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A sensory role for ATP was proposed long before general acceptance of its extracellular
role. ATP activates and sensitizes signal transmission at multiple sites along the sensory
axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of
sensory pathways and participate in dysregulation, where ATP action directly on primary
afferent neurons (PANs), linking receptive field to CNS, has received much attention.
Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3
knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral
reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently,
drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have
emerged. Significantly, these compounds have no overt CNS action and are inactive
versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to
therapies that block inappropriate chronic signals at their source, decreasing drivers of
peripheral and central wind-up, yet leaving defensive nociceptive and brain functions
unperturbed. This article reviews this evidence, focusing on how ATP sensitization of
PANs in visceral “hollow” organs primes them to chronic discomfort, irritation and pain
(symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of
isolated organ-nerve preparations has revealed this mechanism. Urinary and airways
systems share many features: dependence on continuous afferent traffic to brainstem
centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence
in functional and sensory disorders; dependence on ATP in mediating sensory responses
to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing
medicines for pathological conditions. These similarities may also play out in terms of
future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists.
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INTRODUCTION
ATP is an abundant, multifaceted molecule: the chemical capital
stoking metabolism in every cell; ubiquitous transmitter and
autocrine signal; extracellular herald of movement, distension,
distress, ischemia, damage and inflammation (Burnstock, 2012).
Moreover, ATP can foment irritation, pain and discomfort, pro-
voking maladapted autonomic reactions (Burnstock, 2012; Ford,
2012; North and Jarvis, 2013). The mechanisms by which ATP is
liberally and specifically discharged by cells during this process are
now being delineated, with evidence for participation of processes
akin to synaptic vesicle release, hemichannel efflux, and extrusion
through ligand gated channels, in addition to the spillage of copi-
ous ATP during cell distress and rupture (Burnstock et al., 2012).
In a variety of pathological settings, these release mechanisms
may operate more aggressively, or alternatively enzymatic dispo-
sition mechanisms (nucleotidases) become weakened, leading to
elevations in background and stimulated ATP concentrations in
extracellular milieu. Such settings include inflammatory diseases

(arthritis), ischemia, cancer, airways pathology, and bladder dis-
orders, with the associated implication that excess ATP per se
contributes to heightened sensations that attend these disorders
(Ford, 2012).

This commentary focuses on the P2X regulation of primary
afferent neurons (PAN), which link sites in the peripheral recep-
tive field to the first synapse of the sensory pathway in the spinal
dorsal horn and dorsal brainstem, and in particular how they
process signals from hollow organs. PANs have their cells bodies
in the dorsal root and cranial ganglia, their peripheral fibers en
route to the receptive fields can be short or extremely long, and
they exist in several distinctive types, with differential morpho-
logical properties, speeds of conduction and molecular markers
and receptors. The diversity of sensorineuron types confers a
wide range of functions from low threshold (non-nociceptive)
proprioceptive, mechanosensitive and thermosensitive detection
(mostly the faster fibers), to high threshold (nociceptive) fibers
sensitive to noxious mechanical and/or chemical stimuli: some
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which transmit signals rapidly (Aδ), and many others slowly
(C). What is clear is that primary afferents are the first conduit
for all sensory information, and thus the primary site that may
undergo modulation and plasticity in chronic disease and injury,
leading to persistently altered sensation or dysaesthesia (Basbaum
et al., 2009; Burgess and Williams, 2010). ATP, acting via P2X3-
containing receptors, is clearly able to modulate, perhaps even
drive, some of these plasticity changes, and such findings may
have ramifications in identifying novel therapeutics for a range
of sensory maladies (Ford, 2012; North and Jarvis, 2013).

In considering the effects of P2X3 activation in visceral “tube
and sac” (or “hollow-organ”) systems, our focus is placed on the
lower urinary tract (LUT) and airways. These systems share many
traits from a morphological, functional and therapeutic perspec-
tive (as discussed in more detail below), and are notable in that the
most common pathologies in either system are associated with a
range of primary symptoms and signs that include persistent and
heightened, inappropriate irritative sensations and exaggerated
autonomic reflexes, as depicted in Figure 1. To date, the primary
sensory causes of both hyperesthesia and hyperreflexia in these
systems have remained unclear, and have been therapeutically
intractable and/or underexplored. Our suspicion is that this sit-
uation may be on the threshold of a significant advance, with the
arrival of selective P2X3 receptor antagonists. Signaling via ATP-
P2X3 seems to be not just another participant in the extracellular
“soup” of transmitters, autacoids and inflammatory cytokines
that contribute to pathologically suppressed sensory thresholds,
but is a key common aggravator in the receptive field: promoting
sensitization of PANs, priming them to many forms of chemical
and physical stimuli that drive afferent excitatory traffic. Thus
primed with lowered thresholds for activation, stimuli that would

normally be perceived as innocuous are able to trigger inappropri-
ately heightened and unpleasant sensations (hyperesthesia) and
untoward responses (hyperreflexia), as illustrated in Figure 2.
The components of this include: a convergent process whereby
abundant irritative stimuli elicit increases in extracellular ATP
concentrations, especially in disease; increased expression and
cell-surface trafficking of the P2X3-containing receptors on PAN
endings (Giniatullin et al., 2008; Gnanasekaran et al., 2011);
activation of key downstream excitatory pathways, such as CASK
and PKC isoforms (especially PKCε), by these elevated ATP levels
leading to reduced thresholds for activation of PANs by many
other sensitizing stimuli (Parada et al., 2005; Gnanasekaran et al.,
2013; Prado et al., 2013; Volonté and Burnstock, 2013). In focus-
ing on the current topic of P2X3 participation in the sensitization
of peripheral terminals of PANs in common sensory pathologies,
it may be noted that we are potentially ignoring another possible
key locus of sensitization: the central PAN terminals in spinal and
brainstem dorsal horn. It is acknowledged that P2X3 receptors
may participate in modulating the strength of synaptic commu-
nication with second order neurons (Gu and MacDermott, 1997)
and that CNS penetrant antagonists may reduce sensory wind-up
quite distal from the receptive field; however, for the focus of the
current review these aspects will not be discussed further.

THE SENSITIZING PROPERTY OF ATP
Five decades ago it was reported that fluid from lysed red blood
cells applied to exposed blister bases on the human forearm
evoked pain and discomfort (Keele and Armstrong, 1964). In
subsequent investigations (Collier et al., 1966; Bleehen et al., 1976;
Bleehen and Keele, 1977), the candidate chemicals responsible
were successively eliminated revealing that of the many chemicals

FIGURE 1 | ATP is released in heightened amounts in a variety of somatic

and visceral tissue systems and may cause hyperexcitability

(“sensitization”) of PANs. Depending on the nature of the affected tissue,
the elevated afferent discharge drives the increased perception of irritative

symptoms (hyperesthesia) as well as lowering the threshold for activation of
autonomic reflexes. These elevated reflexes (hyperreflexia) in turn give rise to
many of the signs of chronic disorders, which can usually be easily observed
or measured, if not perceived by the patient.
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FIGURE 2 | Normal physiological sensory perception and reflexes are

important defensive mechanisms, under conditions of acute stress or

physical threat, when a high stimulus intensity (blue sigmoid)

represents potential harm. During chronic dysregulation, afferent functions
experience sensitization, wherein normally low threshold or sub-threshold

stimulus intensities, posing little or no threat, now induce unpleasant
sensations and inappropriate autonomic responses. Many mechanisms have
been proposed to contribute to such sensitization, but the key priming
autacoid remains elusive, though it could turn out to be ATP in some visceral
systems such as LUT and airways.

discharged it is ATP itself that causes much of the pain. A
generation later, in a reductionist version of the forearm studies, a
co-culture of rat trigeminal afferents with skin cells was described
(Cook and McCleskey, 2002): an electrode recorded activity of
one neuron while a proximal keratinocyte was lysed yielding
excitations following spillage of sensitizing cellular contents. The
responsible chemical present in the lysate: ATP, acting—as was
deduced in the interim—by opening P2X3-containing cation
channels. These findings are consistent and profound: ATP is a
key sensitizing autacoid.

The effects of ATP on blister bases can be mimicked by
intradermal injection (Coutts et al., 1981), and by iontophoretic
application to UV sensitized skin (Hamilton et al., 2000) in
healthy human subjects. Intradermal ATP was also shown to
sensitize cutaneous C-fibers (Hilliges et al., 2002). Subsequently,
ATP was reported to produce moderate to strong pain and
tenderness after intramuscular (trapezius) infusion in volunteers
(Mork et al., 2003), which has recently been extended with
a report of pain, ache and fatigue after injection into themar
muscle (thumb pad; Pollak et al., 2013). Preclinical correlates
of similar effects of ATP in rodents are also well described,
based on “pain-related” or “nocifensive” responses evoked. For
example, ATP (or αβ-MeATP) injection into the paw of rat
evokes nocifensive responses (Bland-Ward and Humphrey, 1997;
Hamilton et al., 1999, 2001; Tsuda et al., 2000). Similarly, ATP
or αβ-MeATP injection into sensitized temporomandibular joint
(TMJ) attenuates pressure thresholds (Shinoda et al., 2005), and
into dental pulp sensitizes trigeminal afferents (Cherkas et al.,
2012).

These effects of ATP on somatosensory systems form
part of a significant body of evidence that P2X3 receptors
contribute to increased nocifensive behaviors in many models

of musculoskeletal and neuropathic pain, as extensively reviewed
(see Khakh and North, 2006; Burnstock, 2013). The impact
of selective antagonists to inhibit behaviors in these models is
impressive allowing justified speculation about the potential for
benefit in human musculoskeletal and neuropathic pain condi-
tions (Jarvis et al., 2002; Ford, 2012; North and Jarvis, 2013).
However, although somatic pain conditions seem to capture more
attention, it is in the viscera, where sensory symptoms are so
poorly addressed, that a greater breadth of evidence has evolved
from a wide range of investigations that place ATP and the P2X3
receptor mechanism at the heart of pathological sensitization and
where therapeutic potential may be most appealing.

In visceral systems, irritative direct effects of ATP have also
been described: two reports have shown that inhalation of ATP
can activate sensory responses in the airways driving the per-
ception of symptoms (coughing, wheezing, dyspnea and chest-
tightness; Basoglu et al., 2005) and bronchoconstriction (reduced
FEV1; Pellegrino et al., 1996; Basoglu et al., 2005), with asthmatic
subjects being more sensitive than healthy control subjects; it
should be noted that on a molar basis ATP was found to be
more potent than AMP, indicating that the effects were due
to the inhaled ATP and not its dephosphorylated metabolite
(adenosine). It has also been reported from several studies that
intravenous infusions of ATP in pre-terminal cancer patients pro-
duces a common adverse effect in a large proportion of patients:
chest discomfort/pain, dyspnea and the urge to take a deep breath
(Haskell et al., 1998; Beijer et al., 2007). Some of these effects had
been predicted based on a small number of preclinical evaluations
examining ATP activation of canine pulmonary vagal afferents
(Hurt et al., 1994) as well as participation in induction of cough
in guinea pigs in response to tussive agents (Kamei et al., 2005;
Kamei and Takahashi, 2006).
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Unlike the situation in airways and somatic systems, no clinical
reports indicate that ATP has been studied after its direct intrav-
esical infusion, and thus it remains to be determined whether
activation of sensation within urinary bladder could be so elicited.
In animals, it clearly does produce marked local effects on afferent
function after instillation (as described later), and this has been
widely studied as a model of bladder irritability (Pandita and
Andersson, 2002; Yu and de Groat, 2008; Ford and Cockayne,
2011). One thing that is consistently notable in all of the studies
looking at ATP application in clinical and preclinical settings
is that the effects of ATP on sensation (or afferent traffic) are
greater when there is underlying irritation (a blister, UV and
chemical insult) or pathology (asthma, bladder pain syndrome
(BPS)).

MORPHOLOGICAL AND WIRING SIMILARITIES OF URINARY
TRACT AND AIRWAYS
The urinary bladder and airways walls show a significant orga-
nizational similarity, somewhat superficially reflected by the car-
toon diagrams in Figure 3. In both tissues, a smooth muscle
layer (more extensive in the case of the detrusor), under phasic
excitatory control of parasympathetic efferent nerves, provides
for compliance and tone during distension and constriction, and
may become tonically activated in compliance disorders such
as asthma and overactive bladder (OAB). This muscularis is
anchored by a layer of cartilage in the airways (of decreasing
presence with narrowing of the airway branches) and by serosal
fat, fibrous connective tissue and peritoneum in the LUT. The
smooth muscle itself is layered by a submucosa, or lamina propria,

which harbors many connective tissues, vascular plexuses, inflam-
matory, intrinsic modulatory (myofibroblasts) and secretory cells.
The most luminal layer has its margin as the basement mem-
brane, and supports the epithelium, which in the airways is a
pseudostratified columnar epithelium with many cells ciliated
on the apical surface; and in urinary bladder is a transitional
epithelium, comprising a basal cell, 3–4 transitional cells, and a
highly specialized apical “umbrella” cell that is coated with unique
proteins call uroplakins. Clearly the apical epithelial differenti-
ation contrasts sharply between airways and bladder, reflecting
the starkly different physiological needs regarding permeance:
airways are obligatorily designed for chemical and fluid exchange,
whereas the LUT uses its apical, uroplakin-decorated surface as a
primary barrier to limit permeance from lumen to parenchyma
(although this barrier function is often undermined by infections
and in chronic diseases such as BPS; see Wang et al., 2005).

What appears to be intriguing in each tissue system is that
the epithelium plays a key role not only in protecting the tissue
from “the outside world”, providing resistance to pathogens and
defense against chemicals, but also in sensing changes (pressure,
movement, irritation) and signaling to adjacent afferent nerve
endings. In this latter respect, it is well established that copious
release of ATP accompanies such environmental changes, and
this ATP communicates with the afferents via P2X3 receptor
activation.

On a simplified level, the wiring control of these organ systems
also exhibits similarities. In the LUT, sensory afferents of the
pelvic, pudendal and splanchnic (hypogastric) nerves, with the
unmyelinated C-fibers in significant numerical predominance

FIGURE 3 | Morphology and wiring of LUT and airways. The urinary
tract and airways walls show a similar overall morphology, despite quite
distinct structural differentiation in the epithelial layer. In both systems,
ATP (shown as blue triangles) is present in large extracellular

concentrations, released by various cells including epithelia, fibroblasts
and smooth muscles, and can activate C-fiber afferent and promote
sensitization. Release of ATP is augmented in conditions of stress, injury,
inflammation and infection.
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over Aδ, convey much of the ongoing information to the CNS,
where primary coordination is modulated at the pontine level.
Efferent excitatory function to support voiding is largely carried
by pelvic nerve parasympathetic fibers, with sympathetic inner-
vation of the bladder neck and urethra providing the autonomic
support during the long periods of continence, coupled with sus-
pension of parasympathetic drive and maybe some sympathetic
activity maintaining detrusor muscle compliance during filling.
A large proportion of C-fibers and some Aδ-fibers from the LUT
express P2X3 subunits and respond to ATP.

The upper and lower airways are densely innervated by sensory
and autonomic fibers. Although a small percentage of fibers
originate from dorsal root ganglia (DRG), most afferent fibers
are carried by the vagus nerve, with cell bodies contained in
the nodose (epibranchial placode derived) and jugular (neu-
ral crest derived) cranial ganglia (Undem et al., 2004). These
embryological derivations lead to differentiation also in the prop-
erties of the numerically predominant populations of afferents,
the C-fibers. For example, the proportion of fibers containing
neuropeptides is high in DRG and jugular and is low in nodose.
Similarly, there is differentiation in terms of P2X3 containing
receptors, such that nodose fibers express P2X2 and P2X3 sub-
units, and likely carry responses by P2X2/3 heterotrimers, whereas
neural crest derived afferents express P2X3 and little P2X2, and
respond via the P2X3 homotrimer, at least in rodents (Undem
et al., 2004; Kwong et al., 2008; Nassenstein et al., 2010).

How all these elements militate together and integrate their
participation in organ function has been studied extensively over
decades, using all sorts of in vivo and deconstructed systems;
of these, one type of approach has offered greatest perspicac-
ity: the isolated tissue-nerve preparation, as further discussed
below.

TUBE AND SAC FUNCTION AND DYSFUNCTION:
LOWER URINARY TRACT
The functions of the LUT, dominated by the passive, low
pressure storage of volumes of urine, irregularly interrupted
by brief episodes of coordinated micturition, operate by what
seems a simple switch operated process: long periods of
detrusor compliance and expansion coupled with sympathet-
ically maintained bladder neck closure and urethral coapta-
tion are conveniently—and preferably consciously—awoken by a
parasympathetically driven coordinated detrusor muscle contrac-
tion and urethral/sphincteric relaxation with parallel suspension
of sympathetic and somatic motor drive. Outflow of these efferent
autonomic signals are regulated by pontine storage/micturition
centers (Barrington’s nuclei), in turn under descending corti-
cal control (Fowler et al., 2008; de Groat and Wickens, 2013).
This latter factor is somewhat unique for a visceral organ
system.

The afferent limb of urine storage and elimination displays
a dualism, both structurally and functionally. Two operationally
and neurally distinct paths appear to sense the condition of the
LUT, and relay this information to spinal and supraspinal circuits,
via the periaqueductal gray (PAG) to pontine control centers
(de Groat and Wickens, 2013). One of these uses in particular
thinly myelinated Aδ fibers to detect volume expansion at high

thresholds (via stretch and chemical receptors) in the bladder
wall and conveys this information to the pontine centers and
beyond, to inform conscious and graded perception (sense of
fullness, developing urge to void, extreme urge to void) and pre-
pare consciously integrated autonomic reflex coordination. The
second system, perhaps a more primitive one, engages unmyeli-
nated C-fibers and detects filling at a broader range of volume
thresholds, as well as signals of local distress (infection, inflamma-
tion), and can elicit local (spinal segmental) initiation of efferent
autonomic responses that lead to increased detrusor activity. de
Groat (1997) has described this C-fiber system as the “reflex
bladder” circuit, in that it operates without conscious control.
In a healthy adult these latter afferent signals are considered to
be under considerable descending inhibition that is established
purposely during early development of conscious voiding control
(de Groat, 1997). Accordingly, a healthy adult relies mostly on
the first (Aδ) pathway to ascertain bladder status and desire
to void, with C-fiber signals failing to escape tonic suppression
except when local pathological conditions arise (such as in infec-
tion). The “reflex bladder” (Figure 4) may represent the state
dominant in the infant, before descending control emerges, and
that can abruptly return during urinary tract infections (where
the discharge to segmental circuits is too great to suppress), as
well as after the erosion of the descending inhibitory influences
that can occur abruptly (spinal injury, stroke) or gradually, as in
neurodegenerative disease, or even aging (de Groat, 1997).

It has been suggested that the common urological conditions
associated with irritative LUT symptoms (LUTS): urgency, fre-
quency, nocturia, incontinence, discomfort and even pain are
mediated by the unsilencing of these C-fiber pathways and emer-
gence of the reflex bladder. Thus, an optimal approach would
be to target selectively these afferents for suppression, to provide
relief for countless numbers of LUTS sufferers with conditions
such as OAB, benign prostatic hyperplasia (BPH), BPS and
chronic pelvic pain syndrome (CPPS): all representing forms of
pelvic hypersensitivity, typified by inappropriate urgent sensa-
tions at modest filling that trigger unwelcome efferent responses
(hyperreflexia). Ideally, an understanding of what substances
(cytokines, trophic factors) cause the unsilencing of the reflex
bladder would be additionally helpful.

TUBE AND SAC FUNCTION AND DYSFUNCTION:
THE AIRWAYS
As was described for the LUT, the airways depend upon the
coordination of afferent inputs to central (in this case medullary)
nuclei to regulate the critical and extensively rhythmic efferent
autonomic influences upon upper and lower respiratory tissues.
Given the functional complexity of airways and the second by
second need to modulate and tune functions, exquisite surveil-
lance of the tissues (and the blood gases) and timely modulation
of efferent responses are all the more critical to homeostatic
wellbeing, and thus the complexity of afferent inputs is amplified.

What is clear is that the airways need to respond appropri-
ately to subjectively perceived irritations (particulate or chemical)
as well as the perception of “air hunger”. Likewise, they must
respond to afferent signals with well-regulated autonomic reflexes
that may variously govern airways caliber and conductance
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FIGURE 4 | The reflex bladder. In the neonate, C-fibers carry bladder
filling signals to activate spinal segmental reflexes that regulate
involuntary excitatory responses. Overlaying and—in a healthy
person—overriding this reflex bladder is a voluntary control system,
that is laid down during the early post-natal years. Here, Aδ fibers
play a dominant role, impacting with second order neurons that send

signals up to the brain. In neurogenic-bladder patients (typified
following spinal injury), a rapid deterioration of this descending
inhibitory control occurs, ”unmasking” the C-fiber reflex beneath.
The more gradual emergence of this reflex, due to idiopathic loss of
descending C-fiber inhibition, may account for the development of
many LUT symptoms (as conceived by WC de Groat).

(bronchoconstriction and dilation), fluid and mucus secre-
tion and ciliary clearance. As described for the LUT, very
common airways pathologies arise that are associated with
poorly coordinated afferent-efferent communication, inappro-
priate sensations (hypertussive perceptions and dyspnea) and
markedly reduced sensory thresholds that lead to maladap-
tive reflexes (airways hyperreactivity and hypersecretion). Vari-
ously, these signs and symptoms are common in chronic cough,
asthma, COPD and interstitial disease, with hypersensitivity and
hyperreflexia being key manifestations of widespread diseases.
Although these diseases may have etiological bases in immune
dysregulation and chemical exposure, it remains clear that cur-
rent therapeutics offer merely patchy resolution of some but
not all signs and symptoms. Though the underlying causes
may largely drive changes through inflammatory pathways and
factors, it remains clear that afferent targets in the respira-
tory system could offer important opportunities for therapeutic
intervention.

TISSUE-NERVE PREPARATIONS
An approach that has been employed to impressive effect in
the study of both LUT and airways to elucidate the origination
and composition of afferent nerve responses to mechanical and
chemical stimulation signals is the intact “tissue-nerve” prepa-
ration from rodents. The bladder-nerve preparations (as origi-
nally defined by Morrison and colleagues: Namasivayam et al.,
1998; Morrison, 1999) and the airways-nerve preparations (in
various forms, as described by Undem and Colleagues: Myers
et al., 1991; Riccio et al., 1996; McAlexander et al., 1999; and
by Fox et al., 1993, 1995) have provided interesting insights to
the types of sensory fibers activated by distinct stimuli and what
chemical messengers, receptors and channels mediate them. The

advantages of these in vitro preparations are nicely described in
the respective reports: they allow for study of chemical application
and sensitization, and controlled mechanical force and volume
displacement at the level of the airway or urinary tract “receptive”
nerve endings, but where such variables can be isolated from the
impact of descending nervous modulation and hemodynamic or
inflammatory factors. They also allow for more precise direction
of the nature and location of stimuli, and allow control over
concentrations of exogenous irritants and modulators. The results
from these studies have been very revealing. Most particularly,
these preparations allow for study of maneuvers and chemical
stimuli that directly effect changes in afferent discharge as well as
those that may act directly but function to modulate or sensitize
afferents to other stimuli (e.g., sensitizing autacoids; Myers et al.,
1991). In the context of the ATP-P2X3 mechanism, the findings
have been insightful.

In the LUT preparations (mostly bladder/urethra—pelvic
nerve, but also ureter—pelvic/hypogastric nerve), Namasivayam
et al. (1999) were the first to follow the bold proposal (from
Ferguson et al., 1997) that the distension induced release of
copious ATP from urothelial cells in bladder reflected a role for
local release of the nucleotide in signaling to primary afferents
on the status of bladder filling. They showed quite clearly that
the multi-unit recordings from pelvic nerve during distension
were largely (> 50%) dependent on ATP receptors, by showing
that treatment of the distending bladder with the nonselective
P2 antagonist suramin reduced firing by a half, and that αβ-
MeATP desensitization led to 65–75% reduction of nerve fir-
ing. Subsequently, it was shown that bladders from P2X3 gene
knockout and P2X2–P2X3 double knockout mice would distend
with much larger volumes of fluid before significant response
was observed in pelvic nerve recordings (Vlaskovska et al., 2001;
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Cockayne et al., 2005). The role of ATP mediating pelvic nerve
firing during filling has been explored by many groups, and
it is clear now that certain subpopulations of afferent nerves
may mediate this specific response, that the effects are sensitive
to blockade with P2X3 selective antagonists (Rong et al., 2002;
Zagorodnyuk et al., 2007, 2009; Sun et al., 2012) and in particular
that the contribution of this receptor function is upregulated
in disease models (Yu and de Groat, 2008, 2010; Sun et al.,
2012); this occurs possibly due to increased receptor expression
and coupling, and/or an elevation in the amount of ATP that
is discharged by distension. Most recently, the beneficial impact
of botulinus toxin (onabotulinumA) on sensory symptoms in
OAB have been modeled in a mouse bladder-nerve preparation
illustrating that intravesical exposure of the toxin reduces both
ATP release during distension and afferent nerve discharge (pelvic
and hypogastric; Collins et al., 2013). Given this seemingly unique
role of the ATP-P2X3 mechanism in the LUT, it is not surprising
that selective antagonism of this receptor population represents a
breakthrough opportunity for management of conditions where
sensory symptoms (urgency, frequency, nocturia, pain) and atten-
uated thresholds for initiation of reflex detrusor excitability are
common.

In the airways, focus on ATP as a sensitizing autacoid or
transmitter has been limited, indeed more focus has been placed
on its potential roles in inflammation, ciliary motility and mucus
clearance (Idzko et al., 2007; Cicko et al., 2010; Koeppen et al.,
2011). However, our recent efforts to examine the contribution
of ATP-P2X3 signals to afferent excitation generated evidence
for significant convergence of stimuli onto this target. Using an
isolated perfused lung-vagus nerve preparation (Weigand et al.,
2012), it was seen that, consistent with previous reports, metha-
choline and histamine were both able to produce bronchocon-
striction and action potential discharge in nodose derived vagal
fibers. ATP was also able to activate nodose fibers, but without
eliciting changes to perfusion resistance, indicating a lack of direct
effect on smooth muscle tone. The effects of ATP were inhibited
by two chemically distinct P2X3-P2X2/3 antagonists, TNP-ATP
and AF-353, which also were both able to inhibit the excitatory
effects of methacholine and histamine on nodose neurons, though
leaving the constrictor responses unaffected. The implication, that
ATP is the mediator of the indirect neural responses to the two
spasmogens, was also in evidence by the loss of neural responses
if apyrase was present. Thus, ATP is a necessary intermediate for
bronchoconstriction-induced nodose C-fiber excitation; the fact
that ATP is unable to elicit action potentials of jugular-derived
vagal afferents also explains why jugular C-fibers are not activated
by histamine (Undem et al., 2004; Kwong et al., 2008). These
dramatic findings put ATP in the spotlight as a key sensitizer
of airways afferents under a variety of physiological circum-
stances, and raise the possibility that specific antagonism of P2X3-
containing receptors may have a potential in several respiratory
conditions where afferent activation and hyperreflexia drives both
bronchial hyperreactivity and abundant sensory symptoms that
are so poorly managed.

It is of significant note that the use of the LUT and airways
“organ-nerve preparations” has allowed for the identification in
each system of a major and shared pathway, that so crucially

coordinates integrated signaling, and that might have been more
difficult to reveal so clearly in the intact organism or by using
a more reductionist approach. These isolated preparations allow
for experimenter designed degrees of de-construction and signal
isolation that can be examined and tested, then be re-constructed
to understand their place in physiology and pathobiology.

CURRENT AND FUTURE MANAGEMENT OF SIGNS AND
SYMPTOMS IN LOWER URINARY TRACT AND AIRWAYS
Given the morphological and neurophysiological similarities
between these organ systems, their dependencies on movement
and compliance coupled with finely tuned parasympathetic coor-
dination, it is perhaps not surprising that the current treat-
ment options for millions of patients with signs and symptoms
of disorder in either system share so many mechanistic fea-
tures. Ironically, when one thinks about the pathophysiological
underpinnings that have motivated decades of pharmaceutical
discovery in these systems in the quest of novel, transformative
therapies, the approaches could hardly be more different: in the
airways, the immune system has received preponderant focus,
with an abundance of enzyme, chemokine and cytokine targets
and various immune and inflammatory cell types pursued as the
cause du jour; in the LUT, it is the efferent neuroeffector influ-
ences and the apparently overexcitable smooth muscles that have
historically been the focus. In neither case has decades of effort
revealed a genuinely robust return in terms of transformational
therapeutic attenuation of unmet need. Similarly, in both systems,
the attention paid to the afferent circuits has been relatively
insubstantial, especially given that the presenting disease burden
represents such profoundly disturbing sensory experiences for
so many of the patients: labored breathing, wheeziness, chest
tightness, air hunger, urge to cough and cough itself; urinary fre-
quency, persistent urgency, discomfort and pelvic pain, disturbed
sleep (nocturia) and continence failure.

In the face of this significant sensory plight, the pulmonary
and urological patients both have access to two mechanistic classes
in common that aim to reduce the parasympathetic excitation
of smooth muscles and improve compliance: antimuscarinics
(for example: ipratropium, tiotropium and aclidinium for air-
ways symptoms; oxybutynin, tolterodine and solifenacin for LUT
symptoms) and β agonists (for example: albuterol, salmeterol
and formoterol for airways symptoms; the newly developed
mirabegron for LUT symptoms). The measure of clinical effec-
tiveness of such agents within these systems is difficult to compare;
however, the accessibility of the airways for inhalation therapy
allows local delivery of drug concentrations imparting more
meaningful clinical response than seems to have been achieved
so far in LUT, where intravesical delivery is much less convenient
or well-tolerated. Currently, systemic adverse events (AEs) greatly
impair dosing to therapeutic effectiveness and frequently discour-
age LUTS patients from persisting with treatment. Whether this
latter situation is improved with the new β3 adrenoceptor agonist
will be followed closely.

Beyond these classes, airways patients also derive significant
benefit from the local delivery of corticosteroids which go some
way to reduce the inflammation and severity of some of the com-
mon symptoms (and indeed may even blunt afferent discharge).
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Such an option has been examined in the LUT, but here local
approaches are not so feasible or convenient, and safety concerns
with chronic systemic exposure would preclude routine steroid
usage even if some benefit might be afforded (as has been reported
for severe ulcerative forms of interstitial cystitis). In both systems,
direct pharmacological targeting of sensory targets has been of
limited value so far, except in some exceptional situations such
as using inhalation delivery of local anesthetics (e.g., lidocaine)
for intractable dyspnea in cardiac patients or their intravesical
instillation for pain in BPS.

Thus, the current therapeutic options for patients whose lives
are seriously impacted by abundant sensory symptoms from both
organ systems do not directly target the C-fibers and their trig-
gered reflexes; rather they focus on the efferent limb on the reflex:
block the parasympathetic drive to smooth muscle excitability,
or increase detrusor compliance by activating β-adrenoceptors
receptors that are present (though in neither case likely well
innervated). Overall, these approaches offer benefit but are poten-
tially undermined by on-target AEs (especially, in the case of
antimuscarinics, dry mouth and CNS effects). Clearly, there is
a great need for something directed at quelling the sensory
pandemonium.

P2X3 ANTAGONISTS—PROGRESSION TO CLINIC
So far, despite the efforts of a several pharmaceutical organi-
zations (see Gum et al., 2012), only one medicinal candidate
P2X3 antagonist has progressed into human studies (Ford, 2012).
The aryloxy-pyrimidinediamine, AF-219 (Ford et al., 2013; Smith
et al., 2013) is an orally active small molecule (Mol Wt. ∼350
Daltons) antagonist at human P2X3-containing receptors. The
inhibitory potency (IC50) of AF-219 has been reported as ∼30
nM versus recombinant hP2X3 homotrimers and 100–250 nM
at hP2X2/3 heterotrimeric receptors, potencies very similar to
those reported for recombinant rat receptors, and it displays no
inhibitory impact on any non-P2X3 subunit containing receptors
(IC50 values � 10,000 nM at recombinant homotrimeric hP2X1,
hP2X2, hP2X4, rP2X5 and hP2X7 channels). Reports from other
related chemical members of this P2X3 selective pyrimidine-
diamine class have shown that the mechanism of inhibition
is non-competitive (allosteric) and have been mixed regarding
species-independency of P2X3 receptor potency estimates: AF-
353 (Gever et al., 2010) shows remarkable potency congruency
between human and rat recombinant P2X3 homotrimers (IC50

values of 8.7 and 8.9 nM, respectively) whereas the more potent
analog AF-792 (also referred to as RO-51; developed initially as
a potential prodrug for AF-353) was shown to be less potent at
human versus rat P2X3 receptors in one report (Serrano et al.,
2012) and yet species-independent in another (Jahangir et al.,
2009). It is important to note that some selectivity for P2X3
versus P2X2/3 channels has been a common claim across several
chemical classes of inhibitors (see Gum et al., 2012: e.g., AF-
219 analogs, nucleotides such as TNP-ATP, benzenetricarboxylic
acids such as A-317491), although in most studies values reported
are not affinity determinations but IC50 estimates. Under such
circumstances true selectivity cannot be categorically inferred,
especially for the competitive antagonists (such as TNP-ATP and
A-317491) as the IC50 is a parameter that will change with

agonist concentration used and depends on agonist potency at the
different trimers.

To date, AF-219 has completed four Phase 1 (safety, tolerability
and pharmacokinetic studies in normal healthy volunteers) and
one Phase 2 (patient) studies, with 3 additional Phase 2 studies
in progress.1 The three ongoing study are in osteoarthritic joint
pain, BPS/interstitial cystitis and in asthmatic patients with results
to be reported in mid-2014. The completed patient study was
undertaken in patients with chronic, treatment-refractory cough,
and was disclosed at the European Respiratory Society congress
in September 2013 (Abdulqawi et al., 2013). In this 24 patient
two (14-day) period, placebo controlled crossover study, AF-219
markedly and significantly reduced objective cough frequency:
daytime cough rate –84% (95% CI –94 to –60; p < 0.001; per
protocol analysis), and comparably reduced patients subjective
cough related symptoms.

This was a relatively small pilot study, with a single, high
daily dose level compared with placebo in patients with consid-
erable cough burden. Nevertheless, the unprecedented magni-
tude of efficacy observed and its objective nature, coupled with
the apparent absence of benefit on placebo, would appear to
offer strong initial validation of the P2X3 target in a patient
group with a significant “hollow-organ” sensory disorder, in
keeping with the potential identified from preclinical in vitro
and organ-nerve preparations. These findings also augur well for
other signs and symptoms of airways disease that are impacted
by afferent hyperexcitability, as well as important and bother-
some conditions emanating from other tube and sac systems,
including LUT. We await their outcomes with anticipation and
excitement.
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