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INTRODUCTION

Age-related neurodegenerative diseases have been associated with chronic neuroinflam-
mation and microglia activation. However, cumulative evidence supports that inflammation
only occurs at an early stage once microglia change the endogenous characteristics
with aging and switch to irresponsive/senescent and dystrophic phenotypes with disease
progression. Thus, it will be important to have the means to assess the role of reactive
and aged microglia when studying advanced brain neurodegeneration processes and age-
associated related disorders. Yet, most studies are done with microglia from neonates
since there are no adequate means to isolate degenerating microglia for experimentation.
Indeed, only a few studies report microglia isolation from aged animals, using either
short-term cultures or high concentrations of mitogens in the medium, which trigger
microglia reactivity. The purpose of this study was to develop an experimental process to
naturally age microglia after isolation from neonatal mice and to characterize the cultured
cells at 2 days in vitro (DIV), 10 DIV, and 16 DIV. We found that 2 DIV (young) microglia
had predominant amoeboid morphology and markers of stressed/reactive phenotype. In
contrast, 16 DIV (aged) microglia evidenced ramified morphology and increased matrix
metalloproteinase (MMP)-2 activation, as well as reduced MMP-9, glutamate release and
nuclear factor kappa-B activation, in parallel with decreased expression of Toll-like receptor
(TLR)-2 and TLR-4, capacity to migrate and phagocytose. These findings together with the
reduced expression of microRNA (miR)-124, and miR-155, decreased autophagy, enhanced
senescence associated beta-galactosidase activity and elevated miR-146a expression, are
suggestive that 16 DIV cells mainly correspond to irresponsive/senescent microglia. Data
indicate that the model represent an opportunity to understand and control microglial aging,
as well as to explore strategies to recover microglia surveillance function.

Keywords: autophagic capacity, in vitro cell aging, microglia, microRNAs, migration, phagocytosis, reactivity,
senescence

and M2 phenotypes can be considered a desirable therapeutic

Microglia are the first line of defense against brain injury. In the
healthy brain, microglia actively survey surrounding parenchyma
via dynamic movement of processes (Nimmerjahn etal., 2005)
and are kept in a relatively quiescent state, in part due to spe-
cific signals derived from neurons and astrocytes (Cardona etal.,
20065 Lyons etal., 2007). Upon brain injury or changes of cen-
tral nervous system (CNS) homeostasis, microglia are capable
of acquiring diverse and complex phenotypes, allowing them to
participate in the cytotoxic response, immune regulation, and
injury resolution. The classical pro-inflammatory M1 pheno-
type is cytotoxic and release pro-inflammatory cytokines while
the M2 polarization contributes to neuroprotection through
the release of anti-inflammatory cytokines and growth factors
(Chhor etal., 2013; Evans etal., 2013). These transitional phe-
notypes may exert beneficial or destructive effects depending
on the stimuli, their duration and the environment they
encounter (Schwartz etal., 2006). Thus, balance between M1

goal.

Age-related CNS disorders have been related with chronic
and progressive neuronal loss but also with chronic mild neu-
roinflammation involving activated/primed microglia (Maezawa
etal., 2011; Williamson etal., 2011). These cells showed to switch
from M2 to M1 phenotype with age and disease progression
(Solito and Sastre, 2012; Varnum and Ikezu, 2012). However,
other studies claim that neuroinflammation is only present in
the early stages of Ahlzheimer’s disease (AD), once lately disap-
pears (Wojtera etal., 2012) and that, instead, microglia become
senescent/dystrophic (Graeber and Streit, 2010) and less respon-
sive to stimulation with age (Njie etal., 2012; Streit and Xue,
2012). The dysmorphic characteristics of aged microglia suggested
that, rather than maintaining an overactivated state, microglia
may display decreased ability to mount a normal response to
injury. Indeed, reduced migration (Damani et al., 2011), clearance
(Li, 2013) and production of neurotrophic factors (Ma etal,
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2013), as well as inability to shift from a pro-inflammatory to
an anti-inflammatory state to regulate injury and repair have
been observed in aged microglia (Norden and Godbout, 2013)
and related with senescence (Streit and Xue, 2012). These changes
in microglia potentially contribute to an increased susceptibility
and neurodegeneration as a function of age. Accordingly, non-
steroidal anti-inflammatory drugs (NSAIDs) were only successful
when administered before the development of neurodegeneration
(Weggen etal., 2001). If administered in later stages of disease
they showed to be detrimental (Martin etal., 2008), reinforcing
that microglia may switch from a reactive to an irresponsive phe-
notype along the progression of AD and other age-associated
CNS disabilities. Restraining of aged microglia may weak even
more the already decreased neuroprotective properties of the cell
in removing extracellular protein aggregates. These changes in
microglia neuroprotective properties will potentially contribute
to enhance neurodegeneration and susceptibilities with aging
and reveal the need of adequate experimental models to fol-
low the changes in microglia performance accordingly to cell
senescence.

Most of the work intended to evaluate the neurodegenera-
tive network associated with aging has used cultures of microglia
derived from early postnatal brains, which differ from adult
or aged ones (Harry, 2013). Recently, a few studies compared
behavior of microglia isolated from animals at different ages.
In these studies young and aged microglia were isolated using
a Percol-based method (von Bernhardi etal., 2011; Njie etal,
2012) or distinctly isolated using a mild-trypsinization method
for embryonic/neonatal microglia and Percol-based method for
adult and aged microglia (Lai etal., 2013). In addition, these cells
were analyzed either 24-48 h after isolation (Njie etal., 2012; Lai
etal,, 2013) or following trypsinization when kept in culture for
several weeks in the presence of conditioned medium contain-
ing increased levels of mitogens (von Bernhardi etal., 2011). Such
methods may promote microglia activation and bias the transla-
tion of culture findings, since it has been suggested that microglia
may need some time in culture to recover its quiescent state
(Cristovao etal., 2010). Moreover, there are no means to isolate
degenerating microglia for experimentation (Njie et al.,2012) once
only the more resistant ones will survive to the isolation procedure.
Nevertheless, the hypothesis of microglia senescence during aging
and related neurodegenerative diseases emerged as a key determi-
nant (Luo etal., 2010). In vitro aging of astrocytes and neurons has
demonstrated to be associated with different cell response to stim-
uli, with the younger cells evidencing an increased reactivity when
compared to the older ones (Falcao etal., 2005, 2006). In addition,
it was shown that the repeated stimulation of the microglia cell line
BV2 with lipopolysaccharide (LPS) lead to cell senescence corrob-
orating the idea that sustained neuroinflammation may ultimately
contribute to a microglia senescent phenotype (Yu etal., 2012).
Therefore, we decided to isolate microglia from neonatal mice and
culture cells from 2 days in vitro (DIV) until 16 DIV, similarly
to what we previously did with neurons and astrocytes, and to
explore aging-related differences in functional response charac-
teristics associated to “young” and “aged” microglia phenotypes.
We assessed changes in microglia morphology, nuclear factor
kappa-B (NF-kB) signaling pathway activation, Toll-like receptor

(TLR) expression, phagocytic ability and migration capacity, as
well as cell death, inflammatory microRNA (miRNA) profiling,
autophagy and senescence-associated B-galactosidase (SA-B-gal)
in mice primary cortical cell cultures maintained up to 16 DIV.

MATERIALS AND METHODS

ANIMALS

Animal care followed the recommendations of the European
Convention for the Protection of Vertebrate Animals Used for
Experimental and Other Scientific Purposes (Council Directive
86/609/EEC) and National Law 1005/92 (rules for protection of
experimental animals). All animal procedures were approved by
the Institutional animal care and use committee. Every effort was
made to minimize the number of animals used and their suffering.

PRIMARY CULTURE OF MICROGLIA

Mixed glial cultures were prepared from 1-to-2 day-old CD1 mice
as previously described (McCarthy and de Vellis, 1980), with minor
modifications (Gordo etal., 2006). Cells (4 x 10° cells/cm?) were
plated on uncoated 12-well tissue culture plates (with 18 mm
coverslips) or 75-cm? culture flasks in culture medium [DMEM-
Ham’s F-12 medium supplemented with 2 mM L-glutamine,
1 mM sodium pyruvate, non-essential amino acids 1x, 10% fetal
bovine serum (FBS), and 1% antibiotic-antimycotic solution] and
maintained at 37°C in a humidified atmosphere of 5% CO;.

Microglia were isolated as previously described by Saura etal.
(2003). Briefly, after 21 days in mixed culture, microglia were
obtained by mild trypsinization with a trypsin-EDTA solution
diluted 1:3 in DMEM-Ham’s F12 for 45-60 min. The trypsiniza-
tion resulted in detachment of an upper layer of cells containing
all the astrocytes, whereas the microglia remained attached to
the bottom of the well. The medium containing detached cells
was removed and the initial mixed glial-conditioned medium was
added.

Mixed cultures were maintained in culture for 21 days to
achieve the maximal yield and purity of the cultures. In fact, con-
tamination by astrocyte and neurons was less than 2 and 0%,
respectively, as assessed by immunocytochemical staining with a
primary antibody against GFAP and MAP-2, respectively, followed
by a species-specific fluorescent-labeled secondary antibody (Silva
etal., 2010).

CHARACTERIZATION OF MICROGLIA ALONG THE DAYS IN CULTURE
After mild trypsinization, attached cells on uncoated 18-mm
coverslips were maintained in culture until reaching 2, 10, or 16
DIV for characterization, with medium replaced every 4 days.
Microglia characterization was first performed considering cell
morphology and NF-kB activation, at these three time-points, and
thereafter only at 2 and 16 DIV for additional properties related
with migration ability, phagocytic capacity, differential cell reactive
ability and markers of cell senescence.

CELL MORPHOLOGICAL ANALYSIS

For morphological analysis, cells were fixed for 20 min with freshly
prepared 4% (w/v) paraformaldehyde in phosphate-buffer saline
(PBS) and a standard immunocytochemical technique was per-
formed using a primary antibody raised against Iba-1 (rabbit,
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1:250; Wako Pure Chemical Industries Ltd, Osaka, Japan), and
a secondary Alexa Fluor 594 goat anti-rabbit (1:1000; Invitrogen
Corporation, Carlsbad, CA, USA). To identify the total number of
cells, microglial nuclei were stained with Hoechst 33258 dye. Flu-
orescence was visualized using an AxioCam HRm camera adapted
to an AxioSkope® microscope (Zeiss). Pairs of U.V. and red-
fluorescence images of ten random microscopic fields (original
magnification: 400x ) were acquired per sample. To quantitatively
characterize microglia morphology we used the particle measure-
ment feature in ImageJ (1.47v, USA) to automatically measure
the 2D area, perimeter, and Feret’s diameter of single microglia
cells. Feret’s (maximum) diameter, a measure of cell length, is the
greatest distance between any two points along the cell perimeter.
We also evaluated the transformation index, first defined by Fujita
etal. (1996) as [perimeter of cell (um)]?/4m [cell area (m?)],
which categorizes microglia ramification status. A cell with long
processes and a small soma exhibits a large index that is dependent
on cell shape but independent of cell size.

DETECTION OF NF-«B ACTIVATION

For immunofluorescence detection of NF-kB nuclear transloca-
tion, cells were fixed as above and a standard indirect immunocyto-
chemical technique was carried out using a polyclonal rabbit anti-
p65 NF-kB subunit antibody (1:200; Santa Cruz Biotechnology®,
CA, USA) as the primary antibody, and an anti-rabbit Cy2 as the
secondary antibody (1:1000; GE Healthcare, Chalfont St. Giles,
UK). Microglial nuclei were stained with Hoechst 33258 dye. Flu-
orescence was visualized and acquired as above. NF-kB positive
nuclei were identified by localization of the NF-kB p65 subunit
staining exclusively at the nucleus and total cells were counted
to determine the percentage of NF-kB-positive nuclei at each cell
DIV group.

DETERMINATION OF CELL DEATH

We used phycoerythrin-conjugated annexin V (annexin V-PE) and
7-amino-actinomycin D (7-AAD; Guava Nexin® Reagent, #4500-
0450, Millipore) to determine the percentage of viable, early-
apoptotic and late-apoptotic/necrotic cells by flow cytometry.
After incubation adherent microglia were collected by trypsiniza-
tion and added to the cells present in the incubation media.
After centrifugation cells were resuspended in PBS containing 1%
bovine serum albumin, stained with annexin V-PE and 7-AAD,
following manufacturer’s instructions, and analyzed on a Guava
easyCyte 5HT flow cytometer (Guava Nexin® Software mod-
ule, Millipore), as previously described (Barateiro etal., 2012).
Three populations of cells can be distinguished by this assay:
viable cells (annexin V-PE and 7-AAD negative), early apop-
totic cells (annexin V-PE positive and 7-AAD negative), and
late stages of apoptosis or dead cells (annexin V-PE and 7-AAD
positive).

ASSESSMENT OF MICROGLIA MIGRATION

Cell migration assays were performed in a 48-well microchemo-
taxis Boyden chamber (Neuro Probe, Gaithersburg, MD, USA),
as previously described (Miller and Stella, 2009), with minor
modifications. The bottom wells, filled with ATP (10 wM), a
known chemoattractant for microglia migration, served as positive

controls. The 8 wm diameter polycarbonate membranes with
polyvinylpyrrolidone (PVP) surface treatment was equilibrated
in control medium and after chamber set up, 50 pl of cell suspen-
sion containing 2 x 10* cells was added to each top well. After 6 h
incubation in a CO; incubator at 37°C for microglial migration,
membrane was fixed with cold methanol and cells stained with
10% Giemsa in PBS. Non-migrated cells on the upper side of the
membrane were wiped off with a filter wiper. The rate of migration
was determined by counting cells on the lower membrane surface
in 10 microscopic fields to cover all the well, acquired using a Leica
DFC490 camera adapted to an AxioSkope HBO50 microscope. For
each experiment, at least three wells per condition were analyzed.

EVALUATION OF PHAGOCYTIC PROPERTIES OF MICROGLIA

To evaluate the phagocytic capacity of the primary microglial
cultures, cells collected at 2 and 16 DIV were incubated with
0.0025% (w/w) 1 pm fluorescent latex beads (Sigma Chemical
Co., St. Louis, MO, USA) for 75 min at 37°C and fixed with
freshly prepared 4% (w/v) paraformaldehyde in PBS. Microglia
were stained for Iba-1, nuclei counterstained with Hoechst dye,
and fluorescence was visualized and acquired as above. The num-
ber of ingested beads per cell was counted. Results are presented
as mean number of ingested beads per cell and as the percentage
of cells that phagocytosed <5, 5-10, or >10 beads.

DETERMINATION OF SUPPLEMENTARY FEATURES OF MICROGLIA
REACTIVE ABILITY

We used several markers to assess microglia reactive ability, such as
the concentration of glutamate and the activation of matrix met-
alloproteinase (MMP)-2 and MMP-9 in the extracellular media,
together with the expression of TLR-2, TLR-4, miR-124 and
miR-155.

Glutamate content in the media derived from microglial cul-
tures was determined as described before (Silva etal., 2012) by
an adaptation of the L-glutamic acid kit (Roche), using a 10-
fold volume reduction. The reaction was performed in a 96-well
microplate and the absorbance measured at 490 nm. A calibra-
tion curve was used for each assay. All samples and standards were
analyzed in duplicate and the mean value was used.

Detection of MMPs activity was performed as previously men-
tioned (Silva etal.,, 2010). Aliquots of culture supernatant were
analyzed by SDS-PAGE zymography in 0.1% gelatine-10% acry-
lamide gels under non-reducing conditions. After electrophoresis,
gels were washed for 1 h with 2.5% Triton X-100 (in 50 mM Tris
pH7.4; 5 mM CaCly; 1 M ZnCl,) to remove SDS and renature
the MMP species in the gel. Then the gels were incubated in the
developing buffer (50 mM Tris pH7.4; 5 mM CaCl,; 1 uM ZnCl,)
overnight to induce gelatine lysis. For enzyme activity analysis,
the gels were stained with 0.5% Coomassie Brilliant Blue R-250
and destained in 30% ethanol/10% acetic acid/H,O. Gelatinase
activity, detected as a white band on a blue background, was quan-
tified by computerized image analysis and normalized with total
cellular protein.

Determination of TLR-2 and TLR-4 mRNA expression
was performed by RealTime PCR as usual in our labora-
tory (Barateiro etal., 2013). Total RNA was extracted from
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microglia using TRIzol® (LifeTechnologies), according to manu-
facturer’s instructions. Total RNA was quantified using Nanodrop
ND-100 Spectrophotometer (NanoDrop Technologies, Wilm-
ington, DE, USA). Aliquots of 0.5 pg of total RNA were
treated with DNase I and then reverse transcribed into cDNA
using oligo-dT primers and SuperScript II Reverse Transcriptase
under the recommended conditions. Quantitative RealTime-
PCR (qRT-PCR) was performed using B-actin as an endoge-
nous control to normalize the expression level of TLR-2 and
TLR-4 transcription factors. The following sequences were
used as primers: TLR-2 sense 5'-TGCTTTCCTGCTGAAGATTT-
3’ and anti-sense 5-TGTACCGCAACAGCTTCAGG-3'; TLR-4
sense 5'-ACCTGGCTGGTTTACACGTC-3' and anti-sense 5'-
GTGCCAGAGACATTGCAGAA-3'; B-actin sense 5'-GCTCCGG-
CATGTGCAA-3' and anti-sense 5’ -AGGATCTTCATGAGGTAGT-
3’. qRT-PCR was performed on a 7300 Real time PCR System
(Applied Biosystems) using a SYBR Green qPCR Master Mix
(Thermo Scientific). The PCR was performed in 96 well plates
with each sample performed in triplicate, and no-template con-
trol was included for each amplificate. QqRT-PCR was performed
under optimized conditions: 94°C at 3 min followed by 40
cycles at 94°C for 0.15 min, 62°C for 0.2 min and 72°C for
0.15 min. In order to verify the specificity of the amplifica-
tion, a melt-curve analysis was performed, immediately after the
amplification protocol. Non-specific products of PCR were not
found in any case. Relative mRNA concentrations were calcu-
lated using the Pfaffl modification of the AACT equation (CT,
cycle number at which fluorescence passes the threshold level
of detection), taking into account the efficiencies of individual
genes. The results were normalized to B-actin in the same sam-
ple and the initial amount of the template of each sample was
determined as relative expression by the formula 2-AACT. ACT
is a value obtained, for each sample, by the difference between the
mean CT value of each gene and the mean CT value of p-actin.
AACT of one sample is the difference between its ACT value and
ACT of the sample chosen as reference, in our case the 2 DIV
cells.

Expression of miR-124 and miR-155, which has been related
with microglia activation phenotype, was performed by qRT-PCR.
Total RNA was extracted from primary microglia cultures using
the miRCURY™ Isolation Kit — Cells (Exiqon), according to
the manufacturer’s recommendations for cultured cells. Briefly,
after cell lysis, the total RNA was adsorbed to a silica matrix,
washed with the recommended buffers an eluted with 35 L] RNase-
free water by centrifugation. After RNA quantification, cDNA
conversion for miRNA quantification was performed with the
universal cDNA Synthesis Kit (Exiqon) using 5 ng total RNA
according to the following protocol: 60 min at 42°C followed
by heat-inactivation of the reverse transcriptase for 5 min at
95°C. qQRT-PCR was performed using an Applied Biosystems 7300
Sequence Detection system and 96-well plates. For miRNA quan-
tification the miRCURY LNA™ Universal RT microRNA PCR
system (Exiqon) was used in combination with pre-designed
primers (Exiqon) for miR-124, miR-155 and SNORD110 (ref-
erence gene). The reaction conditions consisted of polymerase
activation/denaturation and well-factor determination at 95°C
for 10 min, followed by 50 amplification cycles at 95°C for

10 s and 60°C for 1 min (ramp-rate of 1.6°/s). The miRNA
fold change with respect to 2 DIV cells was determined by the
Pfaffl method, taking into consideration different amplification
efficiencies of miRNAs in all experiments. The amplification effi-
ciency for each target was determined according to the formula:
E = 1019 — 1, where S is the slope of the obtained standard
curve.

ASSESSMENT OF MICROGLIA SENESCENCE

Microglia senescence was evaluated by determining the activity
of SA-B-gal, expression of miR-146a and capacity to undergo
autophagy. Microglial SA-f-gal activity was determined using
the Cellular senescence assay kit (Millipore), according to the
manufacturer instructions. Microglial nuclei were counterstained
with hematoxylin. Brightfield microscopy images of 10 random
microscopic fields were acquired per sample. The number of
turquoise stained microglia (SA-B-gal-positive cells) was counted
to determine the percentage of senescent cells.

To confirm the senescent status of microglia it was also
assessed the expression of the senescence-related miR-146a by
qRT-PCR. Total RNA was extracted and expression of miR-146a
was assayed using pre-designed primers (Exiqon) for miR-146a
and SNORDI110 (reference gene) as described above.

Autophagy was determined by both immunocytochemistry
of microtubule-associated-protein-light-chain-3 (LC3) punctate
and Western Blot detection of LC3 and Beclin-1 bands. For
immunocytochemistry, cells were fixed as above and standard
immunocytochemical technique was performed using a pri-
mary antibody raised against LC3 protein (rabbit, 1:500; Cell
Signaling Technology Inc., MA, USA), and a secondary Alexa
Fluor 488 goat anti-rabbit antibody (1:1000; Invitrogen Cor-
poration, CA, USA). To identify the total number of cells,
microglial nuclei were stained with Hoechst 33258 dye. Flu-
orescence was visualized and images acquired as above. The
method is based on the increased localization of LC3 autophago-
somes when autophagy is induced. Thus, the punctate flu-
orescence produced by LC3 staining provides a sensitive and
specific indicator of autophagy (Aoki etal., 2008). Microglial
cells presenting LC3 punctate were counted and the percent-
age of LC3 punctate-positive cells relatively to total microglia
was determined. Detection of LC3-II, which is associated with
autophagic vesicles (Kabeya etal., 2000), and Beclin-1 bands was
processed by Western Blot as usual in our laboratory (Barateiro
etal, 2012). Cells were washed in ice-cold PBS, lysed in a
buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl,
1 mM Na2EDTA, 1 mM ethylene glycoltetraacetic acid, 1%
(v/v) Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM
p-glycerophosphate, 1 mM Na3VO4, 1 pg/mL leupeptine, and
1 mM phenylmethylsulfonyl fluoride, and sonicated for 20 s.
The lysate was centrifuged at 14,000 g for 10 min at 4°C
and the supernatants were collected and stored at —80°C. Pro-
tein concentrations were determined using BioRad protein assay
(BioRad). Cell extracts containing equal amounts of protein
(50 pg) were separated on sodium dodecyl sulfate-polyacrylamide
gel electrophoresis and transferred to a nitrocellulose mem-
brane. The membranes were blocked with 5% non-fat milk,
incubated with the primary antibody overnight at 4°C [rabbit
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anti-LC3B (1:1000; #2775, Cell Signaling), mouse anti-Beclin-
1 (1:500; #MABC34, MerckMillipore) or mouse anti-B-actin
(1:5,000; Sigma)], and then with a horseradish peroxidase-labeled
secondary antibody for 1 h at room temperature. After exten-
sive washes, immunoreactive bands were detected by LumiGLO®
(Cell Signaling, Beverly, MA, USA) and visualized by autora-
diography with Hyperfilm ECL. Results were normalized to
B-actin expression and expressed as fold vs. vehicle-treated
cells.

STATISTICAL ANALYSIS

Significant differences between the parameters evaluated were
determined by the two-tailed Student’s t-test performed on the
basis of equal and unequal variance, as appropriate. Comparison
of more than two groups (microglia morphology, NF-kB activa-
tion) was done by ANOVA using GraphPad Prism 5 (GraphPad
Software Inc., San Diego, CA, USA) followed by multiple compar-
isons Bonferroni post hoc correction. p value less than 0.05 were
considered statistically significant.

RESULTS

IN VITRO AGING CHANGES MICROGLIA MORPHOLOGY TO A MORE
RAMIFIED CELL SHAPE

Phenotypic changes in microglia are often accompanied by a
morphological transformation, which has been widely used to
categorize different activation states. In general, ramified qui-
escent microglia changes to an activated state displaying larger
somata and shorter, coarser cytoplasmic processes progressing
to a full amoeboid morphology (Fujita etal., 1996; Kozlowski
and Weimer, 2012). Interestingly, microglia isolated from adult
and aged animals show a propensity to acquire a more rami-
fied morphology with thicker and more extensive processes (Lai
etal., 2013), indicative of a less activated phenotype with age.
So, we started by characterizing microglia morphology at 2, 10,
and 16 DIV, following immunollabeling with the cell-specific
marker Iba-1. As shown in Figure 1, diverse morphological forms
of microglia may be observed throughout cell culturing. The
microglial cells at 2 DIV were almost exclusively amoeboid, most
frequently evidencing an ovoid shape with a few cells presenting
fusiform shape (Figure 1A). At 10 DIV, microglia evidence a
more heterogeneous morphology with an increased number of
cells showing a ramified morphology, bearing typically one or
two large processes or a single large lamellipodia, together with
larger amoeboid forms (Figure 1B). Microglia cultures at 16
DIV still exhibited distinct polarized populations showing rod-
like microglia, bipolar microglia with shorter processes and the
residual amoeboid cells (Figure 1C). To quantitatively evalu-
ate the effect of age on microglia morphology we measured the
area, perimeter, and Feret’s maximum diameter of microglia
(Figures 1D-F). Consistent with a transformation of amoeboid to
microglia ramified forms, the area, perimeter and the Feret’s max-
imum diameter significantly increased at 16 DIV (~2.0-, ~1.6-,
and ~1.6-fold, respectively, p < 0.05). Analysis of the transfor-
mation index value, a dimensionless number that reflects the
degree of process extension, revealed a continuum of microglial
phenotypes between the amoeboid and the ramified morpholo-
gies (Figure 1G). While younger cultures with a predominant

amoeboid microglia shape present a low transformation index,
older cultures with a more heterogeneous morphological reper-
toire, involving cells with amoeboid and ramified morpholo-
gies, displayed an increased transformation index (~1.6-fold,
p < 0.05).

IN VITRO AGING REDUCES MICROGLIA NF-«B ACTIVATION

Microglia play key immune-related duties, intervening through
the production of anti-inflammatory compounds and trophic
factors, by phagocytosing non-functional cells and debris, but
also by releasing pro-inflammatory cytokines, depending on the
stimuli. Production of several cytokines during microglial acti-
vation process is associated with the activation of the inducible
transcription factor NF-kB (O’Neill and Kaltschmidt, 1997). To
explore whether microglia morphological changes along the time
in culture could be related with the cell activation state, we
investigated NF-kB transactivation at the time points used to
assess morphological alterations. Following microglia immunol-
labeling for p65 NF-kB subunit, we determined the number of
NF-kB-positive nuclei as an indicator of its activation (Figure 2).
Our results show that microglia express maximal NF-kB acti-
vation at 2 DIV decreasing significantly thereafter and reaching
minimal levels at 16 DIV (~0.4-fold vs. 2 DIV, p < 0.01). These
results corroborate the previous data in cell morphology and
reinforce that microglia are highly reactive at 2 DIV but reduce
their activation profile to a minimum state at 16 DIV. Thus,
to settle that microglia at these in vitro stages may be associ-
ated to activated (2 DIV) and to age-like irresponsive cells (16
DIV), we additionally explored several markers that have been
linked with age-related alterations in the dynamic behavior of
microglia.

AGED MICROGLIA SHOW A RESIDUAL MIGRATION ABILITY

Microglia directed migration towards regions of injury, also
known as chemotaxis, is a property that seems to be more related
to the classically (M1) and alternatively activated microglia (M2a;
Lively and Schlichter, 2013). The release of chemotactic molecules
upon brain damage, such as ATP, was indicated to participate in
the recruitment of microglia toward lesion sites (Miller and Stella,
2009; Kettenmann etal., 2011). Nevertheless, it was reported that
microglia respond to ATP regardless of their activation state (Lively
and Schlichter, 2013). Hence, we evaluated the ability of 2 and
16 DIV microglia to migrate towards 10 wM ATP. As shown in
Figure 3, 16 DIV microglia revealed a poor ability to migrate to
ATP when compared to 2 DIV cells (~0.1-fold, p < 0.01). This
finding points to a 2 DIV population of reactive microglia with
capacity to migrate to local brain injury in contrast to the aged
cells that lose invasion capacity property.

AGED MICROGLIA SHOW REDUCED PHAGOCYTIC ABILITY

Microglia are considered the professional phagocytes of the CNS,
a function that is crucial along brain development, as well as in
pathology and regeneration (Kettenmann et al., 2011). Therefore,
and based on the previous results, we hypothesized that aging
in culture could also have adverse effects on microglia phagocytic
properties. As expected, 16 DIV microglia showed reduced engulf-
ment ability when compared to 2 DIV cells (Figure 4A). Indeed,
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FIGURE 1 | Microglia morphology changes from amoeboid to a more
ramified shape with cell aging in culture. Microglial cells were kept in
culture for 2, 10, and 16 days in vitro (DIV), immunostained for Iba-1 and
their morphology analyzed. (A) At 2 DIV, microglia were amoeboid with
ovoid shape (arrow) and only a few showed a ramified bipolar morphology
(arrowhead). (B) At 10 DIV, microglia became more heterogeneous with
more cells presenting a ramified morphology (arrowhead), bearing a single
large lamellipodia (*) and some a larger amoeboid shape (arrowhead).
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(C) At 16 DIV cells exhibited distinct polarized populations including
ramified rod-like microglia (arrowhead), bipolar microglia with shorter
processes (*) and residual amoeboid cells (arrow). Microglia area (D),
perimeter (E), and Feret's diameter (F) values were measured using the
computer program ImagedJ; transformation index values (G) were calculated
as [perimeter of cell (wm)]2/4x [cell area (nm?)]. Cultures, n = 4 per group.
Post hoc Bonferroni test, *p < 0.05 and **p < 0.01 vs. 2 DIV cells. Each
value represents the mean + SEM. Scale bar equals 50 pm.
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FIGURE 2 | NF-kB activation decreases with microglia aging in culture.
Microglial cells were kept in culture for 2, 10, and 16 days in vitro (DIV),
immunostained for nuclear factor kappa-B (NF«B; green) and their nuclei
stained with Hoechst dye (blue). (A) Representative images at 2, 10, and
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16 DIV. (B) Cells bearing a NF-kB-positive nuclei were counted and results
expressed in graph bars as mean + SEM. Cultures, n = 4 per group.
Post hoc Bonferroni test, *p < 0.05 and **p < 0.01 vs. 2 DIV cells.
Scale bar equals 50 wm.
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FIGURE 3 | Microglia migration ability decreases with cell aging in
culture. Microglial cells were kept in culture for 2 and 16 days in vitro (DIV)
and then cellular chemotactic migration to 10 wM ATP was evaluated using
the Boyden chamber method. Representative images of 2 (A) and 16 (B)
DIV microglia that migrated towards ATP were visualized by Giemsa
staining. Number of migrated cells was counted and results expressed in
graph bars as mean 4= SEM (C). Cultures, n = 4 per group. t-test,

**p < 0.01 vs. 2 DIV cells. Scale bar equals 50 pm.

the average number of beads phagocytosed by each microglial cell
was markedly reduced from 2 to 16 DIV (~0.5-fold, p < 0.01).
In addition, we observed that aged microglia function less effec-
tively than the 2 DIV cells based on the increased number of
cells that engulf a small number of beads (p < 0.01) together
with a decreased ability to digest 5 or more beads (p < 0.05;
Figure 4B). Altogether these data suggest that in vitro aging of
microglia obtained from neonatal mice change their dynamic
behavior to a more inert or irresponsive phenotype compatible
with an irresponsive/senescent cell.

MICROGLIA RETAIN VIABILITY DURING /N VITRO AGING
Given our previous results we wondered whether the loss of
microglia function by in vitro aging was a consequence of reduced
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FIGURE 4 | Microglia phagocytic ability decreases with cell aging in
culture. Microglial cells were kept in culture for 2 and 16 days in vitro and
then exposed to fluorescent beads to measure their phagocytic capacity.
Number of phagocytized beads per cell (A) and the number of microglia
phagocytosing <5, 5-10, and >10 beads (B) was counted and results
expressed in graph bars as mean + SEM. Cultures, n = 4 per group. t-test
and post hoc Bonferroni test, *p < 0.05 and **p < 0.01 vs. 2 DIV cells.

cell viability. Therefore, we evaluated microglia cell death by flow
cytometry following staining with annexin V-PE and 7-AAD, to
differentiate the total amount of cells (adherent plus detached)
into viable, early apoptotic and late apoptotic/necrotic cells. As
shown in Table 1, we did not observe differences in cell death
between the 2 and the 16 DIV microglia, confirming that changes
in aged microglia response are not due to reduced viability but
rather derive from a switch in cellular phenotype and in its
properties.

SUPPLEMENTARY FEATURES OF MICROGLIA REACTIVE ABILITY ARE
REDUCED IN AGED CELLS

Since 16 DIV microglia have shown decreased ability to respond
to chemotactic signals and to phagocytose extracellular parti-
cles, features that were not related with loss of cell survival
(Table 1), we next decided to evaluate whether microglia aged in
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Table 1 | Viability of culturing microglia.

Viable cells  Early-apoptotic Late-apoptotic/necrotic
cells cells
2DIV 818 (+2.6) 9.7 (£0.3) 6.2 (£2.2)
16 DIV 817 (+£3.0) 1.4 (£1.9) 74 (£1.6)

All results are means + SEM from at least four independent experiments.
Microglial were kept in culture for 2 and 16 DIV. The percentage of viable
microglia and microglia in early- or late-apoptosis/necrosis was determined by
flow cytometry with phycoerythrin-conjugated annexin V (annexin V-PE) and
7-amino-actinomycin D (7-AAD). The three populations were distinguished as fol-
lows: viable cells (annexin V-PE and 7-AAD negative), early apoptotic cells (annexin
V-PE positive and 7-AAD negative), and cells in late stages of apoptosis or dead
cells (annexin V-PE and 7-AAD positive).

culture would also present additional markers of reduced reac-
tive ability. Glutamate was shown to be released by activated
microglia (Noda etal., 1999; Barger etal., 2007; Takaki etal,
2012), reason why we decided to evaluate the extracellular con-
tent of glutamate. As depicted in Figure 5A, 16 DIV microglia
showed to release lower levels of glutamate to the culture media
than the 2 DIV cells (~0.7-fold, p < 0.01). Interestingly, when
evaluating MMP-2 and MMP-9 activation in the extracellular
media we verified that the influence of aging was also notorious
(Figure 5B). Indeed we observed a marked increase of MMP-
2 (~2.2-fold, p < 0.05) and a decrease of MMP-9 (~0.6-fold,
p < 0.05) in the aged microglia when compared to 2 DIV cells.
Again, the expression of TLR-2 and TLR-4 that is associated
with microglia activation (Banks and Robinson, 2010; Liu etal.,
2012) very much decreased in the 16 DIV microglia (~0.4-fold,
p < 0.01, Figure 5C). Recently, immune regulation by miR-124
was indicated to downregulate microglia activation (Ponomarev
etal., 2011) in contrast with miR-155 that was shown to have a
pro-inflammatory role in microglia (Cardoso etal., 2012), to be
related with the M1 phenotype (Ponomarev etal., 2013) and to
be up-regulated upon activation (Lu etal., 2011). Corroborating
previous findings, the decreased expression of both miR-124 and
miR-155 in 16 DIV microglia as compared to 2 DIV cells (~0.5-
and 0.4-fold, respectively, p < 0.01, Figure 5D) further reinforce
that the cells become irresponsive/senescent when maintained in
culture.

16 DIV MICROGLIA SHOW COMMON MARKERS OF SENESCENCE

Senescent microglia have been described to become dysfunctional
and less efficient in their neuroprotective effects during aging in
the human brain and in AD (Streit and Xue, 2012; Krabbe etal.,
2013). The main proposal of the present study was to obtain
an experimental model able to reproduce irresponsive/senescent
microglia that could be used for exploring detrimental effects
by aging and associated-neurodegenerative diseases. As so, we
decided to evaluate if the in vitro aged microglia displayed typ-
ical signs of cell senescence. The senescence phenotype has been
associated with changes in cellular morphology, increased activity
for SA-B-gal, permanent DNA damage, chromosomal instability
and altered inflammatory secretome (Sikora etal., 2011). More
recently, new biomarkers of age-associated senescence have been
reported, including an increased expression of miR-146a in aged

macrophages (Jiang et al.,2012) and a reduced capacity to undergo
autophagy (Ma et al., 2011). Quantitative assay of SA-B-gal activity
revealed that the percentage of positively stained cells markedly
increased from 2 to 16 DIV (~2.5-fold, p < 0.01), as evidenced
in Figures 6A,B. Similarly, we noticed a significant elevation in
the expression of miR-146a along the cell aging in culture (~2.3-
fold, p < 0.05, Figure 6C). Finally, we evaluated autophagic
capacity by LC3 immunostaining. As it may be observed in
Figure 7A, 2 DIV cells displayed an increased amount of LC3
punctates when compared to 16 DIV microglia. Counting of
LC3 punctate-positive cells confirmed that a reduced number of
16 DIV cells were undergoing autophagy (~0.7-fold, p < 0.05,
Figure 7B). Next, we evaluated the expression of LC3-II that is
formed through lipidation of LC3-I during autophagy (Kabeya
etal., 2000) and we additionally determined the Beclin-1 protein,
recognized to have a central role in such process (Kangetal.,2011),
by Western Blot (Figures 7C,D). Our results clearly show that
LC3-1I and Beclin-1 are markedly reduced in 16 DIV microglia
when compared to 2 DIV cells (~0.4- and ~0.3-fold, respec-
tively, p < 0.01), confirming a reduced autophagy by the aged
microglia.

Overall, our data indicate that primary microglia harvested
from neonatal mouse pups first evidence an increased reactive
ability changing to an irresponsive/senescent cell when main-
tained in culture. Aged cells evidence a reduced ability to
become activated, to migrate and to phagocytose, in parallel with
markers of cellular senescence. Therefore, this in vitro model
can be very useful in the exploitation of microglia reactivity and
irresponsiveness to stimuli, respectively. In addition, changes in
microglia miRNA signature may constitute a precious help in
evaluating the key role of microglia as a determinant in age-
associated CNS disorders and in modulating microglia dynamic
properties.

DISCUSSION

Experiments in this study were carried out to investigate age-
specific differences in the dynamic functional profiles of neonatal
microglia aged in culture, from 2 DIV up to 16 DIV. Here we show
that microglia isolated from neonatal pups evidence markers of
reactive ability at early time culture changing their phenotype
along in vitro culture to less responsive cells that present senes-
cence biomarkers and miRNA profiling characteristic of microglia
deactivation. Collectively, our results indicate that microglia aging
can be reproduced in vitro using long-term murine cultures, which
may be used as a model to evaluate microglia performance in age-
associated disorders, inasmuch due to the similar characteristics
such mice cells evidence to human microglia (Torres-Platas etal.,
2014).

Mouse primary neonatal microglial cultures have the advan-
tage to more closely represent their in situ counterparts when
compared to immortalized cells, although by growing in isolation
lack the normal CNS microenvironment (Ni and Aschner, 2010).
Indeed, primary cultured microglia are not oncogene immortal-
ized and are differentiated in mixed glial cultures before isolation.
The protocol here described originates microglial cultures that
exceeds 97% purity and has been used as a model for acti-
vated CNS-resident microglia (Carson etal., 1998; Schmid etal.,
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FIGURE 5 | Microglia supplementary features of reactive ability are
reduced in aged cells. Microglial cells were kept in culture for 2
and 16 days in vitro (DIV). (A) Extracellular glutamate levels were
determined using a commercial kit. (B) Matrix metalloproteinases
(MMP)-2 and MMP-9 activities were assessed by gelatin zymography.
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Expression of Toll-like receptor (TLR)-2 and TLR-4 (C), as well as of
microRNA (miR)-124 and miR-155 (D) was evaluated by Real-Time
PCR. Results are expressed in graph bars as mean + SEM.
Cultures, n = 4 per group. t-test, *p < 0.05 and **p < 0.01 vs. 2
DIV cells.

2009) and to prepare polarized M1 and M2 phenotypes (Jang
etal.,, 2013). Indeed, it was previously suggested that the isola-
tion process is a sufficient stimulus to induce microglia activation
(Cristovao etal., 2010). There is a high controversy on whether
neonatal microglia are less (Moussaud and Draheim, 2010) or
more reactive than adult (Christensen etal., 2014) and aged cells
(Njieetal.,2012). Discrepancies also exist in the scientific commu-
nity based on studies that consider microglia overactivation and
increased release of pro-inflammatory cytokines with age and neu-
rodegenerative diseases (for review see Wong, 2013; Mosher and
Wyss-Coray, 2014), in contrast with others evidencing dystrophic
microglia and senescence (Streit et al., 2004; Streit and Xue, 2013),
decreased phagocytosis (Floden and Combs, 2011; Li, 2013), lower
reactivity to stimulation (Damani etal., 2011; Njie etal., 2012),
delayed response to exogenous ATP and decreased microglial pro-
cess motility (Hefendehl etal., 2014). Such contradictory results
may be caused by different experimental sets and conditions.
Moreover, most of the data were derived from experimental mod-
els using LPS-induced microglia activation, when it is well known
that only a small amount is able to enter the brain parenchyma
(Banks and Robinson, 2010). Therefore, the effects of peripheral
immunostimulation by intravenously administered LPS dose are
indirect and some of them mediated by the cells that comprise
the BBB. Another important aspect to consider is that NSAIDs

were only successful when administered before the development
of neurodegeneration (Weggen et al.,2001). When administered in
later stages of disease they showed to be detrimental (Martin et al.,
2008). These findings may underlie a first proinflammatory stage
in neurodegenerative diseases associated to neuroinflammmation,
later switching to dysfunctional neurodegeneration associated
with a loss of microglia dynamic properties. Indeed, neither the
typical inflammatory nor the anti-inflammatory phenotypes were
identified at end-stage amyotrophic lateral sclerosis (Nikodemova
etal., 2013) and microglial dystrophy associated with their senes-
cence (Flanary, 2005), as well as to aged and AD brain (Lopes et al.,
2008).

Lack of knowledge on the molecular mechanisms implicated in
aged microglia dysfunction and how it is related to an increased
individual vulnerability to neurodegenerative diseases has hin-
dered the development of effective therapy for preventing or even
halting the CNS network degenerative process. Major problems
to investigate such mechanisms are determined by the current in
vitro microglial models using cell lines, primary microglia isolated
from neonatal murine animals and ex vivo isolation from adult
and aged brain. First models are not suitable for the research of
neurodegenerative diseases where aging is crucial since long-term
culture experiments are critical, and the last one only provides
specific microglia subsets that resist to the isolation procedure

Frontiers in Cellular Neuroscience

www.frontiersin.org

June 2014 | Volume 8 | Article 152 | 9


http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Caldeira etal.

Microglia in vitro aging

A
B 100 -
g wok
® 80
©
o
g *7
=
8 401
®
P
< 204
<
%)
o -
2 16
Days in vitro

FIGURE 6 | Microglia aged in culture display signs of senescence,
including increased senescent-associated p-galactosidase (SA-B-gal)
activity and microRNA (miR)-146a expression. Microglial cells were kept in
culture for 2 and 16 days in vitro (DIV). Activity of SA-B-gal was determined
using a commercial kit. (A) Representative images of 2 and 16 DIV microglia
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showing SA-B-gal staining. (B) SA-B-gal-positive cells were counted and
results expressed in graph bars as mean &+ SEM. (C) miR-146a expression
was evaluated by Real-Time PCR. Results are expressed in graph bars as
mean + SEM. Cultures, n = 4 per group. t-test, *p < 0.05 and **p < 0.01 vs.
2 DIV cells. Scale bar equals 20 pm.

(Moussaud and Draheim, 2010; von Bernhardi etal., 2011) or
that are separated based on immunomagnetic cell sorting steps
(Cardona etal., 2006). However, mixed microglial populations
may coexist in the CNS and were also shown to be developed in
culture (Szabo and Gulya, 2013; Gertig and Hanisch, 2014). In
addition, microglia functionality from adult and aged animals is
not well preserved, the yield is low and the cells undergo extensive
cell death resulting in activation of the surviving population (von
Bernhardi etal., 2011). The in vitro model we developed to obtain
microglia senescence in primary culture has been likely used to
identify aging-associated changes in fibroblasts at the molecular
level (Chen et al.,2009). Finally, we have not used microglia cultur-
ing with astrocytes to avoid the complex interactions between these
cells (Tanaka etal., 1999) that would be a disadvantage to assess
natural microglia maturity and senescence. Therefore, establish-
ment of well-defined stable in vitro cultures freshly isolated from
neonatal mice and characterization of microglial phenotype with
the time in culture may provide advantages over the other meth-
ods to determine aging microglial dynamics modifications and
therapeutic approaches to recover microglial functionality.
Microglia morphology changed along in vitro maintenance
from an almost exclusive round amoeboid shape to distinct polar-
ized populations, including an increased number of ramified cells.

In accordance, mixed primary glial cultures from embryonic rats
have previously showed the existence of cells with an amoeboid
morphology in the early stages of in vitro differentiation, which
changed to mixed populations of amoeboid and ramified cell mor-
phologies in older cultures (Szabo and Gulya, 2013). Interestingly,
data from microglia isolated from different age animals also cor-
roborate such findings with adult microglia presenting a more
ramified morphology, in contrast with an amoeboid shape of
embryonic and neonatal microglia (Lai etal., 2013). This is in
line with in vivo data indicating that invading neonatal microglia
have a predominant rounded morphology that differentiate with
time into a surveying phenotype characterized by a small soma and
highly branched processes (Hanisch and Kettenmann, 2007). Our
aged microglia cultures besides exhibiting ramified and amoeboid
cells also presented cells with a bipolar shape and shorter large pro-
cesses. Morphological signs of microglia senescence with aging
were observed in vivo and defined as abnormal morphological
features, such as shortened, gnarled, beaded, or fragmented cyto-
plasmic processes, and loss of fine ramifications and formation of
spheroidal swellings (Streit etal., 2004). Therefore, we hypothe-
size that such cells with shortened processes represent microglia
with less ability to become reactive and should include a relevant
population of senescent microglia.
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FIGURE 7 | Microglia aged in culture show reduced autophagic counted and results expressed in graph bars as mean + SEM. (C)
capacity. Microglial cells were kept in culture for 2 and 16 days in vitro LC3-II/LC3-I and Beclin-1 protein expression was assessed by Western Blot
(DIV), immunostained for LC3 and total cell lysates were analyzed for the and (D) densitometric data analysis is represented in graph bars as
presence of LC3-Il and Beclin-1. (A) Representative images of 2 and 16 DIV mean + SEM. Cultures, n = 4 per group. t-test, *p < 0.05 and **p < 0.01
microglia showing LC3 punctates. (B) Cells displaying LC3 punctates were vs. 2 DIV cells. Scale bar equals 20 pm.

The morphological changes of in vitro aging microglia occurred
in parallel with a decrease in the transactivation of NF-kB. It
is well known that this transcription factor is found through-
out the cytoplasm, translocating to the nucleus upon activa-
tion triggering the transcription of target genes, such as the
pro-inflammatory cytokines (O’Neill and Kaltschmidt, 1997).
Therefore, maximal activation of NF-kB 2 days after isola-
tion is consistent with an inflammatory phenotype that shifts
to a deactivated microglia along with the time in culture.
Intriguingly, although we showed a decreased NF-kB activa-
tion at 16 DIV, the activation of this transcription factor has
been associated with the aging process. A recent report has
shown that hypothalamic microglial NF-kB activation promot-
ing a residual inflammatory status is required for systemic aging
(Zhang etal., 2013). Nevertheless, a marked down-regulation of
NEF-kB was also observed in cultured senescent human WI-38
fibroblasts (Helenius etal., 1996). Considering that activators of
the NF-kB signaling pathway are determinants of inflammation
and aging process (Balistreri etal., 2013) and that CNS inflam-
mation is present in the early stages of age-related disorders
such as AD but disappears with disease progression (Streit etal.,
2009), our in vitro aged microglia may represent a dystrophic

and irresponsive phenotype whose functions have progressively
declined as recently observed in mice with AD-like pathology
(Krabbe etal., 2013).

The reduced migration observed for 16 DIV cells is in line with
recent data showing that aged microglia become less dynamic
with slower acute responses and lower rates of process motility
(Damani etal., 2011). Here, we measured ATP-induced microglial
chemotaxis, which occurs via P2X4R and P2Y12R purinergic
receptors (Ohsawa etal., 2007). Interestingly, even considering
that the expression of P2X4R in microglia is not age-dependent,
the P2Y12R expression varies with animal age increasing to a
maximum at 6—8 months and decreasing thereafter to extremely
low levels at 13—15 months (Lai etal., 2013). Thus, it is possible
that our aged microglia present reduced expression of puriner-
gic receptors which may be in the origin of the reduced ability to
migrate to ATP. Moreover, since it was demonstrated that mono-
cyte chemoattractant protein-1 (MCP-1) produced downstream
NF-kB activation is involved in the migration of microglia (Deng
etal., 2009), based on the age-dependent reduction of NF-«kB
nuclear translocation we have observed it is reasonable to con-
sider that the MCP-1-dependent migration pathway may also be
affected.
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Phagocytosis is crucial to maintain tissue homeostasis and
innate immune balance, by ingesting both foreign pathogens
and autologous apoptotic cells (Napoli and Neumann, 2009).
Infectious pathogens are phagocytosed through TLRs or comple-
ment receptors to elicit the release of pro-inflammatory cytokines
(Napoli and Neumann, 2009), while apoptotic cells or cellular
debris are internalized through phosphatidylserine receptors, inte-
grins or TREM2 to trigger immunosuppressive signaling with the
release of anti-inflammatory cytokines (Li, 2012). During aging,
clearance of both foreign pathogens and autologous apoptotic cells
is diminished and has been associated with immunosenescence
(Li, 2013). In accordance, microglia from aged mice also inter-
nalized less amyloid-f peptide (AB) than microglia from neonatal
or young mice (Njie etal., 2012), corroborating our findings that
16 DIV microglia have a reduced ability to phagocytose possibly
due to the manifestation of a senescent phenotype. Interestingly,
microglial cells maintained in mixed primary neuronal-glial co-
cultures were shown to phagocytose more when amoeboid than
in the ramified form, a property that decreased during culturing
(Szabo and Gulya, 2013). In agreement, we observed a shift to
a more ramified phenotype with cell aging, which paralleled a
reduced phagocytic ability.

Activated microglia were shown to release increased levels of
glutamate (Nodaet al., 1999; Barger et al., 2007; Takaki et al.,2012).
However, several studies have shown lower glutamate concen-
tration in older subjects when compared to younger individuals
(Kaiser etal., 2005; Sailasuta etal., 2008; Chang etal., 2009) and
an age-dependent decline of glutamate release in mice (Minke-
viciene etal., 2008). This finding is in line with the reduced
glutamate levels we obtained in aged cell cultures. Similarly, the
increased activation of MMP-2 we observed in 16 DIV microglia
was identified in senescent cells (Liu and Hornsby, 2007; Lu etal.,
2009; Malaquin etal., 2013). In what concerns MMP-9 there
is some discrepancy between authors. Some indicate increased
activity with age (Simpson etal., 2013) and others a decrease
(Bonnema etal., 2007; Paczek etal., 2008), as we obtained. Fur-
thermore, we think that the marked reduced expression we
obtained at 16 DIV microglia for TLR-2 and TLR-4 (0.5- and
0.4-fold, respectively), as compared to 2 DIV cells, define with
no doubt that 16 DIV microglia will be less able to respond to
LPS immunostimulation. Actually, TLR-4 that is critical for the
recognition of LPS, as well as TLR-2 that also recognizes some
LPS species, are inducers of microglia activation leading to the
production of proinflammatory cytokines (Banks and Robinson,
2010; Liu etal, 2012). Curiously, the TLR-4 downregulation-
mediated supression of TNF-a and IL-1f expression revealed to
also be accompanied by the suppression of NF-kB (Yao etal,
2013).

MicroRNAs are an abundant class of highly evolutionarily
conserved small non-coding RNAs that are involved in posttran-
scriptional gene silencing, regulating diverse biological processes
(Ambros, 2004). miR-146a was first associated with the innate
immune response as a negative feedback regulator in TLR sig-
naling (Taganov etal., 2006), and more recently implicated in
age-related dysfunction of macrophages (Jiang etal., 2012). Our
results clearly showed that aged microglia express increased levels
of miR-146a, thus corroborating their senescent phenotype.

Interestingly, expression of miR-146a that has been associated
with several neurodegenerative disorders (Sinha etal., 2011; Jiang
etal,, 2013), was found elevated in the aged mouse (Jiang etal,,
2012; Olivieri etal., 2013), in the cerebrospinal fluid of AD
patients (Alexandrov etal., 2012), and to be induced in microglia
upon AP and inflammatory challenge (Li etal.,, 2011). As so,
our in vitro old microglia reproduce the aging-associated phe-
notype encountered in late-life common disorders. Moreover,
decreased miR-124 and miR-155 that revealed a negative corre-
lation with age (Fichtlscherer etal., 2010; Noren Hooten etal.,
2010; Smith-Vikos and Slack, 2012), parallelled by the enhanced
miR-146a expression, further reinforce that 16 DIV microglia
mainly represent aged-like microglia. In addition the reduced
miR-124 obtained in these cells, indicated as being associated
to the M2a-alternatively activated state (Freilich etal., 2013) and
to inhibit inflammation (Prinz and Priller, 2014), strengthen
their dormant/senescent phenotype. In contrast, the predominant
amoeboid morphology together with increased NF-kB activation,
cell migration, phagocytosis and the higher levels of miR-155
expression in 2 DIV microglia, as compared with aged cells, are
indicative of a major representation of cells with a stressed/reactive
phenotype. Indeed, a strong up-regulation of miR-155 expression
was shown to have a pro-inflammatory role in microglia (Cardoso
etal,, 2012) and to drive the M1 phenotype (Ponomarev etal.,
2013) corroborating the stressful properties of 2 DIV cultured
cells.

Nowadays, changed morphology and increased activity of
SA-B-gal of permanently growth arrested cells are considered cel-
lular senescence markers (Sikora etal., 2011). In accordance, 16
DIV microglia displayed a marked increase of SA-B-gal activity
when compared to 2 DIV cells. The activity of SA-f-gal was
also associated with senescence-unrelated settings, such as con-
tact inhibition and serum starvation (Severino etal., 2000).
Nevertheless, as observed by the Iba-1 pictures, our microglia
culture did not reach confluence and was not cultured under
serum starvation, attesting that the increase of SA-f-gal activity
results from a senescent phenotype. Indeed, decreased microglia
migration, phagocytic ability, NF-kB activation and increased SA-
pB-gal, as we here observed, have been indicated as hallmarks of
microglial aging and cell senescence (Mosher and Wyss-Coray,
2014).

Several neurodegenerative diseases are characterized by the
formation of intracellular protein aggregates in affected brain
regions, indicating a failure of protein degradation system
(McCray and Taylor, 2008). Autophagy is a stress-induced
catabolic process responsible for the degradation of long-lived
proteins and damaged organelles (Levine and Klionsky, 2004)
that was shown to decline with aging (Bergamini, 2006) and
to determine cell and individual lifespan (Juhasz etal., 2007).
A study using the senescence accelerated mouse prone eight, a
rodent model of aging and senile dementia, showed a reduced
autophagic activity by aging with long-lasting autophagosomes
and increased LC3 expression (Ma etal., 2011). In accordance,
affected neurons with abnormal autophagosomes (Lee, 2009)
and impaired autophagy (Komatsu etal., 2006) were seen in
neurodegeneration. We showed that 16 DIV microglia display
a reduced amount of LC3 punctates suggestive of a decreased
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formation of autophagosomes. This finding was further corrob-
orated by the decrease we also observed in the expression of
Beclin-1 in the aged cells. Beclin-1 is known to intervene from
autophagosome formation to autophagosome/endosome matura-
tion but to also have other additional functions (Kang et al., 2011).
Interestingly, Beclin-1 was recently considered to be required
for efficient phagocytosis and to be reduced in microglia iso-
lated from AD brains (Lucin etal., 2013), thus accounting to
explain the reduced phagocytic ability in our 16 DIV cells and to
such impairment in mice with AD-like pathology (Krabbe etal.,
2013).

It is worth mentioning that the 2 and 16 DIV microglia dif-
ferently react to some tested neurotoxins, as we antecipated.
We used unconjugated bilirubin that has previously shown to
induce the release of the pro-inflammtory cytokines TNF-a and
Interleukin (IL)-1f from astrocytes and microglia in concentra-
tions similar to those induced by 10 ng/ml LPS (Fernandes etal.,
2004; Gordo etal., 2006; Brites etal., 2009), and Af at 50 nM,
a concentration that was indicated to trigger microglia activa-
tion (Maezawa etal., 2011). The test was first directed to the
expression of the high-mobility group box protein-1 (HMGB1) a
mediator of inflammation directly correlated with NK-«B protein
activation (Rovina etal., 2013). Both stimuli enhanced cellular
HMGBI expression in 2 DIV microglia (80 and 100% increase
for bilirubin and AP, respectively; results not shown), whithout
affecting the 16 DIV cells. Next, and similarly to what we have
obtained for HMGBI1, up-regulation of mRNA levels of IL-
18 expression capable of more potently induce inflammatory
response than IL-18 (Alboni etal., 2010) was again associated
with the young/reactive microglia treated with bilirubin (60%
increase over control) or AP (>100% increase over control)
(data not shown), but no alterations were noticed in the aged
cells.

Opverall, we demonstrate that microglia isolated from neonatal
mice and kept in vitro in long-term cultures switch from an acti-
vated/reactive phenotype to cells presenting aging-like alterations.
Our results show that in vitro aged microglia change their mor-
phology to a more ramified shape, with a reduced basal NF-«B
activation, impaired migration and phagocytic abilities, low TLR-
2 and TLR-4 expression, as well as reduced MMP-9 and glutamate
efflux. This study is the first to provide the inflamma-miRNA
signature for microglia aging in primary cultures. The cells evi-
denced decreased expression of miR-155 and miR-124, reduced
autophagic capacity, and increased miR-146a expression and SA-
B-gal activity, consistent with the existence of senescent cells at
16 DIV in culture. In conclusion, given the phenotypical changes
observed for young/reactive and irresponsive/senescent microglia
along the time in culture, the in vitro model of microglia aging
could be of interest to assess how different signals may diversely
modify cell functionality in separate microglia populations and
to link increased age with risk for neurodegenerative diseases and
other age-related phenomena.
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