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Chronic pain represents a major problem in clinical medicine. Whilst the acute pain that
is associated with tissue injury is a protective signal that serves to maintain homeostasis,
chronic pain is a debilitating condition that persists long after the inciting stimulus subsides.
Chronic neuropathic pain that develops following damage or disease of the nervous
system is partially treated by current therapies, leaving scope for new therapies to improve
treatment outcome. Peripheral nerve damage is associated with alterations to the sensory
neuroaxis that promote maladaptive augmentation of nociceptive transmission. Thus,
neuropathic pain patients exhibit exaggerated responses to noxious stimuli, as well as
pain caused by stimuli which are normally non-painful. Increased nociceptive input from
the periphery triggers physiological plasticity and long lasting transcriptional and post-
translational changes in the CNS defined as central sensitization. Nerve injury induces
gliosis which contributes to central sensitization and results in enhanced communication
between neurons and microglial cells within the dorsal horn. Thus, identification of
mechanisms regulating neuro-immune interactions that occur during neuropathic pain
may provide future therapeutic targets. Specifically, chemokines and their receptors
play a pivotal role in mediating neuro-immune communication which leads to increased
nociception. In particular, the chemokine Fractalkine (FKN) and the CX3CR1 receptor have
come to light as a key signaling pair during neuropathic pain states.
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INTRODUCTION
Acute pain can be regarded as a homeostatic and adaptive process
by which the organism becomes aware of harmful stimuli, thus
guarding against actual or potential tissue injury. As such, the
physiological transduction and transmission of noxious stimuli
is a vital protective mechanism (nociceptive pain), allowing with-
drawal from potentially damaging environmental factors. Noci-
ceptive pain persists only for the duration of the stimulus or tissue
damage. The fundamental importance of pain as a homeostatic
mechanism becomes apparent in the case of individuals who have
a complete lack of nociception; rare hereditary mutations result-
ing in congenital insensitivity to pain lead affected individuals to
inadvertently inflict injury upon themselves throughout life (Cox
et al., 2006).

Under some circumstances pain can outlast its physiological
role, developing into chronic pain; a debilitating condition last-
ing longer than 3 months from the noxious stimulus, during
which the pain is out of proportion to the initial inciting injury.
Chronic neuropathic pain results from damage to, or dysfunction
of, the somatosensory system and is maladaptive in that the
pain neither protects the organism nor supports tissue repair.
Neuropathic pain is commonly associated with direct trauma
(stretch or crush) to a peripheral nerve. In addition, disease
states including diabetes mellitus and viral infections may result
in neuropathic pain symptoms. Furthermore, pharmacological
agents such as anti-retroviral drugs and chemotherapy agents may
also result in the development of painful neuropathy following

dysfunction of sensory nerves. Neuropathic pain is a complex
pain syndrome consisting of multiple symptoms. These include
sensory loss, abnormal sensation, spontaneous pain, and alter-
ations in responses to stimulus-evoked pain (hyperalgesia and
allodynia) (Jensen et al., 2001; Baron, 2006). Neuropathic pain is
a significant clinical problem, for which current treatments are
inadequate. This is due in large part to the fact that the mecha-
nisms underlying neuropathic pain syndromes are insufficiently
understood.

Convincing pre-clinical evidence suggests that following
peripheral nerve injury neuro-immune interactions play pivotal
roles in the generation and maintenance of nociceptive hyper-
sensitivity. Cells of the immune system interact with the sensory
system at various locations. In the peripheral nerve the infiltration
of immune cells (which release both pro-nociceptive and anti-
nociceptive mediators) is critical for the early initiation phase of
neuropathic pain in rodent models (Austin and Moalem-Taylor,
2010; Stein and Machelska, 2011). In the dorsal horn of the spinal
cord disruption of homeostasis and exaggerated primary afferent
input causes microglia to transition from surveillance states into
pain-related enhanced response states, thus modifying the nature
of neuron-microglia communication and promoting a maladap-
tive augmentation of nociceptive transmission that underlies the
chronicity of neuropathic pain.

Neuron-microglia communications in the dorsal horn occur
through activation of defined pathways. In particular, two crit-
ical neuron-microglia signaling systems initiated by purinergic
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receptors contribute to nerve injury induced hypersensitivity.
A microglia-driven pathway whereby de novo P2X4 receptor
expression and activation leads to release of Brain-Derived Neu-
rotrophic Factor (BDNF; Ulmann et al., 2008; Trang et al., 2009)
is critical during the initiation phase of neuropathic pain (shortly
after nerve injury) (Tsuda et al., 2003). BDNF activation of the
TrkB receptor down-regulates the expression of the neuronal
potassium/chloride co-transporter KCC2 (Coull et al., 2005).
The consequential impairment of chloride homeostasis in the
superficial laminae of the dorsal horn results in reduced inhibi-
tion following GABAA receptor activation (Coull et al., 2005),
and therefore a more excitatory environment. The therapeutic
exploitability of this P2X4/BDNF/KCC2 pathway is highlighted
by the recent identification of chloride extrusion enhancer com-
pounds that exert significant anti-nociceptive effects in neuro-
pathic rats (Gagnon et al., 2013).

We have identified a second neuron-microglia signaling path-
way that is critically involved in the maintenance phase of neu-
ropathic pain. This second microglia-driven pathway is initiated
by activation of the low affinity P2X7 receptor, resulting in release
of the lysosomal protease Cathepsin S (CatS; Clark et al., 2010).
This protease maintains activity at neutral pH and can liberate
the chemokine domain of the neuronal chemokine Fractalkine
(FKN), which feeds back onto microglia through the engagement
of the CX3CR1 receptor (Clark et al., 2007, 2009). Here we review
the contribution of spinal FKN/CX3CR1 signaling to neuro-
immune interactions during neuropathic pain.

THE FKN/CX3CR1 SIGNALING PAIR
Chemokines generally have a promiscuous relationship with their
G-protein coupled receptors, with one chemokine binding to
several different receptors and one receptor binding a range
of ligands. However, the chemokine system is not functionally
redundant (Schall and Proudfoot, 2011). One chemokine inter-
action, between FKN (CX3CL1) and its receptor CX3CR1, is
a monogamous relationship. In addition, FKN is structurally
unique amongst the family of chemokines; it is the only member
of the CX3C family of chemokines and was first described as a
potent attractant of immune cells (Bazan et al., 1997; Pan et al.,
1997). The protein can exist in two forms, each of which mediates
distinct biological actions: a membrane tethered protein and
soluble forms containing the chemokine domain (Bazan et al.,
1997).

FKN is expressed in both the periphery and the CNS. Pan et al.
originally described FKN gene expression to be most abundant
in the brain and heart, but absent from peripheral blood leuko-
cytes (Pan et al., 1997). Endothelial and epithelial cells are the
predominant FKN-expressing cells in the periphery. Indeed, FKN
has been localized to endothelial cells of the skin (Papadopoulos
et al., 1999, 2000), heart (Harrison et al., 1999), and lung (Foussat
et al., 2000), and to intestinal epithelial and endothelial cells
(Muehlhoefer et al., 2000). This constitutive expression of FKN is
regulated by inflammatory stimuli; it is enhanced following expo-
sure of these cells to Lipopolysaccharide (LPS; Pan et al., 1997),
pro-inflammatory cytokines (Bazan et al., 1997; Muehlhoefer
et al., 2000), and during inflammatory conditions such as Crohn’s
disease (Muehlhoefer et al., 2000).

Neurons are the principle FKN expressing cells of the CNS,
with endothelial cells in the brain showing little or no expression
(Harrison et al., 1998; Nishiyori et al., 1998; Maciejewski et al.,
1999; Hughes et al., 2002; Tarozzo et al., 2002, 2003). Likewise
in the spinal cord FKN expression is restricted to neurons (Verge
et al., 2004; Lindia et al., 2005; Clark et al., 2009; Yang et al.,
2012). FKN expression has also been observed in the cell bodies
of peripheral sensory neurons in the dorsal root ganglia (DRG;
Verge et al., 2004), and in the central terminals of these neurons
in the spinal dorsal horn in some studies (Verge et al., 2004; Yang
et al., 2012), but not in others (Lindia et al., 2005; Clark et al.,
2009). The expression profile of FKN has been confirmed by the
recent development of a FKN reporter mouse (Kim et al., 2011).
Peripherally, the expression of FKN in these mice is completely
restricted to non-hematopoietic cells, with FKN-mCherry found
in lung and intestinal epithelial cells and in kidney endothe-
lial cells (Kim et al., 2011). Centrally, the steady-state neuronal
location of FKN in some brain areas (hippocampus, striatum
and cortical layer II) and spinal cord was also confirmed. How-
ever, FKN-mCherry expression was absent from the brainstem,
midbrain, and cerebellum. FKN-mCherry was also not found
in DRG cells (Kim et al., 2011), somehow questioning sensory
neurons as a source of FKN outside the CNS under homeostatic
conditions.

The shedding of membrane bound FKN into soluble forms
represents a key regulatory mechanism for FKN signaling. The
liberation of soluble FKN (sFKN) from endothelial and epithelial
cells occurs both constitutively and in an inducible manner.
In the context of vascular immune function, endothelial mem-
brane bound FKN serves as an adhesion molecule, promoting
the firm adhesion of leukocytes without the activation of inte-
grins (Fong et al., 1998), whilst sFKN is a potent chemoattrac-
tant for monocytes, NK cells, T cells and B cells (Imai et al.,
1997; Corcione et al., 2009). FKN/CX3CR1 interactions are also
vital for many homeostatic processes, including the survival of
CX3CR1high blood monocytes (Landsman et al., 2009), wound
healing (Ishida et al., 2008) and trans-endothelial migration for
immune surveillance (Auffray et al., 2007). Constitutive shed-
ding of membrane bound FKN is principally dependent on the
metalloprotease ADAM-10 (a disintegrin and metalloprotease
domain-10) (Hundhausen et al., 2003, 2007). Following stimu-
lation of FKN-expressing cells with phorbol esters (e.g., Phorbol
12-myristate 13-acetate) shedding of mature FKN (∼100 kDa)
into soluble FKN (∼80 kDa) is markedly enhanced; this inducible
shedding is largely ADAM-17 (also known as TACE, tumor necro-
sis factor-α converting enzyme) dependent (Garton et al., 2001;
Tsou et al., 2001). However, not all shedding of FKN observed
can be accounted for by cleavage of ADAM-10 and ADAM-
17, as following metalloproteinase inhibition some formation of
sFKN is still observed (Hundhausen et al., 2003). Recent evidence
indicates that the cysteine protease CatS expressed by vascular
smooth cells also generates sFKN, although of a smaller size
(∼50 kDa) (Fonović et al., 2013) than the sFKN liberated by the
ADAMs. Indeed, in the spinal cord during chronic pain sFKN is
liberated following cleavage of neuronal membrane bound FKN
by CatS released by microglia (Clark et al., 2007, 2009). The
possibility that ADAM-17 and/or ADAM-10 contributes to sFKN
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shedding in the spinal cord has not been evaluated, however
FKN expression is absent from CNS endothelium (Harrison
et al., 1998; Nishiyori et al., 1998; Maciejewski et al., 1999;
Hughes et al., 2002; Tarozzo et al., 2002, 2003), therefore ADAM
mediated cleavage of FKN in the CNS seems unlikely. Interest-
ingly, different proteases may cleave FKN at diverse locations
and it is likely that sFKN exists in several forms. ADAM-10
and ADAM-17 cleave FKN at different sites close to the plasma
membrane (Bazan et al., 1997; Garton et al., 2001; Tsou et al.,
2001), whilst the exact cleavage site of CatS has not yet been
determined.

The CX3CR1 receptor was identified in humans (Imai et al.,
1997; Combadiere et al., 1998) and rat (Harrison et al., 1994) in
the 1990’s. Like all of the chemokine receptors, CX3CR1 is seven-
transmembrane domained G-protein coupled receptor. CX3CR1
expression is abundant in both peripheral blood leukocytes and
microglia in the CNS. The development of a transgenic mouse by
Jung et al. in which the CX3CR1 gene was mutated to contain a
green fluorescent protein (GFP) reporter gene (Jung et al., 2000),
has allowed the pattern of CX3CR1 expression in the mouse
to be analyzed in depth. Murine blood contains populations
of monocytes (CD11b+ Gr1low) and Natural Killer cells that
express CX3CR1. On the other hand, murine B-lymphocytes
and T-lymphocytes (both resting and active), eosinophils and
neutrophils are CX3CR1 negative. Expression of CX3CR1 is also
found on both myeloid and lymphoid dendritic cells and popula-
tions of cutaneous Langerhans cells (Jung et al., 2000). It should
be noted that the expression of CX3CR1 in human blood differs
from that in the mouse, with expression observed in populations
of human T-lymphocytes (Raport et al., 1995; Foussat et al.,
2000). In the CNS, CX3CR1 is exclusively expressed by microglia.
In both the mouse and the rat microglia in the brain express
CX3CR1, with expression completely absent from astrocytes,
oligodendrocytes and neurons (Harrison et al., 1998; Nishiyori
et al., 1998; Jung et al., 2000). Likewise in the spinal cord CX3CR1
is exclusively expressed by microglial cells (Verge et al., 2004;
Lindia et al., 2005; Zhuang et al., 2007; Yang et al., 2012; Clark
et al., 2013). Controversial in vitro evidence for neuronal CX3CR1
expression in cultured hippocampal neurons (Meucci et al., 2000;
Limatola et al., 2005), has not been confirmed in vivo using the
CX3CR1-GFP reporter mouse (Jung et al., 2000), suggesting that
such expression may be a phenomenon of the culture system.
Critically the neuroprotective effects of FKN in hippocampal cul-
tures originally attributed to a direct action on the hippocampal
neurons themselves (Meucci et al., 2000), has been demonstrated
to be mediated by microglial released mediators, and can be
attributed to microglial contamination in the neuronal cultures
(Lauro et al., 2008). Overall evidence indicates that in the CNS
the FKN/CX3CR1 signaling pair are ideally located to mediate
neuron-microglial communication, both during homeostatic and
pathological processes.

In the brain FKN/CX3CR1 interactions are thought to play
a homeostatic role in the regulation of microglia cell activ-
ity, contributing to the maintenance of a surveillance state in
these cells. It has been demonstrated that FKN/CX3CR1 regulate
hippocampal neurogenesis, synaptic pruning, synaptic plasticity,
and are neuroprotective in a number of pathological conditions

(Recently reviewed in Sheridan and Murphy, 2013). The role
of FKN/CX3CR1 interactions in spinal homeostatic mechanisms
remains to be determined. However, it has become evident that
aberrant FKN/CX3CR1 signaling can contribute significantly to
the pathogenesis of a number of chronic diseases (Nishimura
et al., 2009; Jones et al., 2010; Clark et al., 2011; Liu and Jiang,
2011), perhaps unsurprising given the role of this pair in immune
and inflammatory processes. Among these conditions, there is
now extensive evidence to support a role for FKN/CX3CR1 sig-
naling in the chronicity of pain.

SPINAL FKN/CX3CR1 AND NEURON-MICROGLIA
COMMUNICATION DURING NEUROPATHIC PAIN
The first synapse in the nociceptive pathway, between the central
terminals of primary afferent fibers and dorsal horn neurons in
the spinal cord, is a key site at which modulation of nociceptive
transmission can occur. Neuropathic pain is commonly modeled
in rodents using surgical injury to a peripheral nerve, usually
the sciatic nerve or a branch thereof, which induces robust and
reproducible pain behaviors in the effected hind-paw. It is now
well established that damage to a peripheral nerve causes disrup-
tion of homeostasis; as a result microglia (and astrocytes) in the
vicinity of injured primary afferent terminals in the dorsal horn
transition into pain-related enhanced response states (McMahon
and Malcangio, 2009). Thus augmentation of neuron-microglia
communication critically contributes to amplification of nocicep-
tive transmission which occurs during neuropathic pain. In the
dorsal horn, neuronal FKN and microglial CX3CR1 are ideally
located to mediate neuron-microglia communication.

FKN in its soluble form is pro-nociceptive; intrathecal admin-
istration of the FKN chemokine domain (Milligan et al., 2004,
2005; Clark et al., 2007; Zhuang et al., 2007; Clark and Malcangio,
2012), but not full length FKN (Clark and Malcangio, 2012),
induces hypersensitivity to both thermal and mechanical stimuli,
which is entirely mediated via CX3CR1 (Milligan et al., 2004,
2005; Clark et al., 2007; Staniland et al., 2010). FKN induces
nociceptive behaviors following activation of CX3CR1 and intra-
cellular phosphorylation of microglial p38 Mitogen-activated
protein kinase (MAPK; Clark et al., 2007; Zhuang et al., 2007)
which subsequently stimulates release of pro-inflammatory medi-
ators including Interleukin-1β, Interleukin-6 and Nitric Oxide
(Milligan et al., 2005).

Impairment of spinal FKN/CX3CR1 signaling represents a
potential therapeutic avenue during chronic pain. Following
injury to a peripheral nerve extensive upregulation of CX3CR1
occurs in spinal microglia (Verge et al., 2004; Lindia et al., 2005;
Zhuang et al., 2007; Staniland et al., 2010), with FKN becoming
de novo expressed in astrocytes in the spinal nerve transection
model of peripheral nerve injury (Lindia et al., 2005), but not in
other models (Verge et al., 2004; Zhuang et al., 2007; Staniland
et al., 2010). Although levels of total FKN protein in the spinal
cord remain unchanged following nerve injury (Verge et al.,
2004; Lindia et al., 2005; Clark et al., 2009), sFKN levels in
CSF are significantly elevated (Clark et al., 2009); thus there
is enhanced availability of sFKN alongside enhanced CX3CR1
expression during neuropathic pain. In a number of models of
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peripheral nerve injury intrathecal administration of FKN or
CX3CR1 neutralizing antibodies is able to attenuate neuropathic
pain behaviors (Milligan et al., 2004; Clark et al., 2007; Zhuang
et al., 2007); this is due to a reduced pro-nociceptive activity
state of spinal microglia, as demonstrated by reduced p38 MAPK
phosphorylation (Zhuang et al., 2007). The same effect is true for
the development of bone cancer pain; the development of pain
in animals with experimental bone cancer occurs concurrently
with microgliosis and an increase in the expression of microglial
CX3CR1 and p-p38. The onset of this pain can be significantly
delayed by the intrathecal administration of a CX3CR1 neutral-
izing antibody (Yin et al., 2010; Hu et al., 2012) despite a lack of
efficacy in suppressing bone pathology (Yin et al., 2010). Whilst
neutralizing antibodies and modified FKN proteins have been

utilized for proof of concept preclinical studies, the first CX3CR1
antagonist to show anti-inflammatory activity at both mouse
and human CX3CR1 was recently described (White et al., 2010;
Karlström et al., 2013).

Critically, we demonstrated that CX3CR1 deficient mice show
deficits in neuropathic pain; these mice do not develop mechani-
cal allodynia, and have reduced hypersensitivity to thermal stim-
uli, following peripheral nerve injury, compared to wild-type
mice (Staniland et al., 2010). The deficits in the development
of neuropathic pain behaviors correlate with a reduction in
microglial cell activity in these mice, as spinal microglial response
is milder in knockout mice. Interestingly, extensive infiltration
of macrophages occurs at the site of nerve injury; however
no difference in the number of infiltration macrophages was

FIGURE 1 | Schematic illustrating the pro-nociceptive mechanism of
CatS/FKN signaling in the spinal dorsal horn during neuropathic
pain. (A–B) In the dorsal horn area innervated by damaged fibers (Panel
A) microglia transform from a surveillance state into a reactive state
following exposure to injury induced factors released by primary afferent
terminals, including Adenosine tri-phosphate (ATP; Panel B). (C) High
concentrations of extracellular ATP leads to P2X7 receptor activation on
microglia (1), which ultimately leads to the release of CatS. A decrease in
intracellular potassium concentration following efflux through the P2X7
receptor activates phospholipase C (PLC), resulting in an increase in

intracellular calcium and phosphorylation of p38 MAPK. P38
phosphorylation then allows phospholipase A2 (PLA2) mediated
translocation of CatS containing lysosomes to the cell membrane,
whereby exocytosis releases CatS into the extracellular space (2).
Extracellular CatS is then able to cleave membrane bound FKN from
dorsal horn neurons, liberating soluble FKN (sFKN) (3). (D) sFKN feeds
back onto the microglial cells via the CX3CR1 receptor (4) to further
activate the p38 MAPK pathway and release inflammatory mediators, (5)
that activate neurons and result in chronic pain. Abbreviations: DRG,
dorsal root ganglia, cPLA2, cytosolic PLA2.
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identified between genotypes (Staniland et al., 2010), suggesting
that CX3CR1 expressing macrophages in the nerve contribute
little to neuropathic pain in this model. In the spinal cord the
pro-nociceptive actions of sFKN are mediated following its lib-
eration by the lysosomal protease CatS (Recently reviewed in
Clark and Malcangio, 2012). Following peripheral nerve injury
CatS is upregulated in microglial cells in the area innervated by
damaged primary afferent terminals (Clark et al., 2007). CatS
is released from microglia in a P2X7 dependent manner (Clark
et al., 2010), cleaving FKN located on the cell membrane of
dorsal horn neurons to liberate the soluble chemokine domain
of FKN, which then signals to microglia via CX3CR1 (Clark et al.,
2007) (as summarized in Figure 1). Following peripheral nerve
injury significant levels of sFKN can be detected in the CSF, along
with enhanced CatS activity (Clark et al., 2009). FKN cleavage
in the dorsal horn occurs under highly regulated conditions
associated with increased nociception (Clark et al., 2009). In
neuropathic spinal cord slices electrical stimulation of injured
dorsal roots induces liberation of sFKN (Clark et al., 2009). The
liberation of sFKN is only associated with conditions in which
microglia are in an reactive state, for example following nerve
injury or stimulation with LPS, and is completely dependent on
CatS activity (Clark et al., 2009). Indeed, impairment of FKN
signaling, either by neutralization of spinal FKN or by knock-
out of CX3CR1, is able to completely prevent the pro-nociceptive
effects of intrathecal CatS (Clark et al., 2007).

The pro-nociceptive effects of the CatS/FKN/CX3CR1 sig-
naling are critical for the maintenance phase of neuropathic
pain. Both intrathecal (Clark et al., 2007) and systemic (Bar-
clay et al., 2007; Irie et al., 2008; Zhang et al., 2014) delivery
of CatS inhibitors reverse established pain behaviors following
peripheral nerve injury to varying degrees. We have shown that
CatS inhibitors are ineffective when given intrathecally during the
initiation phase of neuropathic pain (at day 3 post-injury) (Clark
et al., 2007) when expression levels are low both peripherally
(Barclay et al., 2007) and in the spinal cord (Clark et al., 2007),
but effectively reverse established pain behavior when delivered
intrathecally at later timepoints when expression of CatS is high
(Clark et al., 2007). Indeed, a recent study has confirmed our
findings, demonstrating that when administered systemically an
inhibitor of CatS reverses neuropathic pain behaviors commenc-
ing on day 5 post-injury, but is ineffective when delivered between
day 0 and 4 (Zhang et al., 2014). In addition, CatS null mice
develop pain behavior that is equivalent to wild-type mice imme-
diately following nerve injury, only demonstrating a reduction in
allodynia compared to wild-types from day 3 post-injury onwards
(Zhang et al., 2014).

In summary, following peripheral nerve injury disruption of
homeostasis leads to microglia-driven aberrant FKN/CX3CR1
signaling in the dorsal horn of the spinal cord which maintains
maladaptive neuron-microglia signaling and critically contributes
to the chronicity of neuropathic pain.

CONCLUSIONS
A greater understanding of the nature of neuron-microglia inter-
actions during neuropathic pain states has led to the identifica-
tion of new microglial therapeutic targets, including chemokine

receptors such as CX3CR1 and the lysosomal protease CatS (Clark
et al., 2011; Clark and Malcangio, 2012). Intracellular signaling
pathways, most prominently p38 MAPK phosphorylation, medi-
ate the release of pro-nociceptive mediators by spinal microglial
cells comprising cytokines and proteases. Accordingly, the inhi-
bition of microglial targets including CX3CR1, p38 MAPK and
CatS can attenuate mechanical hypersensitivity in chronic pain
models. Importantly, a CNS penetrant p38 MAPK inhibitor has
demonstrated initial success in neuropathic pain patients (Anand
et al., 2011) suggesting that impedance of microglial targets is a
promising therapeutic avenue.
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