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Animals use behaviors to actively sample the environment across a broad spectrum
of sensory domains. These behaviors discretize the sensory experience into unique
spatiotemporal moments, minimize sensory adaptation, and enhance perception. In
olfaction, behaviors such as sniffing, antennal flicking, and wing beating all act to periodically
expose olfactory epithelium. In mammals, it is thought that sniffing enhances neural
representations; however, the effects of insect wing beating on representations remain
unknown. To determine how well the antennal lobe (AL) produces odor dependent
representations when wing beating effects are simulated, we used extracellular methods
to record neural units and local field potentials (LFPs) from moth AL.We recorded responses
to odors presented as prolonged continuous stimuli or periodically as 20 and 25 Hz pulse
trains designed to simulate the oscillating effects of wing beating around the antennae
during odor guided flight. Using spectral analyses, we show that ∼25% of all recorded
units were able to entrain to “pulsed stimuli”; this includes pulsed blanks, which elicited
the strongest overall entrainment. The strength of entrainment to pulse train stimuli was
dependent on molecular features of the odorants, odor concentration, and pulse train
duration. Moreover, units showing pulse tracking responses were highly phase locked to
LFPs during odor stimulation, indicating that unit-LFP phase relationships are stimulus-
driven. Finally, a Euclidean distance-based population vector analysis established that AL
odor representations are more robust, peak more quickly, and do not show adaptation
when odors were presented at the natural wing beat frequency as opposed to prolonged
continuous stimulation. These results suggest a general strategy for optimizing olfactory
representations, which exploits the natural rhythmicity of wing beating by integrating
mechanosensory and olfactory cues at the level of the AL.

Keywords: olfaction, temporal coding, oscillations, synchrony, active sensing, sniffing, odor representation

INTRODUCTION
Sensory systems, regardless of modality, must rapidly resolve an
ever-changing sensory field. To facilitate perception, active sam-
pling behaviors periodically structure sensory input as well as
subsequent physiological responses. The importance of periodic
sensory input produced by active sampling behaviors has been
observed across sensory modalities, including for example, vib-
rissal whisking in the somatosensory system (Carvell and Simons,
1990) and micro saccades in the visual system (Ditchburn and
Ginsborg, 1952; Martinez-Conde et al., 2006). These studies sug-
gest that perception is therefore impacted by the active behavioral
control of the interaction between the sensory structure and the
environment it senses (Martinez-Conde et al., 2004; Moore, 2004).

As with somatosensory and visual systems, primary olfactory
networks are responsive to the temporal structure of sensory
input. Temporal structure arises from the stochastic nature of
odor plumes and trails. Detailed characterization of odor plumes
indicate that they are discontinuous with a temporally complex

filamentous structure that results in exposures that range from
<100 ms to more than a second; however, this is dependent
on environmental features (Mafraneto and Carde, 1994; Murlis
et al., 2000). Nevertheless, as with other sensory modalities, ani-
mals often impose temporal structure onto the olfactory sensory
array using active sampling behaviors (Halpern, 1983). These
behaviors include antennal flicking in crustaceans (Schmitt and
Ache, 1979; Daniel and Derby, 1991; Leonard et al., 1994; Gold-
man and Patek, 2002; Mead et al., 2003) and in some insects
(Hillier and Vickers, 2004), sniffing in mammals (e.g., Teght-
soonian and Teghtsoonian, 1982; Laing, 1983; Youngentob et al.,
1986, 1987), tongue flicking in snakes (Halpern and Kubie, 1980),
and zigzagging flight in a wide variety of insects (Kennedy and
Marsh, 1974; Willemse and Takken, 1994; Carde, 1996; Fadamiro
et al., 1998). Key to these behaviors is the periodic or rhyth-
mic nature of sensory sampling that they impose, but we note
that at least some of these behaviors can also be influenced
by the details of the plume structure (Willis and Baker, 1984;
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Murlis et al., 2000). This sampling is accomplished by moving
the sensory epithelium through the olfactory environment (as
in flicking) or moving the olfactory environment over the sen-
sory epithelium (as in sniffing). The intermittency of exposure
is thought to result in more distinctive neural representations
and reduce sensory adaptation, thereby enhancing overall odor
perception (Mainland and Sobel, 2006; Schoenfeld and Cleland,
2006).

Plume tracking insects, such as moths, require intermittent,
as opposed to continuous, odor exposure in order to maintain
their upwind flight toward the source (Kennedy et al., 1981; Willis
and Baker, 1984). It has long been argued that wing beating
can enhance plume tracking performance (Schneider, 1964). For
example, in the flightless silkworm moth Bombyx mori, males
still vigorously beat their wings as they track pheromones to
their sources; removal of the wings results in a loss of ability
to find an odor source (Obara, 1979). More recently, model-
ing and anemometric studies have shown that the wing beat
imposes a dynamic and periodic structure to the airflow around
the antennae in Manduca sexta (Sane, 2006; Sane and Jacob-
son, 2006), which tracks plumes on the wing. In the flightless
silkworm moth B. mori, the effect of wing fanning is a pre-
dicted 560x increase in air velocity through gaps between antennal
olfactory sensilla (Loudon and Koehl, 2000). Furthermore stud-
ies of wing kinematics indicate that odor guided and hovering
flight brings the wings closer to the antennae (Willmott and
Ellington, 1997a,b), thereby increasing the wings effect on air-
flow around the antennae. Thus wing beating, like sniffing or
antennal flicking, directly influences the interaction of anten-
nal receptors with the olfactory environment by driving a rapid
and oscillating airflow over the olfactory epithelium, thereby
imposing a periodic temporal structure upon sensory input and
processing.

Spike patterning of the principle output neurons (projection
neurons or PNs) of the antennal lobe (AL) have long been known
to vary predictably with the temporal features of the stimulus on
a reasonably rapid timescale on the order of 50 ms (Christensen
et al., 1998; Heinbockel et al., 1999; Vickers et al., 2001). Consistent
with active sampling, more recent results demonstrate that both
peripheral (Vickers et al., 2001; Bau et al., 2002; Vickers, 2006; Tri-
pathy et al., 2010) and central nervous system structures (Tripathy
et al., 2010) are able to encode odor stimuli presented with flow
dynamics of the natural wing beat frequency. During tethered
flight, electroantennogram amplitudes increase by 2–3 times rela-
tive to when the wings are at rest, suggesting that the flow dynamics
established by wing beating strongly influences olfactory input
(Bau et al., 2005). Furthermore, the moth olfactory system both
tracks (Tripathy et al., 2010) and integrates (Tabuchi et al., 2013)
olfactory information across very brief temporal windows, such
as those produced by each wing beat. These more recent findings
indicate that the olfactory system of the moth can resolve temporal
features more rapidly than previously thought and are consistent
with the hypothesis that olfactory systems are tuned to sample
inputs within a timeframe defined in part by the innate behaviors
that influence sensory exposure.

Our previous studies establish the ability of the olfactory sys-
tem of Manduca to track the temporal dynamics of periodic

stimuli up to and beyond the maximum wing beat frequency
(∼28 Hz) and that is associated with an increase in behavioral
sensitivity when odors are presented as pulse trains (Tripa-
thy et al., 2010; Daly et al., 2013). However, these studies only
quantified the frequency response of individual units and sub-
threshold local field potential (LFP) oscillations to single odors.
Thus, our previous work could not determine whether pulse
tracking was odor dependent or whether these temporally struc-
tured stimuli impacted AL population level representations of
odors as measured using population analytic techniques. Are
neural representations for odor, the spatiotemporal patterns
of neural activation/inactivation, more distinct when odor is
presented in a manner that simulates the effect of wing beat-
ing? This is an important question as many olfactory process-
ing studies employ relatively prolonged continuous stimuli and
these stimuli underlie prolonged temporal responses within the
AL.

Therefore, the aim of the current study was to under-
stand how periodic olfactory stimulation, on the rapid timescale
induced by wing beating, shapes the spatiotemporal structure of
odor-driven AL representations in the moth, M. sexta. Specif-
ically, we sought to test the hypothesis that odor stimulation
at the natural sampling frequencies improves odor representa-
tions. We first determined the impact of additional stimulus
features on pulse tracking, including odorant molecular fea-
tures, odor concentration and stimulus duration. We then
assessed whether periodic stimulation affects the phase relation-
ships of neural unit spiking with LFPs, which have previously
been thought to require prolonged continuous stimulation to
emerge and is thought to be a spike time synchronizing mech-
anism necessary for fine odor discrimination (Laurent, 2002).
Finally, we asked whether representations for different odors
are more statistically separated or distinctive, relative to pro-
longed continuous stimuli, when odor is presented as brief
and rapid pulse trains. We predicted that these brief and
rapid pulse trains of odor, which arise in nature as a conse-
quence of both the intermittent nature of odor plumes and
the superimposed periodic effects of the wing beat, produce
more distinctive odor representations relative to continuous odor
delivery.

MATERIALS AND METHODS
SUBJECTS
Manduca sexta moths were raised in the laboratory using standard
techniques (Bell and Joachim, 1976). At pupal stage 17, moths
were individually placed into paper bags and kept in an incubator
(Percival Scientific; I66VLC8) with a 16:8 light/dark photoperiod
and constant temperature (25◦C) and relative humidity (75%).
All experiments were performed on adult male moths that were
between 5 to 7 days post-eclosion.

PROCEDURES
Surgical preparation
The surgical methods used have been previously described in detail
(Daly et al., 2004a,b). To secure the head for dissection and record-
ing, moths were placed into a 6 cm long by 12 mm inner diameter
copper tube. The head was held in place with soft dental wax. To
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expose the brain, a ∼2 mm2 section of the center of head cap-
sule was first excised. Next, a second portion of the head capsule,
directly caudal to the first, was sectioned with cibarial pump mus-
cles attached and intact; this portion of head capsule was moved
forward into the previously opened notch then glued in place with
superglue. This approach provides access to the brain and specif-
ically the AL while keeping the moth fully intact and functional.
The brain was then superfused with physiological saline (Hein-
bockel et al., 1998). The trachea delineating the boundary of the
AL from the rest of the deutocerebrum was gently removed to facil-
itate electrode positioning and penetration. The intrinsic muscles
of the left antenna were cut to enhance stability. Two minuten
pins were imbedded in the wax near the eyes to restrain the left
antenna.

Olfactory stimulation
A schematic of the olfactometer with respect to the experimental
preparation is shown in Figure 1. Olfactory stimuli were delivered
as described previously (Tripathy et al., 2010). Prepared moths
were placed 2 cm in front of a 6 cm diameter exhaust vent to
remove spent odor from around the antenna. Exhaust flow was
measured at ∼0.7 m/s at the position of the antenna using a Fisher
brand hotwire anemometer. Stimulus delivery was controlled by
a three-way odor control valve (Lee Co.: LFAA1200118H). Air
for the olfactometer was supplied via a central airline, passed
through a 500-cc Drierite cartridge to extract moisture (Indicat-
ing Drierite; Drierite: 23025) and then through 500-cc of active
charcoal (Sigma-Aldrich: C3014) in a modified Drierite cartridge.
Cleaned air was then passed through an adjustable glass ball flow
meter (Cole-Parmer: 1-010293). From the flow meter, the air was
rehumidified by passing it through an aquarium aerator stone
in deionized water. The rehumidified air was then fed into the
three-way valve, over the antennae and into the exhaust vent. The
nozzle of the olfactometer was a nylon barbed T-fitting with a

1.6 mm ID. One of the three ends of the T served as the odor
delivery nozzle and was placed ∼2–3 mm from the antenna to
deliver the odor. The other two openings of the T-fitting received
either clean air from the normally open line of the odor con-
trol valve, or air from the normally closed line, which passed
through an odor cartridge. Thus, air was constantly flowing
through the system, over the antenna and into the exhaust. The
airflow velocity from the olfactometer at the antenna was set to
0.3 m/s, which is within the range of odor guided flight (Willis
et al., 2013).

The odor cartridges were made from borosilicate glass tubing
with air tight nylon fittings on each end that connected to the
normally closed line on one end and the T-fitting on the other. The
completed cartridge had an inner volume of 1.7 ml. An aliquot of
2 μl of odor was deposited on a strip of #1 Whatman filter paper
and inserted into the cartridge. Depending on the experimental
details, odorant may have been undiluted (i.e., neat) or diluted in
mineral oil. A glass cartridge containing only a strip of filter paper
was used as a blank control.

Custom scripts run within the Neuralynx data acquisition envi-
ronment controlled the three-way valve. Timestamps for valve
actuation were recorded as well as the odorant used. Odorants
were delivered in a random sequence. Odor was delivered to the
antennae either as pulsed stimuli, or as a continuous stimulus; the
duration of stimuli were experiment specific, but we always main-
tained 10 s inter-trial intervals. Finally we always used a fixed 50%
(on:off) duty cycle, thus the individual odor pulses of a pulse train
were 25 or 20 ms for the 20 and 25 Hz pulse trains, respectively,
and each odor pulse was followed by an inter-pulse interval of the
same respective duration.

Electrophysiology
16-channel silicon microprobes (2 × 2 TET; NeuroNexus Tech-
nologies, Ann Arbor, MI, USA) were used for all multiunit

FIGURE 1 | (A) Schematic of experimental preparation. (B) Schematic of the 500 ms continuous stimulus (top) and the 500 ms, 20 Hz (middle) and 500 ms,
25 Hz (bottom) pulse trains. Note that a 50% on/off duty cycle was used for both pulse trains.
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and local field recordings (Figure 1). Electrodes on each shank
are arrayed in and used as tetrodes with an interelectrode dis-
tance of 25 μm. Probe insertion into the AL was performed via
an HS6-3 motorized micromanipulator controlled by a MCL-
3 electronic controller (World Precision Instruments, Sarasota,
FL, USA). Probe placement was performed using a dissecting
microscope. Both shanks were inserted along the caudal bound-
ary of the AL and the animal was oriented such that the probes
impaled along this boundary. The mean depth of probe tips was
545 μm. Probe signals were buffered by a 27 channel head stage
preamplifier (HS 27, Neuralynx, Bozeman, MT, USA), which
was connected to a 32-channel amplifier array of the Chee-
tah data acquisition system (Neuralynx, Bozeman, MT, USA).
Unitary event data from the 4 tetrode sites were band pass fil-
tered at 600–6000 Hz and sampled at 33.3 kHz per channel
(12 bit). Additionally, the signals of the upper- and lower-
most electrodes on each of the two shanks (Figure 1 numbered
electrodes) were continuously sampled at 11.1 kHz to provide
LFP recordings. These signals were hardware bandpass filtered
from 1 to 125 Hz online. In some cases we later bandpass
filtered LFPs from 5–80 Hz using a custom windowed sync fil-
ter combined with a 60 ± 2 Hz notch filter to remove line
noise.

Spike sorting
Spikes were sorted offline using the KustaKwik toolbox for Mat-
lab (Version 3.5.A.23; AD Redish). This is a semi-automated
spike-separation algorithm that identifies clusters of spikes in a 12-
dimensional waveform feature space. In this case spike energy and
the first two principal components of the waveforms were used.
KustaKwik processes data through an expectation–maximization
fit of n Gaussians to the data to determine a possible set of putative
clusters. Final cluster selection was manually performed and based
on different criteria: their waveform profiles across the four record-
ing sites must be specific and stable across the entire experiment
for all recording sites and contain ≤5% of spikes with inter-spike

interval (ISI) histograms of 2 ms or shorter (i.e., contamination).
At this point, we defined each cluster of spikes as one neural
“unit.”

Experimental protocols
The primary goal of this study was to characterize the ability of
the AL to produce neural representations for odor that was either
pulsed to replicate wing beating or as continuous stimuli. We fur-
thermore characterized responses as a function of differences in
the molecular features of odors, their concentration and stimulus
duration. To achieve these goals we tested moths in three groups.

In the first group of moths, we presented odors as: (1) contin-
uous stimuli; (2) pulsed at 20 Hz; and (3) at 25 Hz. All stimuli
were 500 ms in duration and repeated 10 times. This stimu-
lus duration was based upon the previously characterized “burst
length” duration of odor plumes (Murlis et al., 2000) and the pre-
viously characterized mean inter-turn duration during upwind
flight of M. sexta (Willis and Arbas, 1991), thus 500 ms approx-
imates the equivalent of a single pass through a natural plume
and hence the longest typical exposure during plume tracking
flight. We used two homologous series of ketones and alcohols (see
Table 1 for a complete list including source, purity, density, and
name abbreviations) based on their extensive prior psychophysi-
cal and physiological characterization (Daly et al., 2001a,b, 2004b,
2013; Mwilaria et al., 2008; Staudacher et al., 2009). For this
experiment, undiluted (neat) odorant was used. A total of 15
recordings (N = 150 neural sorted units) were made of sufficient
quality across the experimental recording period to be analyzed
further.

Some of the more volatile odors in our odor panel are likely to
be more concentrated when presented in an undiluted format and
therefore elicit stronger responses, which may be more difficult for
the moths olfactory system to track, because for example high con-
centration stimuli may require more time to clear from the system
(i.e., a longer decay time constant). Therefore, a second group of 5
moths (N = 78 units) were stimulated with three ketones, K6, K7,

Table 1 | Panel of odorants used in experiments.

Odorant Abbreviation Source Purity (%) Density Molecular mass

Alcohols

1-Hexanol A6 Sigma 97 0.861 102.17

1-Heptanol A7 Sigma 99 0.822 116.20

1-Octanol A8 Sigma 99 0.820 130.23

1-Nonanol A9 Fluka 98 0.880 144.25

1-Decanol A10 Sigma 97 0.890 158.28

Ketones

2-Hexanone K6 Sigma 98 0.810 100.16

2-Heptanone K7 Sigma 99 0.815 114.18

2-Octanone K8 Sigma 98 0.820 128.21

2-Nonanone K9 Sigma 99 0.821 142.24

2-Decanone K10 Sigma 98 0.824 156.26

Listing of odorant, text abbreviation, source, purity and density and molecular mass.
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and K8. In this case, each odorant presented across six concentra-
tions from 0.01 to 100 μg/2 μl in log step dilutions in mineral oil
(Fisher Scientific; O121-1). The initial dilutions were calculated
based on correcting for the different molecular densities of each
odorant in order to produce initial dilutions of 100 μg/2 μl for all
odors, which was then further diluted in log steps. This dilution
range was selected because behavioral studies indicate that moths
can detect these particular odors across this range of concentra-
tions (Daly et al., 2007). Stimuli were presented as both continuous
stimuli and as 20 Hz pulsed stimuli as described above. In this
group however, stimuli were presented for 2 s in order to charac-
terize how coherently (or phase locked) the AL acted as a network
to pulsed stimuli within the context of relatively prolonged stimuli
required for temporal coding mechanisms (Laurent, 2002).

Finally, prolonged exposure to odor typically results in atten-
uation of antennal responses to odor (Daly et al., 2007) and loss
of behavioral responses in wind tunnel assays (Baker et al., 1985).
These effects are due in part to sensory adaptation as prolonged
continuous stimulation and furthermore do not represent typical
exposure in the natural environment (Murlis and Jones, 1981).
Thus we sought to characterize the ability of the AL to produce
persistent responses to pulse trains as a function of increasing
stimulus duration where brief interstitials of clean air between
each odor pulse allows the olfactory system time to recover. Thus
in this final group of 16 moths (N = 168 sorted units), we var-
ied the stimulus duration from 0.5 to 3 s in 0.5 s steps (six steps
total). Stimuli were presented as both continuous and 20 Hz pulsed
stimuli. We used only two odors (K6 and K10) in order to present
odor across a relatively broad range of durations while minimizing
adaptation across stimuli. Durations were sequentially presented
in both decreasing and increasing fashion. Each stimulus/duration
was repeated 5 times and undiluted odors were used. Finally, in
all groups of moths we presented stimulus matched blank odor
cartridges.

Our final goal was to determine if odors presented in this
manner produce more distinctive neural representations. We
specifically sought to determine if: (1) pulsed and continuous
odor representations for the same odor differed; and (2) if pulsed
stimuli produced more distinctive representations than continu-
ous stimuli. In order to characterize the degree to which the neural
ensemble response changed as a function of stimulation protocol
(i.e., a within odor comparison of pulsed versus continuous) or the
molecular features of the odors (i.e., a between odor comparison
within each stimulation protocol), we calculated the Euclidean dis-
tance (ED) between population responses (Chapin and Nicolelis,
1999; Stopfer et al., 2003; Daly et al., 2004b; Hallem and Carlson,
2006; Staudacher et al., 2009). Using pooled data from the first
group of moths (N = 150 units), where the entire panel of odors
was presented, we calculated an ED by time.

ANALYSIS
Classification of unitary responses to pulsed odor
The characterization of pulse tracking responses (i.e., AL responses
that are temporally structured in a manner that reflects entrain-
ment to the temporal structure of the odor pulse train) from
unitary spiking was based on the power spectral density (PSD)
analysis implemented using custom scripts written in MATLAB.

This analysis was performed on all datasets. Spike time data from
individual neural units were binary interpolated to a constant sam-
pling rate of 33.3 kHz. Welch’s method was then applied by first
segmenting the filtered signal into eight blocks of equal length
(where the overlap between each block generated was 50%), then
averaging their Fourier transforms (Tripathy et al., 2010; Daly
et al., 2011). This analysis provides a frequency resolution of
0.16 Hz. Pulse tracking responses were identified based on mea-
sures of power integrated around a frequency window of 4 Hz
centered on the pulse train frequency (i.e., 20 or 25 Hz). The identi-
fication of pulse tracking responses was determined by statistically
comparing the mean integrated power at the pulsing frequency
from the continuous stimuli (which represents intrinsically pro-
duced oscillatory power) and pulsed stimuli. Wilcoxon rank sum
test (p < 0.05) was used for both an omnibus test for signifi-
cant integrated power for each unit across odors as well as within
individual odors. Units with a significant increase in integrated
power at the pulsing frequency were identified as pulse tracking.
The results of this preliminary statistical analysis could then be
further analyzed parametrically to determine which parameters of
the stimulus affected the amount of pulse tracking power elicited
from individual units (see below).

Parametric analysis of integrated power
In order to determine which factors of the stimulus affect mea-
sures of pulse tracking power. General linear modeling (GLM)
was performed on the calculated integrated power because this
method handles both categorical and continuous variables and
their interactions and hierarchically partitions variance compo-
nents allowing for more stringent tests of significance for key
variables. These statistical analyses were implemented in SAS using
a significance level of p < 0.05. In cases such as carbon chain
length where a linear or curvilinear function could be used to
describe the variable as a continuous function, linear and poly-
nomial regression functions were calculated for mean values and
inset in the figures below. In all cases we present the most par-
simonious function that best fits the data based on comparison
of R2 values. Note that although blank responses are displayed in
series, they were not used in the calculation of any inset regression
function.

Cross correlations and cross spectral density (CSD) analyses
In order to quantify LFP-unit relationships, cross correlations
between LFP oscillations and unit spiking were calculated for each
unit and individually in response to each stimulus using one of the
LFP recordings to provide an indication of phase locking (Laurent
and Davidowitz, 1994; Laurent and Naraghi, 1994; Laurent et al.,
1996; Stopfer et al., 1997; Daly et al., 2011). The LFPs from elec-
trode site 1 (Figure 1, top left electrode) was used as the reference
for all cross correlations and a 1 ms binning window was used on a
4 s sampling window. Data were then sub sampled from two non-
overlapping peri-stimulus epochs; a spontaneous epoch (−2.0 to
0.0 s) and an odor-driven epoch (0.0–2.0 s), where 0.0 s represents
stimulus onset. We performed this analysis on the group receiv-
ing odor at different concentrations. Here we selected for analysis
responses to the blanks and two of the odor dilutions (0.1 and
100 μg/2 μl).
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Next, to quantify the periodic temporal structure in the cross
correlation, we calculated the CSD for each cross correlation
(Goldberg and Brown, 1969; Galán et al., 2006; Daly et al., 2011).
The CSD analysis quantifies the frequency content of any peri-
odic temporal structuring of the cross correlation between LFP
and unit. Thus the CSD establishes the frequency and magni-
tude of any periodic phase relationship. The CSD was a calculated
individually for each cross correlation using the same methods as
described above for the PSDs. CSD power was parametrically com-
pared (again using GLM) to determine the relative contribution of
temporal structuring driven by the temporal dynamics of the pulse
trains as opposed to the intrinsic properties of the network. Sta-
tistical consistencies in the CSD measures between the pulsed and
continuous stimuli as well as spontaneous activity inform us about
the intrinsic properties of circuit dynamics. Significant differences
in the CSD measures between pulsed stimuli and the continuous
stimuli, on the other hand, establish whether the temporal corre-
lations (i.e., phase locking) are largely dependent on the stimulus
parameters.

Euclidean distance analysis
Euclidean distance-based methods for quantifying how distinct
ensemble representations are for different stimuli are common
and well documented (e.g., Chapin and Nicolelis, 1999; Stopfer
et al., 2003; Daly et al., 2004b; Staudacher et al., 2009). Briefly,
ED analysis was used to quantify the differences between odor-
driven population responses across time (commonly referred to
as population response trajectories). This allows us to determine
how closely related ensemble response representations are across
response time and as a function of odor and the context in which
it was presented (Daly et al., 2004b). First, spike data were binned
(5 ms) across a −1 to 5.5 s peri-stimulus time window. Spike
counts were then z-score normalized based on a mean and stan-
dard deviation calculated from 3 s of spontaneous activity flanking
each stimulus response (−1 to 0 s and 3.5 to 5.5 s). Each unit was
treated as an independent coordinate vector and each bin rep-
resented the value of one coordinate in an N-dimensional space
for its respective point in response time. N represents the num-
ber of units in the neural ensemble. We used entire population
of 150 units from group one data. The Pythagorean Theorem
was used to calculate the straight line distance between pairs of
points, representing two different odors at the same point in
response time (i.e., the corresponding time bins). As a point of
reference we provide a threshold defined as ED values exceeding
2 SD from the mean ED for spontaneous activity. As ED val-
ues are based on normalized data, we parametrically compared
distance values from all pair-wise comparisons between odor-
ants as a function of the stimulation protocols to determine if
between odor representations are statistically more distinct when
odor was pulsed; this was performed using the GLM procedure in
SAS.

RESULTS
A SUBPOPULATION OF NEURAL UNITS TRACK PULSED ODOR IN AN
ODOR DEPENDENT MANNER
The primary goal of this study was to determine whether odor
presented to the antennae in a manner simulating the periodic

airflow that occurs during odor guided flight produces more dis-
tinct neural representations for odors from the AL; that is, are
odors presented as pulse trains more easily discriminated as mea-
sured with population analytic techniques? To address this, we
made extracellular recordings using tetrodes to measure the activ-
ity of AL neural units and LFPs in vivo while delivering temporally
structured odorants directly to the animal’s antennae. The olfac-
tometer was designed to rapidly and reliably time odor delivery
with millisecond precision (Figure 1).

We first sought to determine whether molecular features, such
as odor identity, impact the unitary spiking responses of AL
neurons to undiluted pulsed odors. Across a group of 15 ani-
mals (N = 150 units), we observed a subpopulation of units
that tracked pulsed stimuli, in many cases with discrete bursts
of spikes. Figure 2A displays peri-stimulus rasters from one such
unit as it responded to 20 Hz and a 25 Hz pulse trains and demon-
strates that single units readily track each pulse with discrete bursts
of spikes. The bursty nature of this unit during both sponta-
neous activity and in response to odor, as well as the brief spike
suppression prior to the initial excitatory response are hallmark
behaviors of PNs and was typical of the recorded units. It is pos-
sible that local interneurons were also recorded though there is
no clear means to putatively identify them. Olfactory receptor
neuron processes are too small to produce a detectable extracellu-
lar signal with our methods and thus are not represented in this
study.

Next, to classify recorded units as pulse tracking, we individu-
ally calculated the PSD for each response to pulsed and continuous
stimuli. Pulse tracking units typically produced a narrow-band
peak at the 20 Hz pulsed frequency (Figure 2B) that was absent in
the response to continuous odor (blue line). We then calculated
the integrated power across a 4 Hz window centered at the pulsing
frequency (Figure 2B, inset dashed line) and compared integrated
power from pulsed and continuous stimuli using a Wilcoxon rank
sum test (p < 0.05). This test was performed at two levels: one
as an omnibus test across all odors to identify the number of
pulse tracking units and the other a test within individual odors to
determine the number of odors that each individual unit tracked.
Consistent with our previous findings (Tripathy et al., 2010), we
observed that 24 and 23% of all recorded units tracked pulsed odor
at 20 and 25 Hz, respectively. Furthermore, 60% of pulse tracking
units tracked pulsed blanks (cartridges with no odor) in addition
to pulsed odor, whereas 40% of pulse tracking units tracked one
or more odors but not blanks (Figure 2C). The observation that
units track blanks in some cases but not others as occurs with
odors, suggests that whether tracking occurs is dependent on the
integration of both olfactory and non-olfactory cues.

Pulse tracking units did not universally pulse track to all odors;
these non-tracking responses fell into four classes (Figure 2D).
In many cases we observed excitatory responses to pulsed odor
as indicated by a significant increase in peri-stimulus spike rate
relative to pre stimulus spontaneous activity (p < 0.01) but did
not produce significant power at the pulsing frequency (p > 0.05).
For example, the upper left panel in Figure 2D displays the raster
of a unit that exhibited significant pulse tracking to other stimuli
but in this case produced a consistent burst pattern in response to
the 20 Hz pulsed stimulus.
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FIGURE 2 | Continued

FIGURE 2 | Continued

Characterization of neural units exhibiting pulse tracking responses.

(A) Peri-stimulus rasters and corresponding histograms (below) from a
single unit in response to 10 repeats of 500 ms 20 Hz (top) and 25 Hz
(bottom) pulse trains of undiluted K8. (B) Typical results of power spectral
density analysis of spiking in response to pulsed (red) and continuous (blue)
stimulation for a same unit. Inset dashed line highlights the 4 Hz window
centered on the pulsing frequency; integrated power measures were based
on area within boundary and under curve. (C) Example peri-stimulus rasters
from two units (rows) in responses to 20 Hz pulse trains elicited by blank
(left) or odor (right) stimuli (empty odor cartridges) from units that were
found to track pulsed stimuli. Odors were K10 and A9 for top and bottom
panels, respectively. These highlight that unitary pulse tracking can occur in
response to blanks but not all pulse tracking units track blank stimuli.
(D) Examples of non-pulse tracking responses to 20 Hz pulse trains from
units that were found to track pulsed stimuli (as shown in A and statistically
confirmed in (B) to at least one odor. We defined four non-pulse tracking
response classes: temporally patterned but not pulse tracking (TP), spike
suppression (–), tonic excitatory response (+) and non-responsive (NR).
Classification of response type was based on both a statistical change in
firing rate and PSD analysis (see methods). Inset gray bars represent the
odor presentation. Y-axis indicates trial-sum spike rates in a 1 ms binning
window. (E) Percentage of unit responses (Y-axis) by response type (X-axis;
defined above) and pulsing frequency. Results based only on units exhibiting
a significant pulse tracking response to at least one odor (N = 36).

For all stimuli, we classified non-tracking responses such as
these as temporally patterned (TP). We also observed significant
tonic activation (+; Figure 1C, bottom left), inhibited (−; top
right) and non-responsive (NR; bottom right). Overall, among
the ∼24% of units in these recordings which were identified as
pulse tracking, they displayed significant power in the PSD only
∼54% of the time (response distribution summary in Figure 2E).
Thus, while pulse tracking is the most prevalent response type
among this sub population of units, the fact that units do
not always track implies that pulse tracking responses are odor
dependent.

Unitary pulse tracking power increases with chain length
In order to determine the nature of odor dependent responses,
we statistically characterized integrated pulse tracking power as a
function of the molecular features of the odors presented using
GLM. Results of this model were significant (F266,7433 = 26.4;
p < 0.0001; and explained 48% of the variance in integrated
power. The main effect of pulse frequency was not significant
(p = 0.9043) indicating that the AL was tolerant of variation in
pulse frequency within the natural wing beat frequency range
(Figure 3A). The main effects of functional group and car-
bon chain length were significant (p = 0.0012 and p < 0.0001,
respectively). Blank odor cartridges (treated as separate cate-
gory) elicited significantly greater power than odor belonging to
either functional group (ketone or alcohol; Figure 3B). How-
ever, alcohols produced slightly but significantly lower power
than the ketones. Figure 3C displays the significant effect of
chain length on integrated power; the blank is inset as a com-
parison. The inset polynomial regression highlights this increase
in power as a continuous function of increasing chain length.
Note that responses to the blank stimuli produced the greatest
raw power suggesting a non-olfactory component to the pulse
trains.
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FIGURE 3 | Unitary pulse tracking is dependent on stimulus parameters.

Mean integrated pulse tacking power (Y-axis) among units as a function of
frequency (A), functional group (A = alcohol, K = ketone; bl = blank; (B), and
carbon chain length (C) for pulsed stimuli. Blank responses are included as a
point of reference. Inset regression line is a second order polynomial
highlighting the significant trend of increasing power as a function of chain
length. (D) Mean power by the significant interaction of chain length and
functional group from the subpopulation of units identified as pulse tracking
(N = 36 units; 15 moths). Inset (above/below respective means) is the
percentage of the pulse tracking cells that tracked a given stimulus. Inset are
regression lines for ketones is a linear function and for alcohols is a second

order polynomial function and highlight that the systematic trend for
increasing pulse tracking power is a significantly steeper function for alcohols.
(E) Mean integrated power as a function of odor concentration (N = 5 moths,
16 pulse tracking units). Inset linear regression indicates increasing power as
a function of decreasing concentration. (F) Mean integrated pulse tracking
power as a function of pulse train duration (N = 8 moths, 23 pulse tracking
units). Results broken down by stimulus (blank, K10 and K6) to highlight that
overall pulse tracking followed the same pattern as shown in D (i.e., the blank
produced the greatest power followed by K10 then K6). Inset second order
polynomial regressions indicate the same trend of increasing concentration
as a function of increasing pulse train duration that asymptotes by 2 s.

In addition, the 2-way interaction between chain length and
functional group was also significant (p < 0.001). Figure 3D
displays mean integrated power among pulse tracking units (for
20 Hz) as a function of chain length now broken down by func-
tional group. The inset second order polynomial function best
described power as a function of increasing chain length for alco-
hols, while a linear function best explained the chain length
relationship for ketones. This interaction simply suggests that
the increase in power as a function of increasing chain length,
progresses at different rates for the two moieties. Also inset in
Figure 3D are the percentages of units which tracked each odor
and indicate a 55% increase in the percentage of pulse tracking
units as a function of increasing chain length; this too high-
lights the odor dependency of unitary pulse tracking. Finally,
Figure 3D indicates that increasing power as a function of chain
length is attributable to increased numbers of pulse tracking
units.

As odor carbon chain length increases, odor volatility decreases,
suggesting that the chain length effect may be attributable to
concentration of odor that reaches the antennae. Therefore, in
a separate set of recordings we tested how changes in stimulus
concentration affected integrated power. In this case, odors were
presented across a 4-log step dilution series ranging from 0.01

to 100 μg/2 μl odor in mineral oil. A blank stimulus and three
ketones (K6, K7, and K8) were presented as 2 s, 20 Hz pulse trains;
this longer duration optimized power measurements (see below).
Based on psychophysical assays of odor detection (Daly et al., 2007)
these odors are detected at 0.01 μg/2 μl and can be discriminated
at 0.1 μg/2 μl. We again quantified the integrated pulse track-
ing power and modeled it as a function of stimulus concentration
using GLM. In this case we hierarchically accounted for variance
of all possible main effects and interactions prior to modeling
concentration.

The overall statistical model explaining variation in the mean
integrated power from the subpopulation of 16 pulse tracking
units (from 5 moths) was significant (F255,1024 = 15.4; p < 0.0001;
R2 = 0.79). After accounting for all other effects, the main
effect of odor concentration was significant (p < 0.0001) with
mean integrated power increasing as a linear function of decreas-
ing concentration (Figure 3E). These results suggest that as
odor concentration increases above detection and discrimina-
tion thresholds, AL units become less effective at tracking these
odors.

Prolonged exposure to continuous stimuli results in rapid sen-
sory adaptation and loss of odor guided behavior (Kennedy et al.,
1981; Willis and Baker, 1984; Baker et al., 1985). Thus, we next
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determined the persistence of tracking when the AL was chal-
lenged with more prolonged pulse trains. In a final group of 8
moths (23 identified pulse tracking units), K6 and K10 and blanks
were presented as 20 Hz pulse trains of durations ranging from 0.5
to 3.0 s; responses to continuous stimuli of equal durations were
collected and used as statistical comparisons of significant pulse
tracking (as described above).

The overall statistical model explaining variation in the mean
integrated power generated by the subpopulation of 23 pulse
tracking units was significant (F413,1656 = 23.1; p < 0.0001
and R2 = 0.85). After accounting for all significant factors
previously described, we found a significant effect of pulse
train duration (p < 0.0001) with pulse tracking improving as
pulse train duration increases up to 2 s, regardless of odor
tested (Figure 3F). Consistent with previous findings, blanks

produced the greatest pulse tracking followed by K10 then K6
(Figure 3C).

UNIT-LFP PHASE LOCKING IS STRONGLY DRIVEN BY TEMPORALLY
STRUCTURED STIMULI
The temporal relationship between LFP oscillations and spike
timing has long been implicated as an odor identity encoding
mechanism (for review see Laurent, 2002). We therefore asked
whether the extrinsic, stimulus-driven oscillatory responses of
units and LFP resulted in greater overall measures of unit-LFP
phase locking relative to continuous stimuli. First, Figure 4A dis-
plays three peri-stimulus LFP heatmaps from one recording site
in response to odor pulsed at 20 Hz (left), 25 Hz (center) and
continuous stimuli (right), and demonstrates near perfect trial to
trial coherence of the stimulus-driven oscillations. In response to

FIGURE 4 | Stimulus-driven LFP oscillations are strongly phase locked

with unitary spiking. (A) Rasterized peri-stimulus LFPs (top) and
corresponding histograms (below) for 10 repeats of 500 ms odor stimulation
(1-decanol; inset gray bars represent stimulus). Each LFP trace was band
pass filtered with a 5–80 Hz and a 60 Hz notch then converted to a
one-dimensional row of the raster. Heat-map color-code indicate voltage
peaks (reds) and valleys (blues). All 10 responses are aligned by stimulus
onset and stacked to create a single composite panel. Note that the vertical
striping of red and blue (voltage peaks and valleys, respectively) for the
pulsed stimuli indicates a near perfect alignment of oscillations. Peri-stimulus
histograms (below) are binned at 1 ms. Results are from the same animal and
recording site and are in response to 20 Hz (left), 25 Hz (center) pulse trains
and a continuous stimulation (right). (B) Example cross correlograms

between LFPs and units during spontaneous activity (left), and in response to
K6 (100 μg in 2 μL mineral oil) presented as a continuous stimulus (center), or
a 20 Hz pulse train (right). (C) Mean cross spectral density across all possible
analyzed cross correlations. Results based on 80 individually calculated cross
correlations across 4 pulse tracking units, 4 LFP recording sites, and 5
stimulus repeats. (D) Mean integrated CSD power in the cross correlations
around the pulsing frequency. Results are color coded as in B and broken
down as a function of odor concentration. Inset letters indicate significant
differences between spontaneous, continuous, and pulsed CSD power at
20 Hz. Analysis was performed independently for each concentration. Note
that relative to spontaneous activity, continuous odor stimulation significantly
decreased power whereas pulsed stimulation significantly increased power;
this was true at each stimulus concentration (Tukey’s HSD; p < 0.05).
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the continuous stimulation on the other hand, LFP oscillations
displayed a lack of regularity in oscillatory activity beyond an ini-
tial oscillation, which likely reflects the initial massed input to
the AL.

To quantify the relationship between LFP oscillations and unit
spiking activity we performed cross correlation analyses on these
measures during spontaneous and activity evoked by continu-
ous and pulsed stimuli. Figure 4B displays the cross correlation
between an LFP (recording site 1; see Figure 1) with a single pulse
tracking unit. Results are shown for spontaneous activity (left),
and in response to K6 (100 μg/2 μL) presented continuously
(center) or as a 20 Hz pulse train (right). In most cross corre-
lations, a prominent spike in the correlation was present centered
near t = 0 s, suggesting a high degree of coincident, possibly syn-
chronous, activity between unitary spiking and LFP activity. In
addition, we observed a strong oscillatory component in the unit-
LFP cross correlation only when odor was pulsed; this is because
pulsed stimuli entrains both unitary and LFP activity to a common
response frequency.

Next we calculated the CSD of each response to pulsed
and continuous stimuli as well as spontaneous activity sam-
pled immediately preceding each stimulus. Figure 4C displays
the averaged results of this analysis from a single moth and
the four pulse tracking neurons identified in that recording.
Results are based on all possible pair-wise cross correlations
between each unit and all four LFP recordings. Figure 4C dis-
plays a single spike in power exclusively for the pulse-driven
responses; this spike in power is precisely at the pulsing fre-
quency and was an order of magnitude greater than the next
highest peak. Consistent with our previous analysis of unit-LFP
phase locking, continuous odor stimulation appears to decrease
these measures as indicated by a relative lack of CSD power
across the frequency spectrum (Tripathy et al., 2010). Results of
a GLM explaining CSD power as function of spontaneous activ-
ity and odor-driven responses was significant (F1547,56244 = 27.6;
p < 0.0001 and R2 = 0.43). We found a significant main effect
of odor concentration (p < 0.001) and a significant difference
in CSD power across the spontaneous, continuous and pulsed
data (p < 0.0001). Post hoc analysis of integrated power in
the CSD shown in Figure 4D highlights that pulsed stimuli on
average produced an order of magnitude greater CSD power
at 20 Hz than did spontaneous activity or continuous stimuli.
This means that the degree to which unitary and LFP coordi-
nation is far more strongly controlled by the temporal features
of the stimulus than the intrinsic oscillatory dynamics of the
AL. Again, we observed a consistent and significant decrease in
distributed oscillatory power for the continuous stimulation rela-
tive to spontaneous activity, indicating that prolonged continuous
odor presentation in fact decreases unit-LFP phase locking (Daly
et al., 2011).

PULSED ODOR INCREASES SEPARATION OF ODOR REPRESENTATIONS
IN THE AL
While pulse tracking responses are odor-identity dependent, this
finding alone does not establish whether representations for odors
across the population are statistically more distinct as com-
pared to representations produced by continuous stimuli. To

address this question, population-based ED analyses were used
(e.g., Chapin and Nicolelis, 1999; Stopfer et al., 2003; Daly et al.,
2004b; Staudacher et al., 2009) to measure the separation or dis-
criminability between population spiking responses to different
stimuli. For this analysis, we pooled units across animals where
N = 150 represents the number of total units in the pooled
population. Here, we calculated the ED between population spik-
ing responses to different odorants and stimulation protocols
by (1) counting each unit’s number of spikes in a given time
bin (bin size = 5 ms), z-score normalizing these counts, and
(2) concatenating each unit’s normalized spike count in a time
bin into a 150-dimensional vector, which represents the pop-
ulation’s spiking activity in a given time bin. Thus EDs were
calculated by applying the Pythagorean Theorem to compute
the straight line distance between pairs of points in the 150-
dimensional space, each point representing the same peri-stimulus
bin in response time for two comparison stimuli. EDs were cal-
culated for each bin in response time for each comparable pair of
stimuli.

Using this ED analysis, we first sought to determine whether
odors have different neural representations when pulsed versus
delivered continuously (i.e., a within-odor comparison of different
stimulation protocols). For this analysis, all possible pair-wise
comparisons of distance between pulsed and continuous stimuli
for the same odorant were calculated (for example, comparing
all responses to K6 when delivered pulsed versus continuous).
We next sought to determine whether the separation between
odor representations was increased by pulsing odor stimuli versus
presenting continuous stimuli (i.e., a between-odor comparison
within a stimulation protocol; for example, whether responses
to K6 versus A6 are more discriminable when pulsed versus
continuous delivered). Here all possible pair-wise between odor
comparisons of pulsed or continuous stimuli were compared.

Figure 5A displays the mean ED by time for all pair-wise
within-odor comparisons of pulsed versus continuous stimuli.
The initial phase of the response is demarked by a sharp decrease
in distance between responses, which initiated within ∼50 ms
and reached their lowest values by ∼75 ms. Thus, for this initial
period the responses to the same odor presented different ways
was highly similar. This dip in distance is consistent across prior
multiunit studies (Daly et al., 2004b; Staudacher et al., 2009) and is
attributable to early, I1 inhibition, which is exclusively expressed in
PNs (Christensen et al., 1998). Thus, because the initial response
(spike suppression) is common to all odor-driven responses (i.e.,
both pulsed and continuous), distance is minimized. After this ini-
tial inhibitory phase, EDs increased and maximized by ∼150 ms
and then oscillated at the pulse train frequency. Importantly, the
responses to continuous and pulsed stimuli during this excitatory
phase can be characterized as dissimilar based on the observation
that on a periodic timescale, ED became significantly different as
indicated by a crossing of the threshold of 2 standard deviations
(Figure 5A inset red line). At ∼600 ms after stimulus onset EDs
dropped sharply, returning to baseline. These results establish that
odor representations are significantly different as a function of the
manner in which they are experienced.

The final and most important aspect of this study is the impact
of temporal stimulus structure on representation separation for
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FIGURE 5 | Antennal lobe odor representations are more distinct when

odor is pulsed. (A) Mean within-odor Euclidean distance (ED) between
comparisons of population responses elicited by the same odor presented
as either 20 Hz pulse trains or as continuous stimuli. All stimuli were
500 ms in duration (inset gray bars). Analysis was performed on individual
stimulus repeats using a 5 ms binning window and results were then
averaged across repeats for all odors (N = 10 per odor/stimulation
protocol). Results are based on the entire population of recorded units
(N = 150). Inset gray horizontal line represents the mean spontaneous ED
value. Inset horizontal red lines represent ± 2 standard deviations (SDs)
from that mean distance value.

(Continued)

FIGURE 5 | Continued

(B) Results of between-odor ED analysis for only the continuous (BI) or
20 Hz pulsed (BII) stimuli. Analysis based on all possible pair-wise
comparisons between the different odors across the recorded population
(N = 4500; 10 odors, 10 repeats, 150 units). (BIII) Expanded and
superimposed comparison of ED measures for an odor-driven response
window (0.085–0.595 ms post-stimulus onset; highlighted above with inset
dashed blue frame). The ED measures for the pulsed (green/red) and
continuous (gray/black) are color contrasted to highlight specific statistical
comparisons of time-averaged distance in (BIV). Here the excitatory phase
of each pulse-driven response is highlighted in red. Every other 25 ms in
response time was sub-sampled, which reflects the 25:25 ms on:off duty
cycle. For comparison the corresponding time periods from the continuous
stimuli was also sub-sampled (in solid black). (BIV) Mean ED for pulsed and
continuous stimuli. Here the four means represent the time-averaged ED
for either the entire response window (All data) or the sub-sampled data
points highlighted in BIII. Inset letters indicate significant differences
between means (Student’s t -test; p < 0.05). Comparison of integrated ED
for the entire response window indicates that continuous stimuli produce
significantly more distinct odor representations. By comparison, when only
the excitatory component of the pulse responses is considered (i.e., the
sub-sampled data) pulsed stimuli lead to significantly better separation of
odor representations than continuous stimuli. All error bars indicate
standard error of the mean (SEM).

different odorants. In other words, does the temporal structure
produced by the pulsed versus continuous stimulation protocols
result in different odorants having more separable neural pop-
ulation responses? Relative to continuous stimuli (Figure 5BI),
different odors are more quickly and effectively separated when
odor is pulsed (Figure 5BII). This analysis was based on all pos-
sible pair-wise between-odor comparisons. As in Figure 5A, both
stimulation protocols show the hallmark effect of I1 inhibition at
precisely the same time. However, whereas between-odor EDs for
continuous stimuli reach an optimum by 280 ms of stimulus onset,
the same population achieves peak distance within only 210 ms
when odor is pulsed (Figure 5BII); inset vertical lines highlight
this difference in latency to ED peak. Furthermore, ED measures
for pulsed stimuli produced oscillating peaks, six of which crossed
the threshold of 2 standard deviations. These results suggest that
pulsed odors provide more persistently separated representations
on a periodic timescale, whereas ED measures for prolonged con-
tinuous stimuli appear to attenuate after reaching an initial peak,
possibly as a result of adaptation.

Lastly, we sought to calculate a single measure defining the
representation separation for between-odor comparisons as a
function of stimulation protocol. Thus, we averaged ED values
across a temporal window encompassing the excitatory compo-
nent of all responses, ranging from 0.085 to 0.585 ms (i.e., 100
total 5 ms time bins; Figure 5BIII). Keeping in mind that pulsed
stimuli only produce periodic excitatory responses within this win-
dow, we analyzed time-averaged ED distances in two ways. First,
we compared mean distances overall (i.e., utilizing all ED val-
ues from all 100 time bins for each stimulation protocol). Next,
we compared mean distance as a function of only the excitatory
epochs in the pulsed ED. As highlighted in Figure 5BIII, we sub-
sampled the excitatory responses of the pulsed ED measures (red
traces), and corresponding data from the continuous ED mea-
sures (black traces) for statistical analysis. This analysis was based
on variation in mean ED. The sub-sampling interval was defined
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as the first 5 consecutive values (25 ms, given 5 ms bins) on
the rising phase of the first pulse response (i.e., Figure 5BIII red
traces) then dropping the following 5 values (Figure 5BIII green
traces), and so on; the pattern of every other 5 values reflects
the 25:25 ms on:off duty cycle (pulsed at 20 Hz) and yields
50 mean distance values for analysis. The same sub sampling
method was used on the continuous data as well for compara-
tive purposes. Figure 5BIV represents the time-averaged EDs for
continuous and 20 Hz stimuli computed using either the entire
temporal window (all data) or the sub-sampled data considering
only excitatory epochs as described above. Statistical comparison
of these mean values indicates that the excitatory component of
the pulsed response lead to significantly greater distance between
odors than continuous stimuli (inset letters, Student’s t-test;
p < 0.05). That is, simulating the natural flow dynamics gen-
erated during odor guided flight produces more distinctive and
discriminable AL representations. As observed in other sensory
systems, periodic input thus results in statistically more distinct
neural representations of odors relative to prolonged continuous
stimuli.

DISCUSSION
It has long been known that odor plumes are complex, contain-
ing a “wispy” filamentous spatiotemporal structure (Murlis and
Jones, 1981; Mafraneto and Carde, 1994; Carde, 1996; Murlis
et al., 2000). Studies of the time varying concentration of odor
plumes in wind tunnel and field indicate that the distribution of
stimulus durations a moth might encounter is on the order of
100 to about 500 ms, though this clearly is dependent on several
environmental factors (Murlis et al., 2000). It is within the con-
text of this chemical ecology that moths actively and periodically
sample their olfactory environment, discretizing this chemical
ecology into spatiotemporal “moments.” Studies of wing kine-
matics demonstrate that as a moth transitions from high speed
flight to odor guided and hovering flight, the orientation of the
body, wing stroke path, and orientation change, bringing the wings
closer to the antennae (Willmott and Ellington, 1997a,b). Given
that it is necessary for the flightless moth B. mori to have and
beat its wings during plume tracking behavior in order to find an
odor source (Obara, 1979), it stands to reason that flying insects
might also exploit the physical forces induced by the beating wing
to actively sample odors as well (Schneider, 1964). Recent biome-
chanical, modeling, behavioral and physiological studies suggest
that the act of wing beating is exploited as an active olfactory
sampling strategy (Loudon and Koehl, 2000; Bau et al., 2005;
Sane, 2006; Sane and Jacobson, 2006; Tripathy et al., 2010). Thus
we sought to characterize and compare physiological responses
to fast periodic stimuli, typical of wing beating during natural
odor guided flight behavior, relative to prolonged and continu-
ous stimuli, more typically used in laboratory studies of insect
olfaction. Similar approaches have been taken previously but used
lower pulse frequencies and longer pulse durations (Brown et al.,
2005; Geffen et al., 2009). Our results indicate that pulse train
stimuli drive the phase locked entrainment of LFPs as well as a
population of ∼25% of AL units at higher frequencies than previ-
ously described. Importantly, analyses of population responses
indicated that the spatiotemporal details of brief and periodic

responses were significantly different from responses to the same
odors presented as continuous stimuli.

Intermittent stimuli improve representations in sensory sys-
tems. For example, microsaccades are a constant rhythmic
movement of the eye observed during visual target fixation. It
is thought that these rhythmic movements are a mechanism for
counteracting sensory adaptation (Martinez-Conde et al., 2006).
Consistent with visual processing, brief pulse responses resulted in
significantly greater separation between odor representations than
continuous stimuli. Furthermore, pulsed odor representations
were more quickly and easily discriminated by the ED analysis.
These results likely underlie psychophysical results indicating low-
ered detection thresholds when odor is pulsed (Daly et al., 2013).
The fact that continuous odors produced an attenuated ED mea-
sure over time while pulsed odor did not seems to support the
conclusion that periodic olfactory input may serve to counteract
adaptation.

“Olfactory” responses in the absence of an apparent odor are
commonly observed in mammals (Walsh, 1956; Macrides and
Chorover, 1972; Ravel et al., 1987) and in several moth species
including Spodoptera littoralis (Anton and Hansson, 1995), Helio-
this virescens (Galizia et al., 2000), B. mori (Kanzaki and Shibuya,
1986), and M. sexta (Kanzaki et al., 1989; Staudacher et al., 2009).
Similar blank responses are observed in other insect species as well
(Zeiner and Tichy, 1998). Consistent with these observations, we
observed that blank cartridges, in addition to less volatile odors
and odors presented at lower concentrations all entrained uni-
tary responses best. The highly simplified olfactometer we used
makes odor contamination an unlikely explanation. Furthermore,
it is unlikely that the blank pulse response is related to oscil-
lations in humidity or temperature as all air passing through
the output nozzle is supplied from a single source that is only
split upon entering the 3-way valve (see Figure 1A). Hotwire
anemometry on the other hand has established that the 3-way
valve used in our olfactometer produces a highly stereotypic flow
artifact that could provide a mechanosensory cue (Daly et al.,
2013). Thus the parsimonious explanation is that responses to
empty cartridges are due to mechanical “wind” effects that have
been observed in many systems. Placed within the context of
pulsed odor, responses to pulsed blanks may therefore reflect an
underlying mechanism that integrates olfactory and mechanosen-
sory information to enhance the temporal resolution of olfactory
processing. This suggests that wing beating may superimpose a
rhythm that facilitates the temporal resolution at which odor stim-
uli can be sampled; our demonstration of increased separation
of odor representations when pulsed supports this proposition.
Thus, we concur with others that airflow responses are the
most likely explanation, and should be considered an integral
and necessary part of the olfactory experience (Mainland and
Sobel, 2006; Wachowiak, 2011). However, while the most likely
explanation appears to be mechanosensory, the source of the
response to this within the AL remains unknown. Our current
understanding is that mechanosensory input from the antenna
bypasses the AL and ramifies the antennal mechanosensory and
motor center (Homberg et al., 1989). There is no anatomical
data that we are aware of showing projections from the anten-
nal mechanosensory and motor center back to the AL. This
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suggests that the source of the blank response is from the olfactory
receptors themselves. Future studies should focus on attempt-
ing to determine the source of non-olfactory responses in the
AL, using methods that uncouple putative mechanosensory and
odor cues while maintaining the high temporal frequencies used
herein.

Finally, it is interesting that although pulsed blanks caused the
greatest amount of AL unitary entrainment, pulsed blanks are
least likely to cause a false positive conditioned response in behav-
ioral assays of odor detection (Daly et al., 2013). We speculate
that perhaps the periodic blank response is an expected compo-
nent of the primary olfactory function, which may be filtered in
downstream processing centers.

Different odor encoding models have been proposed to explain
how neural circuits in primary olfactory centers establish identity
codes for odors for subsequent readout in downstream centers.
Some have argued that odor identity is encoded by transient syn-
chronization of spikes across a dynamic assembly of neurons on
a periodic timescale spanning several hundreds of milliseconds
and established by intrinsically generated subthreshold LFP oscil-
lations (Laurent, 2002). This oscillatory mechanism results in a
temporally structured output code from primary olfactory net-
works that are read out downstream by the mushroom bodies.
They argue that a temporal coding scheme provides better dis-
crimination at the cost of requiring more time to encode. However,
the transient oscillatory synchronization does not appear to play a
role in odor discrimination in M. sexta (Mwilaria et al., 2008; Daly
et al., 2011). Alternatively, it has been proposed that odor drives
“onset” synchronization of the output response from primary
olfactory centers allowing the AL to track the time varying concen-
tration of the plume structure (Christensen et al., 2003; Lei et al.,
2009). We have argued that odor dependent representations are
correlated to a sequence of onset latencies from different subsets
of synchronously active AL outputs that evolve over and are opti-
mized within <150 ms (Daly et al., 2004b; Staudacher et al., 2009).
We highlight that although this temporal evolution is interrupted
by temporal structuring imposed by simulated wing beating (rel-
ative to the 100 ms single odor pulses we used in prior work),
the ED analysis presented herein also takes the same approxi-
mate time to optimize as we have previously described, ∼150 ms
from the start of the response. The longer continuous stimula-
tions appear to lengthen the time to peak ED. Thus, our current
data appears consistent with our previously published findings
suggesting a limited role for time in the encoding of odor identity
but a major role for the encoding the time varying structure of the
stimulus.

CONCLUSION
This study establishes that representations for different odors
become more distinct when odors are presented as very brief
and intermittent pulses as opposed to prolonged continuous odor
stimulation; this may be facilitated by the non-olfactory com-
ponent of the response. Brief and intermittent pulses simulate
the natural periodicity of wing beating during odor guided flight
and therefore represent a more “natural” and biologically rele-
vant stimulus. When odor is presented in this manner, odor
representations also optimize more quickly (within 3 pulses) and

are more persistent, showing little if any adaptation. Our find-
ings support the notion that the olfactory system of this moth
is optimized to process odor signals within a timeframe defined
at least in part by wing beating, a result that is not observable
with relatively prolonged stimulations as is commonly used in
the laboratory setting. We therefore emphasize the importance of
using more “natural” brief stimuli that are appropriately shaped
to match the species specific chemical ecology, as this might help
reconcile discrepancies between different models of odor identity
encoding.
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