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Amyotrophic lateral sclerosis (ALS) is characterized by the progressive loss of motoneurons
and degradation of the neuromuscular junctions (NMJ). Consistent with the dying-back
hypothesis of motoneuron degeneration the decline in synaptic function initiates from
the presynaptic terminals in ALS. Oxidative stress is a major contributory factor to ALS
pathology and affects the presynaptic transmitter releasing machinery. Indeed, in ALS
mouse models nerve terminals are sensitive to reactive oxygen species (ROS) suggesting
that oxidative stress, along with compromised mitochondria and increased intracellular
Ca2+ amplifies the presynaptic decline in NMJ. This initial dysfunction is followed by a
neurodegeneration induced by inflammatory agents and loss of trophic support. To develop
effective therapeutic approaches against ALS, it is important to identify the mechanisms
underlying the initial pathological events. Given the role of oxidative stress in ALS, targeted
antioxidant treatments could be a promising therapeutic approach. However, the complex
nature of ALS and failure of monotherapies suggest that an antioxidant therapy should be
accompanied by anti-inflammatory interventions to enhance the restoration of the redox
balance.
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NMJ AS A VULNERABLE TARGET OF ALS (DYING BACK
HYPOTHESIS)
Temporal analysis of axon and neuromuscular junction (NMJ)
degeneration in sporadic ALS (sALS) and mouse mutant SOD1
(mSOD1) cases indicate that motoneuron pathology begins dis-
tally from the synaptic area (Figure 1) markedly earlier than
clinical symptoms and proceeds towards soma in a retrograde
dying back manner (Fischer et al., 2004; Rocha et al., 2013).
Impaired axonal transport, Ca2+ imbalance and mitochondria
dysfunction drive the axonal degeneration, and eventually lead to
dying of the neuron (Fischer-Hayes et al., 2013).

Figure 1 shows the principal structure of the NMJ including
the presynaptic machinery restricted to active zones (AZ) releas-
ing acetyl choline (ACh) in quantal manner and postsynaptic
structures consisting of densely packed ACh receptors linked to
the muscle-specific kinase (MuSK), agrin and other molecules
involved in NMJ maturation and maintenance (reviewed in Shi
et al., 2012). Thus, the dysfunction of the neuromuscular trans-
mission can originate from the presynaptic site or from disorga-
nized postsynaptic density. Notably, the motor nerve terminals
are covered by the Terminal Schwann Cells (TSC) which can
contribute to ALS progression.

In mSOD1 mice many motor terminals of the diaphragm
muscle show a number of dysfunctional changes in the early

disease stage (Naumenko et al., 2011). Muscle fibers are proposed
to initiate the early changes leading to ALS progression (Wong and
Martin, 2010). However, our results indicate that in the NMJ of
ALS mice the presynaptic machinery is affected first (Naumenko
et al., 2011). There is a noticeable variation in the probability of
transmitter release between synapses, suggesting different degen-
eration rates of synapses. At the early symptomatic phase, only
a few synapses have compromised function. Presumably, early in
the disease course, the proportion of damaged synapses is low
allowing compensation of the lost function by the healthy ones.
Interestingly, during the pre-symptomatic stage enhanced neu-
romuscular transmission can be observed before the occurrence
of the marked decline during the symptomatic phase, possibly
due to compensatory mechanisms against the initial degeneration
(Rocha et al., 2013).

Indeed, while some axon branches degenerate in ALS, others
show sprouting thus compensating for lost synapses (Schaefer
et al., 2005). Supporting the regenerating axons provides a
therapeutic opportunity for maintaining innervation. However,
as the disease progresses the proportion of damaged synapses
increases and the sparse functional synapses cannot mediate
synaptic transmission anymore. In mouse models of ALS axons
of fast-fatiguable motoneurons are affected synchronously in
hindlimbs, long before symptoms appear, whereas axons of slow
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FIGURE 1 | The model of motor nerve terminal dysregulation in
ALS. (A) Healthy NMJ. (B) Pathological changes in NMJ during early
stage of ALS. (C) Pathological changes in NMJ during late stage of

ALS. ACh: Acetyl choline, MuSK: muscle-specific kinase, NMJ:
Neuromuscular junction, ROS: Reactive oxygen species, TSC: Terminal
Schwann Cells.

motoneurons are more resistant. Thus it is possible that ALS
involves predictable, selective vulnerability patterns of NMJs by
physiological subtypes of axons, where NMJs of the resistant
axons partially assume compensatory functions (Pun et al., 2006;
Dibaj et al., 2011).

In some mSOD1 mouse models, oxidative stress appears to
originate from distal muscles before the disease onset (Kraft
et al., 2007). Reactive oxygen species (ROS) affect synaptic trans-
mission by inhibiting transmitter release. Increasing ROS levels
further inhibit NMJ function in spite of already elevated level
of oxidative stress (Naumenko et al., 2011). This suggests that
oxidative damage could start in peripheral tissues and proceed
retrogradely to neurons. Skeletal muscle targeted expression of
mSOD1 provokes motor deficits, but at a rather late age and
without evident effect on the life expectancy (Wong and Martin,
2010). In this particular model, the muscle pathology is accom-
panied by NMJ abnormalities and distal motoneuron axonopa-
thy. Initiation of the motoneuron degeneration by muscle cells
supports the hypothesis of dying-back pathogenesis where the
neurodegeneration starts from deficits in muscle and NMJs and
proceeds from distal axons towards soma leading to apoptosis
of motoneurons (Fischer et al., 2004; Dupuis and Loeffler,
2009).

PRESYNAPTIC PART OF THE NMJ AS THE MAIN SENSITIVE
PART REACTING TO OXIDATIVE STRESS
Measurements from the diaphragm muscle of G93A-SOD1 mice
have revealed a dramatic reduction in the frequency of minia-
ture end-plate potentials (MEPPs) during the early symptomatic
stage (Naumenko et al., 2011). Remarkably, no changes in the
amplitude of MEPPs were observed, indicating purely presy-
naptic decline in the synaptic transmission. The amplitude of
single evoked EPPs remained unchanged suggesting vulnera-
bility of spontaneous quantal transmitter release from nerve
terminals.

This phenotype (selective depression of MEPPs with little
affected EPPs) largely resembles the inhibitory action of ROS on
transmitter release at the frog NMJ: exogenous H2O2 elicits a
strong inhibition of spontaneous release with limited effect on
EPPs (Giniatullin and Giniatullin, 2003). NMJ impairment in
ALS could therefore be produced by mechanisms similar to those,
which affect synapses damaged by oxidative stress. Recent stud-
ies revealed distinct mechanisms underlying spontaneous versus
evoked transmitter release (Maximov et al., 2007; Pang et al.,
2011; Melom et al., 2013). Soluble N-ethylmaleimide-sensitive
factor attachment protein receptors (SNARE) protein, Snap25,
was identified as the main targets of ROS at the presynaptic level
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(Giniatullin et al., 2006) and could be one of the targets of ROS
inhibiting transmitter release (Figure 1B).

Apart from ROS, another interesting candidate contributing
to the damage of NMJ in ALS is extracellular ATP. ATP, the major
co-transmitter of ACh at the NMJ (Redman and Silinsky, 1994),
can produce a strong inhibitory action on transmitter release
(Giniatullin and Sokolova, 1998) via ROS induction (Giniatullin
et al., 2005; Sciancalepore et al., 2012). This mechanism could
contribute to the motor nerve terminal dysregulation in ALS
(Figure 1B) or, when applied persistently, to ATP-driven neu-
rodegeneration of NMJ (Figure 1C). This view is consistent
with recent data showing that extracellular ATP, operating via
cytotoxic P2X7 receptors could largely regulate immune func-
tion and inflammatory responses (Volonté et al., 2012). Notably,
TSC also express P2X7 receptor (Grafe et al., 1999; Colomar
et al., 2003; Nobbio et al., 2009). Whereas accumulating evidence
suggest that Schwann cells can contribute to ALS (De Winter
et al., 2006; Gorlewicz et al., 2009; Lobsiger et al., 2009; Chen
et al., 2010), the role of myelinating versus non-myelinating
TSCs in ALS however requires, further studies (Turner et al.,
2010).

We propose that the early damage to the NMJ in ALS is due to
intraterminal dysregulation of nerve terminals without essential
changes in their morphology (Figure 1B). Underlying mecha-
nisms probably include dysfunctional mitochondria, intracellu-
lar Ca2+ and ROS. Elevated intraterminal Ca2+ can eventually
support enhanced Ca2+-dependent evoked release during early
stage of ALS (Rocha et al., 2013). The other model (Figure 1C),
applicable to the later stage of ALS, suggests that the main damage
results from the accumulation of toxic ROS, inflammatory factors,
including glial transmitters from local Schwann cells and invasive
immune cells, and absence of neuroprotective trophic factors.
However, these two scenarios most likely co-exist within the
same muscle during ALS progression providing a heterogeneous
picture of morphological and functional changes (Rocha et al.,
2013) and resulting in the pitfalls of the monotherapy in this
disease.

AXONAL TRANSPORT, PRESYNAPTIC MITOCHONDRIA AND
ROS-INDUCED ROS RELEASE
Correct spatial distribution of mitochondria within a cell is an
instrumental prerequisite for normal physiology. In neurons,
mitochondria are subjected to both anterograde and retrograde
axonal transport, which in case of motoneurons covers substan-
tial distances. The transport of mitochondria in axons is driven
along microtubules by kinesin and dynein motors (Pilling et al.,
2006).

Accumulation of mitochondria at presynaptic nerve termi-
nals of motoneurons is thought to support synaptic function
through ATP production and partially take part in Ca2+ buffer-
ing during neurotransmission (Figure 1; Chouhan et al., 2010).
Mitochondria are connected to the presynaptic membrane by
a complex cytoskeletal superstructure, which is connected with
nerve terminal filamentous linkages between synaptic vesicles,
providing polarized organization for mitochondrial crista struc-
tures (Perkins et al., 2010). Defects in neuronal mitochondrial
morphology and axonal transport have been demonstrated in

primary neuronal cultures from ALS model animals (De Vos et al.,
2007; Magrané et al., 2012). Importantly, these abnormalities are
also observed in vivo in both SOD1 and TDP43 ALS mouse mod-
els, indicating that they are common denominators of different
genetic forms of ALS (Magrané et al., 2014).

The high order of mitochondrial organization at presynap-
tic nerve terminals implies their participation in coordinated
responses to various stimuli. One of the fundamental oxidative
stress responses in mitochondria is mitochondrial permeability
transition (MPT) pore opening, followed by sudden collapse of
membrane potential and burst of ROS production, which might
contribute to the spreading of MPT in bystanding mitochon-
dria, and lead to the effect known as ROS-induced ROS release
(Zorov et al., 2000). The latter can contribute to the functional
dysregulation within the nerve terminal during the early stage
of ALS (Figure 1B). Our studies have demonstrated that SOD1
activity is increased in ALS animal spinal cord mitochondria,
and causes elevated hydroperoxide production (Ahtoniemi et al.,
2008; Goldsteins et al., 2008). Augmented hydroperoxide flux
from presynaptic mitochondria might contribute not only to
reduced probability of quatal ACh release but also to the desyn-
chronization of neurotransmitter release at NMJ (Tsentsevitsky
et al., 2013) which would additionally diminish synaptic efficacy
(Figure 1C). Apart from presynaptic location, muscle mitochon-
dria and activity of NADPH oxidase in TSCs can serve as an
additional source of ROS (Figure 1).

NEUROINFLAMMATION, IMMUNE CELLS AND OXIDATIVE
STRESS IN SPINAL CORD IN ALS
Oxidative stress, such as free radical damage and abnormal free
radical metabolism, is evident in sALS and fALS patients (Shaw
et al., 1995; Ferrante et al., 1997; Smith et al., 1998; Chang et al.,
2008). The aberrant activity of mSOD1 leads to oxidative damage
(Wiedau-Pazos et al., 1996; Crow et al., 1997) and other ALS-
linked proteins, such as mutant TDP-43, promote oxidative stress
in a motoneuron cell line (Duan et al., 2010). Excitotoxicity and
oxidative stress caused by astrocytes arises from aberrant gluta-
mate receptor function which leads to misregulated glutamate
homeostasis (Rothstein et al., 1992). Oxidative stress promotes
tissue damage by exacerbating and interacting with other patho-
logical events that promote motoneuron degeneration.

Inflammation, which is an additional source of ROS, is evi-
dent in ALS patients and mSOD1 mice; microglia are acti-
vated and proliferating whereas the T cells and dendritic cells
infiltrate into the spinal cord (Engelhardt et al., 1993; Henkel
et al., 2004, 2006). Moreover, there is marked increase in pro-
inflammatory cytokines and enzymes, such as interleukin-6 (IL-
6), monocyte chemoattractant protein-1 (MCP-1), IL-8, and
cyclooxygenase-2 (Cox-2) (Sekizawa et al., 1998; Almer et al.,
2001, 2002; Elliott, 2001; Hensley et al., 2002; Kuhle et al., 2009).
Astrocytes expressing mSOD1 are also prone to exhibit an acti-
vated pro-inflammatory state (Hensley et al., 2006; Di Giorgio
et al., 2008; Marchetto et al., 2008). Activated pro-inflammatory
M1 microglia cause ROS and glutamate excitotoxicity induced
motoneuron injury and death (Zhao et al., 2004). MSOD1
induced oligodendrocyte dysfunction drives demyelination in the
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spinal cord and accelerates motoneuron degeneration (Kang et al.,
2013).

Immune responses are also activated in peripheral tissues
of ALS patients (Mantovani et al., 2009). Regulatory T (Treg)
cells lower neuroinflammation through microglia by inducing
secretion of anti-inflammatory cytokines IL-10 and transforming
growth factor-β (TGF-β; Kipnis et al., 2004; Mantovani et al.,
2009). In ALS patients, elevated levels of Treg cells and CD4 T
cells in blood correlate with slow disease progression (Beers et al.,
2011). T cell infiltration in the spinal cord in mSOD1 mice is
amplified during the presymptomatic stage and the number of T
cells in the spinal cord increases as the disease progresses (Beers
et al., 2008; Chiu et al., 2008). The spinal cord T cell population
is mainly composed of helper CD4 cells. The proportion of
cytotoxic CD8 becomes prominent at the end-stage. This supports
the assumption that during the early stages of the disease, there
is a systemic combat to maintain neuroprotective responses, but
as the disease aggravates, the immune response shifts towards
cytotoxic.

Macrophages infiltrate ventral spinal roots, peripheral motor
nerves and skeletal muscles in ALS mouse models (Chiu et al.,
2009; Graber et al., 2010). The role of macrophages in affected
tissues in ALS mice appears to be the phagocytic removal of
debris from axonal degeneration. Thus, activated macrophages
could contribute to ROS production in axons and muscle in ALS
and along with other inflammatory agents participate in trigger-
ing of sprouting in nerve terminals. However, in ALS mice the
majority of activated macrophages accumulated within fascicles
of motoneurons in the peripheral tissues and were only rarely
found adjacent to end-plate of NMJs. It is therefore unlikely, that
macrophages directly contribute to oxidative damage of NMJs in
ALS.

Interestingly, in ALS motoneurons in the brainstem oculomo-
tor nuclei and Onuf ’s nucleus in the sacral spinal cord are pre-
served and selective vulnerability seems to be related to oxidative
stress. Reduced capability to maintain calcium homeostasis and
disturbed mitochondrial function predispose specific motoneu-
rons to degeneration in ALS (Vanselow and Keller, 2000; Jaiswal
and Keller, 2009). In addition, the most vulnerable motoneurons
are more prone to endoplasmic reticulum stress and exhibit
increased susceptibility to excitotoxicity (Saxena et al., 2009;
Brockington et al., 2013).

GENDER DEPENDENCE OF ALS AND OXIDATIVE STRESS
ALS affects men more than women, with earlier age of onset
for men as well a tendency for spinal initiation of the disease
whereas in women it is more commonly bulbar (McComb and
Henderson, 2010). Most of these features were also observed
in mSOD1 animals (Veldink et al., 2003; Suzuki et al., 2007).
Gender specific differences are also detected at the synapses:
Synaptic vesicle release being more frequent in females’ end-
plate with impairment only observed in males (Naumenko et al.,
2011). Specific interneurons control motoneuron excitability via
specialized cholinergic synaptic boutons: C-boutons. In ALS there
is no gender difference in the number of C-boutons, but their size
is bigger in male mSOD1 mice (Herron and Miles, 2012).

The most obvious explanation for gender differences is a
protective effect of estrogen. ROS damage in muscle is limited
in young women. Even aging women have significantly less lipid
peroxidation, protein carbonylation and mitochondrial DNA
damage than men (Pansarasa et al., 2000). Several estrogen-
controlled pathways might protect females against fast neuro-
muscular degeneration in ALS, for instance estrogen-mediated
cyclophilin D prevention of mitochondrial calcium overload (Kim
et al., 2012). However, experiments with ovariectomized mSOD1
mice or rats with and without supplemental 17β-estradiol do
not support the idea that estrogen could explain the gender
differences in ALS (Choi et al., 2008; Hayes-Punzo et al., 2012).

Additional evidence for gender differences in the ROS balance
are coming to light, for instance, lower blood level of uric acid
(UA) were observed in ALS patients (Keizman et al., 2009). UA, a
scavenger of NO radical and superoxide, reduces damage to cells,
by preventing protein nitration on tyrosine residues by perox-
ynitrites, and higher level of UA in blood increases likelihood of
longer survival in men (Paganoni et al., 2012).

Gender differences are also striking in the response to treat-
ments. Examples of therapeutic approaches with gender bias are
specific inhibition of spinal cord microglial P2X7, which appears
to increase the duration of life without affecting the age of symp-
tom onset in male (Cervetto et al., 2013) and G-CSF treatment
which delays disease progression in male mSOD1 mice (Pitzer
et al., 2008; Naumenko et al., 2011; Pollari et al., 2011).

PROMISING THERAPEUTIC APPROACHES AND CHALLENGES
OF THE ANTIOXIDANT THERAPY IN ALS
Several molecules with antioxidant capabilities have failed in
clinics after showing promise in animal models (Gordon, 2013;
Musarò, 2013; Pandya et al., 2013; Sreedharan and Brown, 2013).
Still, riluzole is the only approved drug that delays the progression
of ALS.

The translational failures in ALS can be explained by the same
arguments as in other neurodegenerative diseases: (a) animal
models represent only a fraction of genetic variations among ALS
patients and do not model well sALS; (b) the preclinical studies
are characterized by inadequate randomization, blinding, statis-
tical power, control cohorts and consideration of comorbidities;
and (c) optimal dosing and administration route in clinics are
unknown, flaws in patient stratification or identification of proper
patients, and insufficient samples size (Ubogu, 2012; Planas,
2013).

Perhaps the most important reason for the translation block is
that by the time of diagnosis, ALS has already progressed too far,
making prevention of further deterioration challenging. The late
diagnosis allows multiple disease mechanisms to accelerate their
contributions to motoneuron death overriding the regenerative
mechanisms and preconditions. Also, nerve terminal retraction,
axonal degeneration and eventual neuronal death may take weeks
or months before their deteriorating effects become clinically
noticeable (Coleman and Freeman, 2010; Sreedharan and Brown,
2013). The late time of diagnosis is an especially important
concern for protection of NMJ functions, as NMJ degeneration
is among the earliest pathological alterations in ALS.
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During the presymptomatic phase of the ALS, oxidative stress
may be triggered by increased production of superoxide and
nitric oxide in neurons, central and peripheral glia and even
in muscle cells. Also, levels of a major intracellular antixodiant,
glutathione, reduce early in ALS tissues. At the same time, blood-
spinal cord barrier appears to become leaky and infiltration of
inflammatory cells into the spinal cord, motor nerves and muscles
contributes to oxidative stress present prior to the disease onset
(Henkel et al., 2004; Chang et al., 2008; Chiu et al., 2009; Chen
et al., 2010; Halter et al., 2010; Dibaj et al., 2011; Drechsel
et al., 2012; Winkler et al., 2014). In fact, several findings favor
the idea of linking ALS therapy to the oxidative stress-related
degeneration of NMJ. First, normal SOD1 activity is required
for maintenance of NMJ function in aged rodents (Sakellariou
et al., 2014) and, in a zebrafish model expressing mSOD1 in
physiological levels, NMJ has increased susceptibility to oxidative
stress showing early morphological alterations (Da Costa et al.,
2014). Second, even though pathological changes in synapses
and axons occur early during the ALS pathogenesis, these self-
destructive mechanisms could be delayed by correcting molecular
environment (Sreedharan and Brown, 2013). Third, the NOX-
mediated increase in superoxide production takes place in neural
cells in mSOD1 models of ALS (Harraz et al., 2008; Jaronen et al.,
2013). Even though is it not known whether NOX is expressed
in Schwann cells around NMJs, NOX could well contribute to
oxidative deterioration of NMJ in ALS, as muscle cells express
various isoforms of NOX. While it is unclear whether ALS-
linked mutations or conditions in sALS could trigger activa-
tion of NOX in skeletal muscles, inhibitors of NOX activation
are known to provide protection in ALS models. Considering
that NOX activation pathway is a readily druggable target, the
role of NOX in NMJ degeneration in ALS models is worth
exploring (Sullivan-Gunn and Lewandowski, 2013). Finally, it
is of interest that Vitamin D, an essential dietary vitamin with
multiple physiological functions, has been demonstrated to influ-
ence several aspect of ALS pathology, including skeletal mus-
cle strength and oxidative stress (Gianforcaro and Hamadeh,
2014).

Overall, recent research on NMJ, oxidative stress and inflam-
mation in ALS models warrant further preclinical investigation
of the possibility of developing an ALS therapy by targeting
the signaling pathways of NMJ dysfunction, provided that
early diagnosis of ALS and biomarkers for NMJ dysfunctions
become available (Figure 1). While keeping in mind the pre-
vious failures in clinical trials for ALS, it is evident that
multiple mechanisms, including oxidative stress in the center,
contribute to ALS pathogenesis. The concept of combination
therapy is not novel in the field of neurodegenerative diseases,
but it is still a valid approach once most of the key targets
of the disease mechanisms, including oxidative stress become
identified.
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