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Granule cells (GCs) in the dentate gyrus are generated mainly postnatally. Between
embryonic day 10 and 14, neural precursors migrate from the primary dentate matrix
to the dentate gyrus where they differentiate into neurons. Neurogenesis reaches a
peak at the end of the first postnatal week and it is completed at the end of the first
postnatal month. This process continues at a reduced rate throughout life. Interestingly,
immediately after birth, GCs exhibit a clear GABAergic phenotype. Only later they integrate
the classical glutamatergic trisynaptic hippocampal circuit. Here, whole cell patch clamp
recordings, in current clamp mode, were performed from immature GCs, intracellularly
loaded with biocytin (in hippocampal slices from P0 to P3 old rats) in order to compare their
morphological characteristics with their electrophysiological properties. The vast majority
of GCs were very immature with small somata, few dendritic branches terminating with
small varicosities and growth cones. In spite of their immaturity their axons reached often
the cornu ammonis 3 area. Immature GCs generated, upon membrane depolarization,
either rudimentary sodium spikes or more clear overshooting action potentials that
fired repetitively. They exhibited also low threshold calcium spikes. In addition, most
spiking neurons showed spontaneous synchronized network activity, reminiscent of giant
depolarizing potentials (GDPs) generated in the hippocampus by the synergistic action
of glutamate and GABA, both depolarizing and excitatory. This early synchronized activity,
absent during adult neurogenesis, may play a crucial role in the refinement of local neuronal
circuits within the developing dentate gyrus.
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INTRODUCTION
Granule cells (GCs) in the dentate gyrus are crucial for transfer-
ring information from the entorhinal cortex to the hippocampus
proper where they integrate the classical excitatory trisynaptic cir-
cuit (McBain, 2008). Although primarily glutamatergic, the axons
of GCs, the mossy fibers (MFs), contain GABA, its synthesizing
enzyme glutamic acid decarboxylase (Schwarzer and Sperk, 1995;
Sloviter et al., 1996) and the vesicular GABA transporter VIAAT
(Zander et al., 2010). In addition, immunogold experiments have
demonstrated the presence of both AMPA and GABAA receptors,
co-localized on MF terminals in close spatial relation with synaptic
vesicles (Bergersen et al., 2003). All these pieces of evidence suggest
that MF-cornu ammon (CA3) synapses can use GABA as a neu-
rotransmitter since they posses all the machinery for synthesizing,
storing, releasing, and sensing it.

Indeed, electrophysiological experiments from juvenile animals
have revealed the presence of mixed GABAergic and glutamater-
gic monosynaptic currents in CA3 principal cells upon stimulation
of GCs in the dentate gyrus (Walker et al., 2001; Gutierrez et al.,
2003). Furthermore, in line with the sequential formation of
GABAergic and glutamatergic synapses in the immature hip-
pocampus (Hennou et al., 2002), GABA appears to be the only
neurotransmitter released from MF terminals during the first

few days of postnatal life (Kasyanov et al., 2004; Safiulina et al.,
2006, 2010; Sivakumaran et al., 2009) while AMPA/kainate recep-
tor mediated synaptic currents start appearing only after postnatal
(P) day 3 (Marchal and Mulle, 2004).

Granule cells are characterized by their peculiar delayed and
heterogeneous maturation. Most of them (85%) are generated
postnatally. From the primary dentate matrix, neural precursors
migrate to the dentate gyrus between embryonic day 10 and 14
where they differentiate into neurons (Altman and Bayer, 1990a,b).
Neurogenesis reaches a peak at the end of the first postnatal week
and is largely completed toward the end of the first postnatal
month (Schlessinger et al., 1975). Interestingly, the dentate gyrus
retains the capability to give rise to new neurons throughout life,
although at a reduced rate (Duan et al., 2008). In adulthood, after
being generated in the subgranular zone, immature GCs are incor-
porated into pre-existing circuits, thus contributing to improve
several brain functions including learning and memory processes
(Deng et al., 2010).

The maturation of GCs during postnatal development has
been extensively investigated (Liu et al., 1996; Liu et al., 2000; Ye
et al., 2000; Ambrogini et al., 2004; Overstreet et al., 2004;
Espósito et al., 2005; Overstreet-Wadiche and Westbrook, 2006;
Overstreet-Wadiche et al., 2006). However, only few studies, have
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tried to compare the morphological characteristics of immature
GCs with their functional properties before P7, when neurogenesis
in the dentate gyrus is very active and GCs exhibit immature-like
features (Liu et al., 1996, 2000; Ambrogini et al., 2004).

Therefore, in the present study, whole-cell patch clamp record-
ings were performed from biocytin-labeled GCs in the immediate
postnatal period, between P0 and P3, when GCs convey exclu-
sively monosynaptic GABAergic signals to CA3 pyramidal cells
(Safiulina et al., 2006).

MATERIALS AND METHODS
ETHICAL APPROVAL
All experiments were performed in accordance with the Euro-
pean Community Council Directive of November 24, 1986
(86/609EEC) and were approved by the local authority veterinary
service and by SISSA ethical committee. All efforts were made to
minimize animal suffering and to reduce the number of animals
used.

HIPPOCAMPAL SLICES PREPARATION
Wistar rats of both sexes were decapitated after being anesthetized
with CO2. Hippocampal slices were obtained from neonatal ani-
mals at postnatal (P) days P0–P3 (the day 0 was considered as the
day of birth) as previously described (Caiati et al., 2010). Briefly,
the brain was quickly removed from the skull and placed in ice-
cold ACSF containing (in mM): NaCl 130, KCl 3.5, NaH2PO4 1.2,
MgCl2 1.3, CaCl2 2, Glucose 24, NaHCO3 27 (pH 7.3), saturated
with 95% O2 and 5% CO2 (pH 7.3–7.4)

Transverse hippocampal slices (400 μm thick) were cut with a
vibratome and stored at room temperature (20–24◦C) in a holding
bath containing the same solution as above. After a recovery period
of at least 1 h, an individual slice was transferred to the recording
chamber where it was continuously superfused with oxygenated
ACSF at 31–33◦C at the rate of 3–4 ml min−1.

ELECTROPHYSIOLOGICAL RECORDINGS
Whole-cell patch clamp recordings (mainly in current clamp
mode) were obtained from visually identified GCs in the dentate
gyrus, using the Multiclamp 700A amplifier (Axon Instrument,
USA).

Patched electrodes were pulled from borosilicate glass capil-
laries (Hingelberg, Malsfeld, Germany). They had a resistance of
5–8 M� when filled with an intracellular solution containing (in
mM): KCl 140, MgCl2 1, EGTA 0.5, HEPES 10, Mg ATP 4 (pH 7.3;
the osmolarity was adjusted to 280 mOsmol).

The stability of the patch was checked by repetitively mon-
itoring the input and series resistance during the experiment.
Cells exhibiting > 15 changes in series resistance were excluded
from the analysis. The series resistance was <20 M� and was not
compensated.

Spontaneously occurring giant depolarizing potentials (GDPs)
were routinely recorded from a holding potential of −70 mV.

DRUGS
Drugs used were: tetrodotoxin (TTX, purchased from Latoxan,
Valence, France), 6,7-dinitroquinoxaline-2,3-dione (DNQX),
bicuculline methiodide (purchased from Tocris Cookson Inc.,

UK), and biocytin (purchased from Sigma-Aldrich Milano, Italy).
All drugs were dissolved in ACSF except DNQX that was dissolved
in DMSO. The final concentration of DMSO in the bathing solu-
tion was 0.1%. At this concentration, DMSO alone did not modify
the shape or the kinetics of synaptic currents. Drugs were applied
in the bath via a three-way tap system, by changing the superfusion
solution to one differing only in its drug(s) content. The ratio of
flow rate to bath volume ensured complete exchange within 2 min.

DATA ACQUISITION AND ANALYSIS
Data were acquired and digitized with an A/D converter (Digidata
1200, Molecular Devices) and stored on a computer hard disk.
Acquisition and analysis were performed with Clampfit 9 (Axon
Instruments, USA). Data were sampled at 20 kHz and filtered with
a cut off frequency of 2 kHz. The resting membrane potential
(RMP) was measured immediately after break-in and establishing
whole-cell recording. The input resistance (Rin) was calculated by
the slope of the linear portion of the I/V relationship obtained
by measuring the steady-state potential changes in response to
hyperpolarizing current steps of increasing intensity (from −60 to
+120 pA, 20 pA increments, 500 ms duration) using the Clamp-
fit program (pClamp 9.0 software, Axon Instrument, USA). The
membrane surface was estimated in voltage clamp mode by inte-
grating the area under the average of four uncompensated and
unfiltered charging transients in response to hyperpolarizing steps
from a holding potential of −60 mV.

Action potentials were evoked in current clamp mode from
a holding potential of −60 mV by 500 ms depolarizing current
pulses. Spike width was measured at the base of action potentials
and spike amplitude from the baseline to the peak. Spike threshold
was determined at the beginning of the fast up rise of an action
potential. Possible sag in electrotonic potentials were identified
by injecting hyperpolarizing current pulses of different intensities
through the recording pipette.

Unless otherwise stated, data are presented as mean ± SEM.
Quantitative comparisons were based on students paired or
unpaired t-test, as required and a p value < 0.05 was considered
as significant.

CELL STAINING
Post hoc identification of recorded cells was achieved by injecting
biocytin (1–2%, from Sigma Aldrich, Milano, Italy, dissolved in the
internal solution) throughout the recording electrode for at least
40–60 min. After electrode removal slices were kept in the record-
ing chamber, continuously superfused for at least 15–20 min.
to optimize the complete diffusion of biocytin. Slices were then
removed from recording chamber, thoroughly washed with phos-
phate buffered saline (PBS) 1X and fixed with parafolmaldehyde
4% for 20 min. at room temperature and stored at 4◦C. Slices were
incubated with Alexa Flour 647-labeled streptavidin, 1:500 for 1 h
at room temperature, sheltered from the light. They were washed,
thoroughly rinsed with 1x PBS, mounted onto slides, embedded
with Vectashield (Vector Laboratories), and coverslipped. Individ-
ual pictures of biocytin-filled cells were acquired with a Nikon
microscope (Eclipse Series TiE, equipped with a C1 confocal sys-
tem) along progressive focal planes to fully cover their volume
(including their dendritic and axonal projections).
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IMMUNOCYTOCHEMISTRY
Free-floating recorded slices were rinsed several times with 1x PBS
and incubated in a blocking solution containing 5% FBS (fetal
bovine serum) and 0.3% Triton X-100 in PBS, for 30 min. Pri-
mary antibodies (anti-Prox1, ab37128, rabbit polyclonal, Abcam,
Cambridge, MA, USA 1:500; anti-NeuN, MAB377, mouse mon-
oclonal, Millipore, Billerica, MA, USA, 1:500), diluted in 95%
PBS-5% FBS solution, were applied and incubated at room tem-
perature for 2 h. Then, slices were washed several times with 1x PBS
and incubated with secondary antibody (Alexa 488-conjugated
goat anti-mouse immunoglobulin G [IgG], 1:500, 594-conjugated
goat anti-rabbit IgG, 1:500, Alexa Flour 647-labeled streptavidin,
1:500 and 4,6′-diamidino-2-phenylindole [DAPI], 1:1000) for 1 h
at room temperature, sheltered from the light. Finally, slices
were washed, thoroughly rinsed with 1x PBS, mounted onto
slides, embedded with Vectashield (Vector Laboratories), and
coverslipped.

RESULTS
IDENTIFICATION OF GRANULE CELLS
Granule cells were identified thanks to their immunoreactivity for
Prox1. This is a homeoprotein expressed in several brain regions
including the dentate gyrus, where it is present throughout devel-
opment and in adulthood (Lavado and Oliver, 2007). Mature GCs
were further distinguished as immunoreactive for NeuN. This is a
nuclear antigen expressed in most neuronal cell types throughout
the adult nervous system (Mullen et al., 1992), which is specifi-
cally activated in GCs by the end of their maturation (Ming and
Song, 2011; Hsieh, 2012; Iwano et al., 2012). The spatio-temporal
distribution of immature GCs in the dentate area was investi-
gated at three postnatal stages: P2, P6, and P28. As shown in
Figure 1, at P2, NeuN-positive cells were mainly clustered in the

pyramidal layer of the CA3 region and scattered throughout the
hilus. At this age, only a few NeuN-positive cells where found in the
coalescing Prox1-positive dentate gyrus, where NeuN co-localized
with Prox1. At P6, comparable numbers of Prox1-positive/NeuN-
negative and Prox1-positive /NeuN-positive cells were detectable
within the inner layer and the outer layer of the granule cell layer
(GCL), respectively, Finally, at P28, almost all Prox1-positive neu-
rons expressed NeuN, except a few NeuN- elements close to the
subgranular zone. In a few words, immature GCs, largely promi-
nent at P2, coexist with similar numbers of mature elements at P6
and become a minority by P28.

BIOCYTIN-LABELED GCs EXHIBIT AN IMMATURE PHENOTYPE
Immunocytochemical data have clearly demonstrated that at P2
GCs exhibit a typical immature phenotype. To fully characterize
the functional properties of these cells, stable whole-cell recordings
(mainly in current clamp configuration), lasting more than 30 min,
were obtained from 63 putative GCs in slices obtained from P0 to
P3 old rats. Some of these cells (11/63), were intracellularly labeled
with biocytin. Cells were identified as GCs on the basis of their cell
bodies localized in the GC layer and dendrites oriented toward the
molecular layer. The vast majority of labeled cells exhibited small
bodies and few short dendrites emerging mainly from the top or
sides of cell bodies, oriented toward the molecular layer or running
tangentially to the GC layer (Figure 2). In comparison with more
mature GCs (see Liu et al., 2000; Overstreet et al., 2004; Markwardt
et al., 2009) dendrites never penetrated deeply into the molecular
layer or reached the top (Figures 2A–C). They were short, thick
and spineless with limited branching. They often displayed small
varicosities, filopodia and growth cones (Figures 2A–C,E). Pre-
sumed GC axons with initial extension toward the hilus could be
visualized. In four cases, these could be followed up to stratum

FIGURE 1 | Representative confocal images of immunostained P2, P6,

and P28 horizontal sections of the hippocampus. DAPI staining, Prox1
and NeuN immunoreactivity are in blue, red, and green, respectively. Pink
(DAPI+, Prox1+, NeuN−), immature granule cells predominate in the

coalescing P2 GCL, they occupy the inner half of the P6 GCL and are
rare in the P28 GCL, where they are confined to a row close to the
subgranular zone (arrows). GCL, granule cell layer; H, hilus; CA3, cornu
ammonis 3 field.
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FIGURE 2 | Biocytin-labeled GCs at P0–P2. GCs exhibit small cell bodies
with few short and tick dendrites oriented toward the molecular layer (A–C)

and/or running tangentially to the GC layer (C,E). Dendrites often display small

varicosities, filopodia and growth cones (B,C,E). Presumed GC axons
projecting through the hilus toward stratum lucidum can be seen in C,D.
Arrowheads indicate presumable axons.

lucidum in the CA3 subfield (Figures 2C,D). The axons expressed
varicosities but lacked mature MF boutons and often gave rise to
collateral branches that terminated with growth cones. Although
care was used to pull out the patch pipette from the recorded
neuron at the end of the experiments, more than one GC was
often labeled, suggesting dye-coupling (Figures 2 and 7A). How-
ever, due to their small diameter, we failed to patch two adjacent
neurons to verify whether dye-coupled cells were also electrically
coupled.

ELECTROPHYSIOLOGICAL CHARACTERISTICS OF IMMATURE GCs
Immature GCs were identified as neurons by their capacity to gen-
erate action potentials. We examined firstly the passive membrane
properties (n = 63). On average, the RMP was −39 ± 1 mV (rang-
ing from −58 to −23 mV); the input resistance (Rin) 1.2 ± 0.1 G�

(ranging from 0.3 to 2.9 G�), the membrane capacitance (C)
15.4 ± 0.7 pF (ranging from 8 to 31 pF) and the membrane time
constant (τ) 285 ± 17 ms.

A large variability of individual RMP, C, and Rin values occurred
between P0 and P3 (Figure 3). A large variability was also observed
within the same postnatal group and between different cells
recorded from the same slice. In spite of similar values of RMP, Rin,
capacitance and membrane time constant, immature GCs exhib-
ited marked changes in their excitability as assessed by the large
variability in spike detection. Four cells, exhibiting relatively low
Rin (0.8 ± 1 M�), more depolarized RMP (−35 ± 1 mV) and
low capacitance values (8 ± 1 pF) were unable to generate action
potentials in response to depolarizing currents pulses (non-spiking
cells). These cells could be non-differentiated progenitors, astro-
cytes, oligodendrocytes and/or very immature neurons. Therefore,
they were excluded from the present analysis.

Spiking neurons were divided in two groups on the basis of their
ability to generate over-shooting action potentials or not (Table 1).

The first group (n = 36) comprised more immature cells with
rudimentary short and wide TTX-sensitive sodium spikes. Often
in the presence of TTX, low threshold calcium spikes appeared
and these were blocked by low concentrations of nickel (100 μM;
Figure 4). The second group of cells (n = 27) was characterized
by clear overshooting action potentials, which in some cases fired
repetitively (Figure 5).

In comparison with more immature cells, these exhibited a
lower threshold for action potential generation, and a reduced
spike half-width value (Table 1).

In the presence of TTX, low threshold calcium spike could be
sometimes evoked from a more hyperpolarized holding potential
(−80 mV; Figure 4).

Both groups exhibited electrotonic potentials that strongly rec-
tified in the depolarizing direction, probably due to the activation
of voltage-gated potassium conductances. In 23 GCs exhibiting
both rudimentary and more mature spikes, a prominent time-
dependent sag in the electrotonic potentials could be elicited by
hyperpolarizing current steps. The sag accounted for most of the
rectification in the hyperpolarizing range and had the character-
istics of the time-dependent inward rectifier cationic current IQ,
described in the hippocampus (Halliwell and Adams, 1982; data
not shown).

CORRELATED NETWORK ACTIVITY
Most (58/63) spiking neurons, recorded from P0 to P3, exhib-
ited patterns of coherent activity reminiscent of that found in the
developing Ammon’s horn (Ben-Ari et al., 1989) and described
as GDPs. As in the CA1 and CA3 hippocampal regions, GDPs
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FIGURE 3 | Passive membrane properties of immature granule cells. Individual values of capacitance (C, open circles), resting membrane potential (RMP,
open triangles), decay time constant (τ, open squares) and membrane input resistance (Rin, open diamonds), detected between P0 and P3.

were either grouped in clusters of 2–5 (Figure 6B) or occurred
at more or less regular intervals (Figure 6C) at the frequency of
0.1 ± 0.3 Hz, often preceded by a barrage of synaptic events. Few
spiking neurons did not exhibit GDPs but only spontaneous activ-
ity either isolated or in bursts that often reached the threshold for
action potential generation (Figure 6A).

Giant depolarizing potentials were characterized by long-
lasting recurrent membrane depolarizations (up to 30 mV in
amplitude) giving rise to action potentials often grouped in bursts

Table 1 | Passive and active membrane properties of granule cells at

P0–P3 (*p < 0.05; **p < 0.01).

Immature neurons

with rudimentary

spikes

More mature neurons

with overshooting

action potentials and

repetitive firing

n 36 27

C (pF) 14 ± 1 17 ± 1*

RMP (mV) −38 ± 1 −40 ± 1

Rin (G�) 1.4 ± 0.1 1 ± 0.1**

τ (ms) 283 ± 23 285 ± 25

Spike threshold (mV) −26 ± 1 −34 ± 1**

Spike amplitude (mV) 13 ± 1 22 ± 2**

Spike half-width (ms) 6.1 ± 0.6 3.8 ± 0.2**

and separated by silent periods. GDPs were network-driven events
since their frequency, but not their amplitude, was unaffected
by changing the membrane potential to more depolarized or
hyperpolarized values.

Although reduced in frequency, GDPs were still present in
DNQX (20 μM; Figure 7) suggesting that, in the absence of a glu-
tamatergic drive, the depolarizing action of GABA was still able
to exert an excitatory action at the network level. In two cases, in
the presence of DNQX long-lasting (13 and 19 s duration) plateau
potentials could be unveiled.

These were probably generated by the activation of intrin-
sic membrane conductances, known to involve small groups of
neurons coupled by gap-junctions (Figure 7; Crépel et al., 2007).
However, the rare occurrence of these events did not allow test-
ing whether they were sensitive to gap junction uncouplers or
could be blocked by hyperpolarizing the membrane toward more
negative values. GDPs were completely abolished by DNQX plus
bicuculline (20 μM), indicating that they were triggered by the
synergistic action of both glutamate and GABA. As in immature
CA3 principal cells (Ben-Ari et al., 1989), synchronized activity
was blocked by TTX (1 μM) further supporting their network
origin (data not shown).

DISCUSSION
The present data clearly show that, immediately after birth,
GCs in the dentate gyrus exhibit different degrees of imma-
turity as revealed by immunocytochemical experiments and
post hoc morphological reconstruction of biocytin-labeled cells.
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FIGURE 4 | Immature granule cells exhibit rudimentary sodium spikes

and low threshold calcium spikes. Voltage responses obtained in two
GCs (at P2) exhibiting sodium (right and left columns) and low threshold
calcium currents (right). In control, both GCs exhibited small amplitude
rudimentary spikes (at −60 mV, upper traces) that were blocked by TTX
(1 μM). In the presence of TTX, depolarizing current pulses from −80 mV
evoked only in the cell to the right a low threshold calcium spike. This was
also present upon membrane re-polarization following an hyperpolarizing
current step. Low threshold calcium spikes (marked by arrows) were
blocked by nickel (100 μM, lower trace on the right).

FIGURE 5 | Repetitive firing evoked in more mature granule cells.

Voltage responses to depolarizing and hyperpolarizing currents steps of
increasing intensity. Note clear overshooting spikes firing repetitively during
depolarizing current pulses. Action potentials were readily blocked by TTX.

Thus, at P2, only a small percentage of Prox1-positive GCs
were labeled with NeuN, which is specifically activated near the
end of their differentiation process (Ming and Song, 2011). In
keeping with a mixed GABAergic and glutamatergic neurotrans-
mission of immature MF (Münster-Wandowski et al., 2013), a
recent study has unveiled that Prox1-positive GCs transiently
express the GABA synthesizing enzyme GAD67, thus supporting

FIGURE 6 | Different patterns of coherent activities in neonatal GCs.

(A) neuron (at P1) exhibiting sporadic depolarizing synaptic potentials that
in few cases reached the threshold for action potential generation. (B)

GDPs occurring in clusters of 2–3. (C) GDPs occurring at more regular
intervals. Single action potentials or GDPs marked with * are shown on the
right on an expanded time scale.

the view that, immediately after birth, GCs are able to syn-
thesize GABA in addition to glutamate (Cabezas et al., 2013).
GABA released from MF terminals may activate pre (Cabezas
et al., 2012) and/or postsynaptic GABAA receptors (Safiulina
et al., 2006, 2010) to modulate MF excitability and to gener-
ate GABAA mediated postsynaptic currents in targeted neurons,
respectively.

Biocytin-labeled GCs express different degrees of immatu-
rity. In general, they revealed few dendritic branches with short
dendrites barely penetrating into the molecular layer and exhibit-
ing varicosities and filopodia. In contrast with their dendritic
arborization the axons of immature GCs, the MF, were able to
reach the CA3 pyramidal layer already at P1. Although we don’t
know whether GCs axons made synaptic contacts with principal
cells, it is likely that, similarly to the visual system (Kasper et al.,
1994), the maturation of the dendritic tree takes place after GC
axons have reached the CA3 subfield, supporting the view that
this process is influenced by retrograde signals (Jones et al., 2003).
Previous studies have shown that mature adult-like GCs, char-
acterized by elongated dendrites (with spines) penetrating into
the molecular layer, start appearing toward the end of the first
postnatal week (Jones et al., 2003).

Our electrophysiological data obtained from P0 to P3 old rats
unveiled passive membrane properties similar to those obtained
from older rats at P5–P8 (Liu et al., 1996; Liu et al., 2000; Ye et al.,
2000; Ambrogini et al., 2004), indicating that a certain degree of
immaturity persists at late developmental stages. Usually, matu-
rity is characterized by progressive more hyperpolarized values of
RMP, decrease in membrane time constant, in Rin and increase
in membrane capacitance (Spigelman et al., 1992). However, in
the present case, these values were rather scattered and no sig-
nificant differences were observed between GCs recorded at P0
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FIGURE 7 | Network-driven GDPs were reduced in frequency by

DNQX and blocked by DNQX plus bicuculline. (A) Whole-cell
recording of a P2 GC with biocytin revealed a cluster of several
dye-coupled neurons. (B) Sample traces of spontaneous activity (GDPs)
recorded from the same neuron in control conditions, in DNQX (20 μM),
in DNQX and bicuculline (20 μM) and after wash. In the presence of

DNQX, GDPs occurred at lower frequency. In DNQX it is visible also a
plateau potential. (C) The GDP marked with an asterisk in the control
trace is shown on an expanded time scale. (D) Voltage responses to
depolarizing and hyperpolarizing currents steps of increasing intensity
obtained from the same neuron. Note sodium and low threshold calcium
spikes.

and P3. All patched cells exhibited high values of Rin. However,
respect to more mature cells, immature neurons with rudimentary
spikes displayed higher Rin values associated with lower capaci-
tance. These factors, combined with the compact size of immature
GCs, likely contribute to their high degree of excitability, such
that even small fluctuations in membrane conductance may pro-
duce large voltage responses. This can be attributed to changes
in the expression of intracellular anions and potassium efflux.
Moreover, a developmentally regulated expression of voltage-
gated sodium, calcium and potassium channels (Spigelman et al.,
1992) may account for differences in active membrane properties
such as spike amplitude and duration. The fact that rudimen-
tary spikes were blocked by TTX suggests that voltage-dependent
sodium channels are responsible for spike genesis. Interestingly,
rudimentary sodium spikes were accompanied with low thresh-
old calcium spikes. T-type Ca2+ currents underling low threshold
calcium spikes have been originally described in sensory neurons
where they are developmentally regulated since they disappear
during the first few weeks of postnatal life, suggesting a major
role in the generation of oscillatory activities (Huguenard, 1996).
In the cerebellum, the developmental expression of low thresh-
old calcium spikes parallels that of the dendritic tree, indicating
a possible dendritic localization of this conductance (Gruol et al.,

1992). In the present experiments we cannot exclude the involve-
ment of calcium conductances localized on dendrites. However,
this hypothesis seems unlikely since maturation of GC dendrites
is usually associated with the loss of low threshold calcium spikes.
Although the functional role of low threshold calcium channels in
immature GCs is still unclear, these may boost calcium entry via
high threshold calcium channels and/or NMDA receptors follow-
ing the depolarizing action of GABA thus contributing to GDPs
generation. The transient elevation in intracellular calcium level
during GDPs activates signaling pathways known to control sev-
eral developmental processes, including DNA synthesis, neuronal
migration, differentiation, and synaptogenesis (Cherubini et al.,
2011). It is worth mentioning that in adult-born GCs low threshold
calcium currents were present only in cells with synaptic inputs,
suggesting that T-type of channels may play a crucial role in cell dif-
ferentiation and in synaptic plasticity processes (Ambrogini et al.,
2004; Schmidt-Hieber et al., 2004).

Although the present experiments clearly show that immature
GCs are in several aspects similar to adult-born neurons in the
inner GC layer (Laplagne et al., 2006, 2007; Overstreet-Wadiche
and Westbrook, 2006; Overstreet-Wadiche et al., 2006; Zhao et al.,
2010), they are functionally different since, unlike adult-born
GCs, immature GCs display network-driven GDPs. This can be
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attributed to the depolarizing and excitatory action of GABA that,
compared with the adult hippocampus, early in postnatal life is
very pronounced. GABA-induced membrane depolarization may
act in synergy with glutamate to synchronize neuronal networks.
GDPs have been already described in the fascia dentata of imma-
ture rabbits (Menendez de la Prida et al., 1998) and rats (Hollrigel
et al., 1998). In rabbits GDPs persisted when the dentate gyrus
was isolated from the Ammon’s horn indicating that the entire
hippocampal network possesses the capacity to generate them.

Here, the observation that GDPs persisted at lower frequency
in the presence of the AMPA/kainate receptor antagonist DNQX
strongly suggests the depolarizing and excitatory action of GABA
is crucial for network synchronization. In addition, in immature
GCs, oscillatory activity can be facilitated by the slow kinetics
of GABAA-mediated synaptic currents that may contribute to
integrate incoming excitatory inputs (both GABAergic and glu-
tamatergic) over a large time window (Draguhn and Heinemann,
1996; Hollrigel and Soltesz, 1997). In analogy with the synchro-
nized activity generated in the disinhibited hippocampus (de la
Prida et al., 2006), GDPs emerge when a sufficient number of cells
fire and the excitability of the network attains a certain threshold
within a restricted time window. Dye-coupling between immature
GCs would facilitate this task.

Although neonatal and adult neurogenesis in the dentate gyrus
seem to follow similar steps, the possibility that early synchronized
activity early in postnatal development may play a role in synaptic
wiring, thus contributing to refine local neuronal circuits accord-
ing to aphorism “neurons that fire together wire together,” cannot
be excluded. Therefore, it is likely that changes in the environmen-
tal factors such as activity may determine the different phenotype
of neonatal or adult GCs progenitors.
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