008; Cox et al., 2012; Cuijpers et al., 2012; Jakobsen et al.,
2012; von Wolff et al., 2012). However, it should be noted that
most if not all of these meta-analyses were limited by the small
number of published randomized controlled trials meeting inclu-
sion criteria (limited data availability), as well as the relatively
small sample sizes used in the included reports (limited power).

Importantly, just as pharmacological treatments have been
shown to normalize regional brain functional abnormalities in
depression (e.g., Mayberg et al., 2000; Heller et al., 2013), so
too have several of the more common psychological therapies
used for treating the disease (e.g., CBT). Even long-term psycho-
dynamic interventions were linked to persistent neurobiological
changes in depressed patients (Buchheim et al., 2012). In a recent
systematic review on the subject, Quidé et al. (2012) set forth
compelling evidence that both pharmacological and psychological
treatments normalize functional (and in the former, structural
too) alterations of a wide-ranging “fear network” in the depressed
and anxious brain, and that these common ends are most likely
achieved through divergent means. Specifically, whereas antide-
pressant drugs tend to decrease limbic hyperactivity (and, con-
sequently, emotional reactivity), “talk therapy” appears to work
by strengthening, building and restoring frontal cortex capacity
(i.e., for self-referential processing and emotional regulation),
particularly in the ACC and medial PFC (Ritchey et al., 2011;
Quidé et al., 2012; Yoshimura et al., 2013). Clearly, distinct yet
convergent neuroplastic mechanisms are likely involved in the
antidepressant action of pharmacological (primarily “bottom-
up”) and psychological (more “top-down”) therapies, and there
is a potential, therefore, for additive or even synergistic cross-
modal antidepressant effects. This could be relevant not only for
treatment initiation but also relapse prevention and maintenance
of the antidepressant response over time.

Although a considerable degree of success has been had in
recent years using combinatorial treatments of existing antide-
pressant treatments, there remains a desperate need for the
development of novel pharmacological, genetic and other agents.
This is especially fuelled by the significant number of treatment-
resistant patients (only some of whom respond to combination
therapy with extant treatments), as well as the recent surge in
experimental and clinical studies demonstrating that, besides
monoaminergic and hormonal alterations, reductions in trophic
factors (particularly BDNF) together with fundamental distur-
bances in various elements of neuroplasticity might contribute
to the development and evolution of depression. To this end, we
now turn our attention to emerging evidence demonstrating the
potential antidepressant efficacy of two novel agents, ketamine
and EPO—both of which appear to greatly affect neuroplastic
processes.

NOVEL ANTIDEPRESSANT TREATMENTS TO TARGET
NEUROPLASTICITY FROM A CELLULAR TO SYSTEMS LEVEL:
A FOCUS ON KETAMINE AND ERYTHROPOIETIN
The search for novel antidepressants with targets outside of
the monoaminergic pathways has gained momentum in recent
years. Indeed, evidence has begun to reveal that aside from
the typical 5-HT, NE and DA circuits, multiple other systems
appear to be affected in depression. There is, for instance,
a growing recognition that stress neuropeptide systems, most
notably the corticotropin-releasing hormone (CRH) signaling
network, are dysregulated in depression, and recent attempts have
been made to develop antidepressant agents that antagonize the
actions of CRH and its related peptides (Holsboer and Ising,
2010). Non-pharmacological depression treatments that influ-
ence neuroplasticity have also begun to emerge; these include DBS
(as a late-line option in severe cases), transmagnetic stimulation
(TMS) and vagal stimulation. Of course, ECT has long been con-
sidered a potent inducer of neuroplasticity (though fraught with
potentially serious side effects), and psychotherapeutic modal-
ities too are beginning to be conceptualized in terms of their
neuroplastic potential (Beauregard, 2009). The substantial range
of physiological, biochemical and psychological targets that one
would expect these different treatments to impact speaks to the
complexity of pathways and mechanisms that are likely affected
in depression.

KETAMINE AND DEPRESSION
Exciting emerging evidence indicates that the non-competitive
N-methyl-D-aspartate (NMDA) glutamate receptor antagonist,
ketamine, which is widely used for its anesthetic and analgesic
properties, shows promise as a novel treatment for depres-
sion. Indeed, a single injection of very low-dose (subanesthetic)
ketamine was found not only to promote fast-acting (within
hours) antidepressant and anti-suicidal effects but also to be
effective in heretofore treatment-resistant patients (Berman et al.,
2000; Zarate et al., 2006; Liebrenz et al., 2007; Price et al., 2009;
DiazGranados et al., 2010; Ibrahim et al., 2011). Furthermore,
the antidepressant effects following a single ketamine dose have
been reported to persist for several days to even weeks (Correll
and Futter, 2006; Liebrenz et al., 2007; Irwin and Iglewicz, 2010;
Mathew et al., 2010). Hence, ketamine is particularly unique in
its clinical profile, making it of potentially enormous therapeu-
tic significance. However, the safety of long-term treatment in
depressed patients has yet to be fully evaluated, although there
are indications that chronic low-dose ketamine may be tolerable,
feasible and effective (Liebrenz et al., 2009; aan het Rot et al.,
2010; Messer et al., 2010; Murrough et al., 2013). Moreover,
despite some important recent advances in our understanding
of the various molecular and cellular sequelae following low-
dose ketamine treatment (see below), the precise mechanisms
underlying ketamine’s antidepressant effects are not fully known.
Emerging and future studies examining ketamine’s mode(s) of
action therefore hold the potential to shed much-needed new
light on the pathological underpinnings of depression. This,
in turn, would be expected to lead to more specific therapeu-
tic targets and the development of safer and more effective
drugs.
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The rapid antidepressant response following ketamine treat-
ment, which contrasts sharply with the long antidepressant time
lag of several weeks-to-months that is characteristic of traditional
monoamine acting drugs (e.g., SSRIs), may at least partially be
related to the drug’s direct neuronal effects in the PFC and
hippocampus (Duman et al., 2012). Consistently, we recently
found that a single intraperitoneal injection of racemic ketamine
(5 mg/kg), which comprises equal (50:50) concentrations of the
(R)- and (S)-enantiomers of ketamine (the latter is roughly
4 times more active, possesses better pharmacokinetic properties
and is potentially more tolerable than the former) (Paul et al.,
2009; Mion and Villevieille, 2013), altered the levels both of 5-
HT and its metabolite, 5-HIAA, within the PFC (Clarke and
Hayley, unpublished findings). Interestingly, although ketamine
increased PFC 5-HT concentrations in the basal state, it prevented
the changes in serotonergic neurotransmission following acute
restraint stress (Clarke and Hayley, unpublished findings). Others
have likewise reported that the antidepressant-like effects of
ketamine were dependent upon an intact 5-HT system. Indeed, 5-
HT depletion using para-chlorophenylalanine blocked the ability
of a single injection of ketamine to reduce immobility in a FST
(Gigliucci et al., 2013). However, the nature of the behavioral
effects of ketamine and the extent of 5-HT involvement in them
may vary with a number of factors, including dose, number of
treatments and time of testing relative to drug administration. For
example, Chindo et al. (2012) found that forced swim immobility
was actually enhanced (and not reduced) 24 h after the final
of five daily ketamine injections (30 mg/kg/day). Moreover, the
5-HT acting antidepressant, paroxetine, as well as the atypical
antipsychotics, clozapine and risperidone, reversed the ketamine-
enhanced immobility (Chindo et al., 2012). Although temporal
variation in 5-HT functioning could account for the observed
differences in forced swim immobility following ketamine treat-
ment, recruitment over time of alternate neurotransmitter sys-
tems might also play a role. Indeed, chronic ketamine markedly
up-regulated midbrain DA synthesis and levels, together with
midbrain BDNF concentrations (Tan et al., 2012). In fact, not
only can ketamine influence brain glutamatergic and mon-
aminergic systems (serotonin, DA and NE), but ketamine is
also capable of modulating the activity of GABAergic, cholin-
ergic, opioidergic, and even purinergic circuits—albeit at doses
considerably higher than those typically employed in the clin-
ical and preclinical depression studies (Mion and Villevieille,
2013).

In addition to alterations of classic neurotransmitter sys-
tems, much attention has been afforded the possibility that
rapid BDNF changes contribute importantly to the fast-acting
antidepressant effects of ketamine (see Figure 1). In this regard,
Autry et al. (2011) reported that NMDA receptor blockade by
ketamine or MK801 (dizocilpine), which is similar in action to
ketamine but who’s neurotoxic consequences preclude its use
clinically, rapidly increased BDNF levels in mouse hippocampus
secondary to the deactivation of eukaryotic elongation factor-
2 (eEF2) kinase (which normally suppresses the translation of
BDNF by phosphorylating eEF2). Furthermore, the swift rise
in hippocampal BDNF coincided with reduced immobility in
the FST, and conditional BDNF knockout completely abrogated

FIGURE 1 | Simplified diagram of the routes through which EPO or

ketamine might affect glia and neurons to promote

anti-depressant-like consequences. EPO can act upon astrocytes and
neurons by (1) inducing the activation of JAK/STAT and PI3K/Akt signal
transduction pathways or (3) promoting MAP kinase-MEK signaling,
culminating in extracellular signal-regulated kinase (ERK) phosphorylation
and the recruitment of cyclic adenosine monophosphate (cAMP) response
element-binding protein (CREB). Engagement of these EPO/EPOR signaling
pathways effectively biases the activity of pro- and anti-apoptotic cascades
towards the latter, and increases the synthesis and release of BDNF from
activated astrocytes and neurons. Signaling in neurons through its TrkB
receptors (and the multiple associated signal transduction cascades), BDNF
can promote a wide range of neuroplastic changes (e.g., enhanced
synthesis of synaptic proteins and neurotrophins) that ultimately favor cell
survival. In parallel, EPO can exert anti-inflammatory actions by (2) inhibiting
the liberation of nuclear factor-κB (NF-κB) from its inhibitory binding partner,
IkB, in microglial cells. Thus, pro-inflammatory cytokine release (e.g., tumor
necrosis factor-α (TNF-α), IL-1β and IFN-γ ), as well as prostaglandin (PG)
and reactive oxygen species (ROS) production via COX-2 and NADPH
oxidase enzymes is inhibited. EPO can also cross the BBB to directly
interact with neuronal receptors. Ketamine was similarly found to be
capable of (2) attenuating the activation of microglia and astrocytes, as well
as a variety of peripheral immune cells; the end result, once again, is an
overall dampening of potentially neurodestructive pro-inflammatory
responses. Nonetheless, a majority of the studies investigating the
antidepressant-like action of ketamine have focused on the downstream
molecular sequelae of the drug’s NMDA glutamate receptor antagonism (4).
Considered to be of paramount importance in this regard are the
up-regulation of BDNF (e.g., via inhibition of eEF2 kinase) and the activation
of synaptogenic signaling pathways (i.e., mTOR/p70S6 kinase) (see text for
additional details).

ketamine’s (as well as MK801’s) antidepressant-like behavioral
effects (Autry et al., 2011). Similarly, the antidepressant effi-
cacy of ketamine was reduced among depressed patients carry-
ing the loss-of-function BDNF Met66 alleles (compared to the
more common Val/Val genotype), as well as in stressed rodents
bearing the human BDNF Val66Met polymorphism (Laje et al.,
2012; Liu et al., 2012). And finally, treatments that enhanced
the antidepressant effects of ketamine (e.g., the analgesic agent,
tramadol) were also found to rapidly (within 1 h of treatment)
up-regulate hippocampal BDNF, along with its TrkB receptor
(Yang et al., 2012). Importantly, then, variation in the speed of
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the neuroplastic responses induced by different treatment modal-
ities may be one potential mechanism accounting for the stark
temporal differences in the antidepressant action of ketamine
and more conventional antidepressant agents. Indeed, whereas
ketamine elevated hippocampal BDNF concentrations within
30 min of administration (Autry et al., 2011), SSRI and tricyclic
antidepressants increased central BDNF levels only after several
days or weeks of treatment (Martínez-Turrillas et al., 2005; Larsen
et al., 2008).

Interestingly, ketamine was also observed to induce robust
alterations of PFC synapse structure and function, including
enhanced dendritic branching and synaptic receptor number and
density (e.g., GluR1-containing AMPA receptors) (Li et al., 2010).
These changes, which are consistent with increased synaptoge-
nesis and neuronal synaptic plasticity, followed a rapid time
course (within 24 h of ketamine) only slightly longer than that
seen with the BDNF changes. In fact, the neuroplastic effects of
ketamine have been posited to stem from the ability of ketamine
to expeditiously stimulate the mTOR signaling pathway, most
likely via a BDNF-dependent mechanism; the resultant activa-
tion of ribosomal p70S6 kinase is considered to drive the rapid
protein translation and fast synaptogenic changes that are evi-
dent following acute ketamine treatment (Duman et al., 2012).
Indeed, Li et al. (2010) demonstrated that the mTOR pathway
is rapidly activated following low-dose ketamine, with increases
in PFC synaptic signaling proteins (e.g., PSD-95, GluR1) and
dendritic spines following shortly after. Moreover, the synap-
togenic and antidepressant behavioral effects of ketamine were
completely abolished in rats treated with the mTOR inhibitor,
rapamycin (Li et al., 2010, 2011). These findings raise the pos-
sibility that ketamine could affect mood by rapidly enhancing
plastic excitatory transmitter signaling and the processing of
BDNF. In fact, a very recent study indicated that, in treatment-
resistant depressed patients, acute ketamine augmented plasma
BDNF levels and induced electroencephalographic (EEG) changes
consistent with enhanced synaptic strength and plasticity (e.g.,
increased early sleep slow wave activity and high-amplitude
waves, increased slow wave slope) (Duncan et al., 2013). More-
over, the BDNF changes varied directly with the EEG param-
eter changes, and only those individuals positively responding
to the ketamine treatment displayed this link (Duncan et al.,
2013).

At the same time, SSRI agents too have been associated
with synaptic “re-wiring” and “re-modeling”. For instance, citalo-
pram partially attenuated the reduction in hippocampal dendritic
spine density following dim light-at-night stress in hamsters
(Bedrosian et al., 2012), and fluoxetine enhanced dendritic spine
density and altered glutamatergic receptor stoichiometry in rat
forebrain (Ampuero et al., 2010). Such changes normally are
characterized by a substantial time delay and usually coincide
with the onset of a positive clinical response (Ampuero et al.,
2010). Similarly, the hippocampal volume reductions evident
in depressed patients usually normalize after the patients go
into remission or at least show substantial improvement (Banasr
et al., 2011). Hence, the actual structural brain changes that
are induced by the various antidepressant treatments (albeit
differentially) might be a crucial common feature in bringing

about a positive clinical effect. Indeed, Liu et al. (2012) recently
reported that homozygous BDNF Met/Met mice, besides show-
ing a reduced antidepressant response to acute ketamine, were
completely insensitive to the PFC synaptogenic effects of the
drug.

KETAMINE AND NEUROIMMUNE FACTORS
Ketamine possesses potent and rapid anti-inflammatory effects
that could conceivably be relevant for its antidepressant actions.
Numerous studies have demonstrated that ketamine inhibits the
production of pro-inflammatory cytokines, including IL-1β and
TNF-α, as well as the expression of NF-κB (an important inflam-
matory transcription factor), following immunological challenge
with LPS (Takenaka et al., 1994; Sakai et al., 2000; Sun et al.,
2004; DeClue et al., 2008). More recent reports have indicated that
ketamine, besides reducing the activation of peripheral antigen
presenting cells (e.g., macrophages and dendritic cells) and the
consequent elaboration of inflammatory mediators, is capable of
inhibiting LPS-induced microglial activation, at least in part by
negatively regulating MAP kinase activity (Chang et al., 2009; see
Figure 1). Consistently, Yang et al. (2013) found that ketamine
administration in rats attenuated the LPS-induced rise in PFC
IL-6 and IL-1β, as well as the reduction in IL-10; importantly,
these immunoregulatory effects coincided with the amelioration
of LPS-induced depressive-like behavior in the FST. Additionally,
ketamine has been demonstrated to attenuate NF-κB activa-
tion and the expression of the pathogen-associated molecular
recognition receptor, Toll like receptor-4 (TLR-4), in astrocytes
(Wu et al., 2012). Taken together, these data clearly show that
ketamine can influence several aspects of peripheral and central
immune signaling, including the initiation of the inflammatory
response (e.g., TLR-4), activity and/or levels of downstream effec-
tors (e.g., IL-1β and TNF-α), and recruitment of intra-cellular
messenger pathways (e.g., NF-κB and MAP kinases). Importantly,
each of these immune mechanisms has been implicated in clin-
ical depression and, to some extent, various neurodegenerative
conditions.

It has recently been posited that low-grade cerebral inflam-
mation could predispose individuals to depression and suicide
by disturbing glutamate neurotransmission (Erhardt et al., 2013).
Indeed, increased colony stimulating factor (CSF) levels of the
NMDA agonist, quinolinic acid (QUIN), as well as the inflamma-
tory cytokine, IL-6, were reported in suicide victims, and there
was a positive correlation between IL-6 and QUIN in suicide
attempters (Erhardt et al., 2013). Moreover, an increased density
of QUIN-expressing microglia was evident in suicidal individuals
(Steiner et al., 2008, 2011). Others have shown that cerebral
infections also elevate QUIN together with pro-inflammatory
cytokines (Heyes et al., 1995). Thus, ketamine could have benefi-
cial effects in depressed patients, and in particular among individ-
uals who are suicidal or at an increased risk of suicide (e.g., suicide
attempt survivors, treatment-resistant patients), by countering
the QUIN elevation (via its NMDA antagonism) and, at the same
time, inhibiting IL-6 and other inflammatory mediators. In this
regard, ketamine completely prevented the hippocampal neuronal
damage and neurodegeneration following intracerebroventricular
QUIN adminstration in rats (Henschke et al., 1993).
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EMERGING GLUTAMATERGIC MODULATORS AND COMBINATION
TREATMENT STRATEGIES
Despite the mounting evidence indicating that ketamine has
rapid and robust antidepressant properties (and notwithstand-
ing the earlier mentioned preliminary clinical data indicating
that long-term, low-dose ketamine may be both tolerable and
effective; e.g., Messer et al., 2010), concerns over ketamine’s
psychotomimetic effects have spurred intensive efforts to develop
safer and more tolerable glutamate-based antidepressants. At the
vanguard of this movement are the “next generation” NMDA
receptor antagonists. Included here are the aminoadamantanes,
memantine and amantadine (Sani et al., 2012); the NR2B-
selective antagonists, traxoprodil (CP-101,606; Preskorn et al.,
2008) and MK-0657 (Ibrahim et al., 2012a); and the low-affinity
NMDA channel blocker AZD6765 (Zarate et al., 2013). The
NMDA receptor glycine-site functional partial agonist, GLYX-
13, and its orally bioavailable and presumed more potent analog,
NRX-1074, have also garnered the recent attention of researchers
and clinicians (Burgdorf et al., 2013; Dolgin, 2013), as have
several modulators of metabotropic glutamate receptors (e.g., the
mGluR7 allosteric agonist AMN082; Bradley et al., 2012) and
select α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor potentiators (e.g., Org 26576; Nations et al.,
2012). A thorough examination of these up-and-coming gluta-
matergic modulators falls outside the purview of this review,
and we instead refer the interested reader to the excellent recent
reviews by Lapidus et al. (2013) and Pilc et al. (2013). Still, it
bears mentioning at this juncture that, with the exception of the
aminoadamantanes (inconclusive clinical results) and for now
NRX-1074 (paucity of published data; Phase I trial underway),
very promising preclinical and, where applicable, initial clinical
findings have been reported for virtually all of the aforementioned
potential new glutamate-based antidepressants.

Even as work is progressing on the development, characteri-
zation and testing of these novel glutamatergic agents, optimizing
the tolerability and response durability of ketamine-based depres-
sion therapies remains an active area of research. In the clinical
realm, such efforts have so far been focused largely on identifying
add-on or substitution strategies for successfully maintaining
the initial rapid antidepressant response induced by ketamine
(and thus preventing relapse) (Krystal et al., 2013). Specifically,
two small-scale trials have been published to-date examining the
efficacy of the glutamatergic modulator, riluzole (which is used
to prolong survival in Amytrophic Lateral Sclerosis), in delay-
ing relapse among ketamine-remitted patients with treatment-
resistant depression (Mathew et al., 2010; Ibrahim et al., 2012b).
Unfortunately, neither of these studies generated positive results;
however, as pointed out by Krystal et al. (2013), both trials
suffered from a lack of power.

Also garnering recent research and clinical attention has been
the idea that combined treatment with ketamine and ECT might
result in synergistic enhancements of mood in patients with severe
and intractable depression symptoms. Unlike the ketamine-plus-
riluzole maintenance therapy trials, this area of research—which
was spurred on by a couple of promising case reports (reviewed
in Loo et al. (2010))—is concerned not so much with extend-
ing the antidepressant effect of ketamine but rather exploring

the potential of low-dose ketamine to augment ECT. While the
handful of prospective and retrospective clinical studies that have
since been published on the subject—their methodological differ-
ences notwithstanding—have tended to produce positive results
(Okamoto et al., 2010; Kranaster et al., 2011; Loo et al., 2012;
Wang et al., 2012), the findings are by no means definitive (e.g.,
Abdallah et al., 2012; Järventausta et al., 2013) and more testing
and optimizing of combined ketamine and ECT in depression is
clearly in order.

Apart from these burgeoning clinical efforts, numerous pre-
clinical infrahuman investigations have provided support for
the idea that sub-threshold doses of ketamine (with respect
to treating depressive-like pathology) could be combined with
down-titrated doses of other putative antidepressant agents
to promote robust antidepressant-like outcomes, without the
attendant psychotomimetic concerns. For instance, it has been
more than 10 years since Chaturvedi et al. (1999, 2001) first
demonstrated that ketamine displayed antidepressant-like syn-
ergism with fluvoxamine and imipramine in the rodent FST.
The latter effect was recently recapitulated by Réus et al.
(2011), who further showed that combined ketamine-plus-
imipramine resulted in a significantly more robust increase
of hippocampal, PFC and amygdalar CREB and BDNF lev-
els than each treatment alone. Similarly, combinations of sub-
threshold doses of ketamine and lithium synergistically reduced
immobility in the rodent FST (Ghasemi et al., 2010; Liu
et al., 2013) and enhanced structural and functional neuro-
plastic changes in the PFC (increased mTOR signaling, den-
dritic spine density and diameter, and excitatory postsynaptic
currents; Liu et al., 2013). Potentiation of ketamine-induced
antidepressant-like effects has also been reported with anal-
gesic and anesthetic agents, wherein facilitation of neurotrophin
(Yang et al., 2012) and AMPA receptor-mediated signaling Wang
et al. (2011b) were found to be of vital importance. Moreover,
Akinfiresoye and Tizabi (2013) observed that repeated expo-
sures to a combination of ketamine and AMPA, at doses that
were ineffective on their own, induced marked synaptogenic
and antidepressant-like effects (increased p-mTOR, synapsin-
1 and BDNF; decreased FST immobility). While these pre-
clinical findings have yet to be translated into the clinical
realm, it is tempting to at least speculate on the potential
role of low-dose “ketamine-plus” combination therapies in
depression.

ERYTHROPOIETIN (EPO)
Emerging data, albeit relatively scant, indicate that EPO too has
the potential to improve the cognitive and emotional symptoms
of major depression. In fact, a recent review of the EPO liter-
ature demonstrated that four out of an existing five stressor-
based animal studies and all seven of the extant human stud-
ies (in depressed and non-depressed subjects alike) demon-
strated positive effects of EPO with respect to hippocampal-
dependent memory and emotion-related behavior (Miskowiak
et al., 2012).

EPO is a cytokine that is produced predominately by the
kidney. Besides directing the trafficking of immune cells and
having anti-apoptotic actions, EPO was recently reported to
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induce antidepressant-like effects in the forced swim and novelty-
induced hypophagia tests (Girgenti et al., 2009). EPO and its
receptors (EPOR) are expressed centrally throughout the lifes-
pan, but are particularly abundant in the developing and ageing
brain (Sanchez et al., 2009). Moreover, within the hypothalamus,
hippocampus and neocortex of normally developing rats, EPO
and/or EPOR immunoreactivity was localized primarily to neu-
rons (and not astrocytes or microglia) (Sanchez et al., 2009). Simi-
larly, EPO and EPOR were detected in adult midbrain DA and cor-
tical neurons, as well as cultured cortical and cerebellular neurons
(Csete et al., 2004). Yet, astrocytes, microglia and endothelial cells
have also been found to express EPO and its receptor, especially
following injury or neurodegeneration (Bernaudin et al., 1999;
Assaraf et al., 2007; Nadam et al., 2007). Taken together with
the fact that the non-hematopoietic carbamylated form of EPO,
c-EPO, also has robust CNS effects (Leconte et al., 2011; Ding
et al., 2013), it is obvious that EPO has important central effects
independent of its impact on red blood cells. Perhaps most
importantly with regards to depression and other stress-related
disorders, EPO was reported to induce BDNF expression and have
potent neuroplastic effects (Leconte et al., 2011; Mengozzi et al.,
2012).

As already mentioned, augmented BDNF signaling has been
strongly linked to antidepressant outcomes; however, a complica-
tion of using BDNF itself clinically is that the neurotrophin does
not appreciably cross the blood brain barrier (BBB; Pardridge
et al., 1994). BDNF treatment may also be associated with sub-
stantial side effects, including those related to pain pathways
(Pezet and McMahon, 2006). In contrast, EPO is routinely and
safely used to treat anemia (Sargin et al., 2010) and is considered
to readily cross the BBB (Brines et al., 2000). While it is true
that a few studies failed to detect increased EPO CSF levels with
systemic administration (Juul et al., 1997, 1999), others reliably
found EPO to be elevated in the CSF of humans and animals after
therapeutic systemic doses (Alafaci et al., 2000; Ehrenreich et al.,
2002). Indeed, both the murine and human forms of EPO, as
well as the human analog often used clinically, decarbepoetin-α,
all crossed the BBB in untreated naïve mice and accumulated at
clinically significant concentrations (Banks et al., 2004).

Given the data implicating hippocampal disturbances in
depression, it is particularly significant that EPO protects hip-
pocampal neurons from stressor-induced apoptosis (Kumral
et al., 2005; Zhang et al., 2007) and increases adult hippocam-
pal neurogenesis (Wang et al., 2004; Chen et al., 2007; Leconte
et al., 2011). At the same time, in rodents, EPO was reported to
improve spatial memory in the Morris water maze (Hengemihle
et al., 1996; Zhang et al., 2009) and to prevent ischemia-induced
cognitive impairments in a passive avoidance task (Sakanaka
et al., 1998). Similarly, EPO promoted improved cognitive func-
tioning in MS patients (Ehrenreich et al., 2007a) and among
individuals with schizophrenia (Ehrenreich et al., 2007b). Thus,
it would appear that EPO has potent cognitive-enhancing actions
which seem likely to be at least partially related to the trophic
cytokine’s hippocampal neuroplastic effects. Interestingly, recent
pre-clinical data also suggest that EPO may hold promise as
an agent to promote neuronal recovery. In fact, as pointed out
by Sargin et al. (2010), neuroprotective outcomes have been

reported in an exceedingly large majority of the nearly 200 studies
using EPO in animal models of stroke and traumatic brain
injury.

EPO SIGNALING AND DEPRESSION
Although little evidence to date indicates that central EPO signal-
ing is affected by antidepressant medicines, Girgenti et al. (2009)
found that EPO levels were elevated in the hippocampal dentate
gyrus after electroconvulsive seizure in rats. As well, in human
imaging studies, EPO modulated brain responses to emotional
information in both healthy volunteers and depressed patients
(Miskowiak et al., 2007, 2009, 2010), just as conventional SSRIs
were reported to do (Harmer et al., 2006; Murphy et al., 2009).
Similarly, we recently found that systemic EPO treatment had
antidepressant-like effects in the FST and blunted the impact
of stressor exposure on exploration in open field and elevated
plus maze paradigms (Osborn et al., 2013). And consistent with
the aforementioned earlier reports documenting the neurogenic
potential of EPO (e.g., Leconte et al., 2011), in our hands the
hematopoietic growth factor significantly increased hippocampal
neurogenesis, and this effect was apparent in naïve and stressed
mice alike (Osborn et al., 2013).

As in the case of ketamine, it is critically important to
understand the signaling mechanisms through which EPO could
impart its antidepressant effects. Briefly, EPO binding promotes
the homodimerization of two EPOR molecules, leading to a
conformational change that induces the phosphorylation of the
receptor-associated Janus kinase-2 (JAK2) protein tyrosine kinase
and subsequent activation of intermediate intracellular factors;
these include phosphatidylinositide 3-kinase (PI3-K), Akt/protein
kinase-B, mitogen-activated protein kinases (MAPKs), and signal
transducer and activator of transcription-5 (STAT5; Broxmeyer,
2013; see Figure 1). In non-erythroid cells, EPO acts through a
receptor that is also linked to CD131, the common beta chain
receptor subunit through which granulocyte-macrophage colony
stimulating factor (GM-CSF) also signals (Broxmeyer, 2013). This
receptor complex is expressed both by neurons and immune
cells, and its stimulation induces STAT5 along with c-Jun N-
terminal kinase (JNK), PI3K and MAPK (Brines and Cerami,
2008). Importantly, these signaling cascades have all been linked
to the activation of anti-apoptotic factors, cell differentiation,
cellular growth, and the modulation of plasticity. For instance,
Byts et al. (2008) reported that the induction of STAT5 and Akt in
hippocampal neurons was essential for the neurotrophic effects of
EPO.

Recent data pointing to a connection between EPO and BDNF
may be particularly telling of the mechanisms subserving the
potential antidepressant action of EPO. Several reports have indi-
cated that EPO can increase BDNF levels and synthesis (Wang
et al., 2004; Girgenti et al., 2009; Mengozzi et al., 2012); this of
course contrasts with the known BDNF-antagonizing effects of
stressors. It is thus tempting to speculate that an initial EPO-
induced rise in BDNF could synergize with further exogenously
applied EPO to reinforce specific molecular and cellular mech-
anisms of antidepressant action. This possibility holds for the
prospective combination of EPO with any number of established
BDNF-stimulating treatments (e.g., SSRIs, ketamine, and even
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exercise). Indeed, BDNF and EPO share common intra-cellular
signaling pathways, including the PI3-K and MAP kinase cas-
cades. There is, therefore, ample opportunity for the convergence
of EPO and BDNF signaling, and studies are definitely warranted
to flesh out this possibility (Figure 1).

In contrast to the positive interactions observed between
BDNF and EPO, pro-inflammatory stimuli generally act to down-
regulate EPO. Indeed, LPS, as well as IL-1β and TNF-α, were
demonstrated to reduce circulatory EPO mRNA and protein levels
through mechanisms dependent on NF-κB activation (Nairz
et al., 2012). Conversely, EPO itself appears to have potent anti-
inflammatory properties, as evidenced by its successful applica-
tion in a number of chronic inflammatory conditions and/or their
animal models (e.g., colitis, MS and diabetes) (Yuan et al., 2008;
Nairz et al., 2011; Meng et al., 2013). Likewise, EPO was shown
to attenuate or prevent a broad range of central and peripheral
pathology following LPS exposure, including lung and brain
injury, renal dysfunction, and vascular hypo-reactivity (Kumral
et al., 2007; Mitra et al., 2007; di Villa Bianca et al., 2009; Shang
et al., 2009); however, several conflicting reports do exist (e.g.,
Wilms et al., 2009; Wu et al., 2010).

Although very few studies have explicitly investigated how
EPO might promote anti-inflammatory responses, a recent report
suggests that inhibition of the NF-κB p65 subunit is likely to
be essential (Nairz et al., 2011). Importantly, NF-κB signaling
is considered the primary pathway mediating the effects of IL-
1β and TNF-α on immune and neural cells (Kataoka, 2009),
and a recent study implicated NF-κB as a vital contributor to
the anti-neurogenic and depressive-like behavioral consequences
of chronic mild stress (Koo et al., 2010). These data raise the
intriguing possibility that EPO could impart antidepressant-like
effects not only through the stimulation of trophic and neuro-
plastic processes but also by modulating the inflammatory milieu
(by way of restraining inflammatory NF-κB signaling) that is
both evident and pathologically relevant in many stressor-related
disorders.

CONCLUSIONS
In many cases, the current most efficacious treatment involves
the combined administration of more than one antidepressant
or other compounds, possibly by promoting synergistic neu-
ronal effects. This reinforces the view that depression involves
a spectrum of varied symptoms and likely various etiological
mechanisms are involved. In this regard, we posit that stress
and dysregulated immune factors acting against a backdrop of
genetic vulnerability ultimately shape the evolution of depression
by affecting classic neurotransmitter and peptide circuits, as well
as interfering with neuroplastic processes.

A sizable proportion of individuals are either totally unrespon-
sive or partially responsive to existing antidepressant treatments.
Moreover, patients that do respond positively to antidepres-
sants typically show only partial symptom remission and often
relapse after treatment discontinuation, promoting the view that
depression is a lifelong condition. The chronic course for the
illness suggests that depression could involve persistent neural
changes stemming from disturbances of neuroplasticity. Hence,
novel strategies that directly target such disturbances, rather than

simply managing downstream neurotransmitters, are urgently
required.

Novel treatments include the NMDA antagonist, ketamine,
which promotes unusually rapid and sustained antidepressant
responses after a single administration. Importantly, such effects
have been linked to rapid neuroplastic events, including synapto-
genesis; yet, the drug also has effects on multiple neurotransmitter
systems and influences immune factors. Other potential emerging
treatments include cytokines with trophic properties, such as
EPO. Indeed, through its effects on BDNF, immune and neuro-
plastic processes, EPO holds tremendous possibility as an adjunct
treatment that could be co-administered with an SSRI or other
standard antidepressant agent. In effect, future pharmacogenic
approaches might be utilized to tailor specific treatment combina-
tions to specific individuals with certain genetic polymorphisms
and life stressor histories. However, whatever the case may be, we
believe that all such treatments will exert and/or maintain positive
clinical outcomes, at least in part, by affecting the plasticity of
emotional circuits.
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