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Intracellular calcium stores control many neuronal functions such as excitability, gene
expression, synaptic plasticity, and synaptic release. Although the existence of calcium
stores along with calcium-induced calcium release (CICR) has been demonstrated in
conventional and ribbon synapses, functional significance and the cellular mechanisms
underlying this role remains unclear.This review summarizes recent experimental evidence
identifying contribution of CICR to synaptic transmission and synaptic plasticity in the CNS,
retina and inner ear. In addition, the potential role of CICR in the recruitment of vesicles to
releasable pools in hair-cell ribbon synapses will be specifically discussed.
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Sensory transduction in the inner ear relies on the mechanoelectri-
cal capabilities of hair cells, the sensory receptors in auditory and
vestibular organs. Hair cells contain two differentiated compart-
ments with distinct physiological roles: the mechanosensitive hair
bundle and the basolateral membrane that includes specialized
synaptic zones. The hair bundle is responsible for translating a
mechanical vibratory input into an electrical current that, cou-
pled with the basolateral complement of voltage and calcium
activated ion channels, creates a receptor potential. The receptor
potential drives synaptic output from ribbon synapses. Ribbons
are vesicle-associated structures implicated in the modulation
of trafficking and fusion of synaptic vesicles at presynaptic ter-
minals (Heidelberger et al., 2002; Frank et al., 2010; Snellman
et al., 2011). Ribbons are also postulated to be important for
creating a large pool of primed vesicles and even perhaps recy-
cling endosomes into reusable synaptic vesicles (Kantardzhieva
et al., 2013). Calcium ions play critical but distinct roles in
mechanotransduction, receptor potential modulation and synap-
tic transmission. Whereas Ca2+ defines the open probability
of apical mechanotransduction channels in hair bundles (Farris
et al., 2006; Johnson et al., 2011; Peng et al., 2013) and regulates
basolateral membrane channels (Art and Fettiplace, 2006), Ca2+
levels allow the trafficking and exocytosis of neurotransmitter-
containing synaptic vesicles at ribbon synapses (Moser et al.,
2006). Evoked synaptic transmission is mediated by Ca2+ influx
through voltage-dependent Ca2+ channels and is additionally
modulated by release of Ca2+ from intracellular stores. In this
review, we will discuss the potential contribution of intracellu-
lar stores and Ca2+-induced Ca2+ release (CICR) to synaptic

transmission in central, retinal and hair-cell ribbon synapses.
The potential role of CICR in the recruitment of vesicles
to releasable pools in hair-cell ribbon synapses will also be
addressed.

CICR IN CENTRAL SYNAPSES
Calcium is an essential player in multiple processes in excitable
cells, including the release of neurotransmitter in neurosecre-
tory (Penner and Neher, 1988; Tse et al., 1997), central neurons
(Kuba, 1994), and sensory receptors (Thoreson, 2007). Dur-
ing synaptic transmission, the influx of extracellular Ca2+ from
voltage-dependent Ca2+ channels allows the release of neuro-
transmitter through the recruitment and exocytosis of vesicles in
the active zone of presynaptic terminals (Katz and Miledi, 1969;
Neher, 1998). However, the release of neurotransmitter can also be
triggered by Ca2+ released from intracellular organelles contain-
ing ryanodine receptors (RyRs) or inositol triphosphate receptors
(IP3Rs) by an amplificatory process termed CICR. In addition,
recent evidences point to a role for Ca2+ released by endolyso-
somal vesicles containing NAADP-gated two-pore channels in
central synaptic transmission (Chameau et al., 2001; Calcraft et al.,
2009; Zhu et al., 2010), though this mechanism remains to be
investigated at ribbon synapses. CICR has a role in both presynap-
tic (Llano et al., 2000; Unni et al., 2004) and postsynaptic terminals
(Savic and Sciancalepore, 1998; Llano et al., 2000; Emptage et al.,
2001; Rose and Konnerth, 2001; Simkus and Stricker, 2002). In
neurons, CICR is implicated in neuronal excitability, gene expres-
sion, synaptic plasticity and synaptic release (Bouchard et al., 2003;
Verkhratsky, 2005; Parekh, 2008). Endoplasmic reticulum (ER)
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seems to be the intracellular Ca2+ store responsible for CICR in
presynaptic terminals (Verkhratsky, 2005). The neuronal ER is
a continuous network that spreads throughout the cell, includ-
ing soma, axons, boutons, dendrites and spines (Berridge, 1998;
Chen et al., 2014). Although not entirely conclusive, there are
anatomical evidences for the presence of ER along with IP3Rs
and RyRs in presynaptic terminals (Ungar et al., 1981; Mercu-
rio and Holtzman, 1982; Ungar et al., 1984; Krijnse-Locker et al.,
1995; Bouchard et al., 2003). Neuronal RyRs can be activated
following Ca2+ influx through voltage-dependent Ca2+ chan-
nels or ionotropic glutamate receptors (Berridge, 1998). Despite
the lack of a unified mechanistic model, presynaptic CICR is
present in several neuronal types such as motor neurons (Erulkar
and Rahamimoff, 1978; Soga-Sakakibara et al., 2010), sympa-
thetic neurons (Hua et al., 1993), cerebellar basket cells (Galante
and Marty, 2003), striatal neurons (Plotkin et al., 2013), thala-
mocortical neurons (Cheong et al., 2011), Purkinje cells (Llano
et al., 2000), sensory neurons (Shmigol et al., 1995), and cochlear
nucleus neurons (Kato and Rubel, 1999). The presence of action
potential-evoked as well as spontaneous CICR has been demon-
strated by pharmacological effects of ryanodine, caffeine and
other drugs on presynaptic Ca2+ levels and postsynaptic cur-
rents. At presynaptic terminals, Ca2+ stores modulated action
potential-evoked Ca2+ signals, regulating the efficacy of trans-
mitter release (Galante and Marty, 2003; Collin et al., 2005). In
hippocampal boutons, action potentials evoked large Ca2+ tran-
sients triggered by both influx from Ca2+ channels and Ca2+
released from internal stores (Emptage et al., 2001). The obser-
vation that the frequency of spontaneous miniature postsynaptic
events (mEPSCs) was reduced when blocking CICR in cortical
(Simkus and Stricker, 2002), hippocampal (Emptage et al., 2001),
and cerebellar neurons (Llano et al., 2000; Bardo et al., 2002), sug-
gested that spontaneous exocytosis requires Ca2+ release from
internal stores (Emptage et al., 2001). In motor neuron termi-
nals, CICR was primed by tetanic stimulation, increasing the
frequency of spontaneous release events (Narita et al., 1998).
In cerebellar interneuron–Purkinje cell synapses, spontaneous
presynaptic Ca2+ transients, reminiscent of Ca2+ sparks in
muscle, were reduced by ryanodine (Llano et al., 2000). Interest-
ingly, large-amplitude miniature inhibitory postsynaptic currents
(mIPSCs; maximinis) persisted in the presence of tetrodoxin, cad-
mium or Ca2+-channel toxins, suggesting the contribution of
CICR to spontaneous presynaptic activity (Llano et al., 2000).
In reciprocal synapses between retinal amacrine cells and rod
bipolar cells, Ca2+ influx through amacrine cell AMPARs trig-
gers the synaptic release of GABA through CICR (Chavez et al.,
2006).

Unfortunately, the main caveat in the identification of the
physiological role of CICR in synaptic transmission is that most
experimental evidences exclusively rely on the effects of non-
specific pharmacological agents. In addition, these drugs have
often opposite effects depending on the dose and exert both pre
and post-synaptic effects, adding complexity to pharmacological
results that lead to ambiguous conclusions (Barnes and Hille, 1989;
Llano et al., 2000; Emptage et al., 2001; Rose and Konnerth, 2001;
Bouchard et al., 2003; Collin et al., 2005; Bardo et al., 2006). In fact,
different reports using similar pharmacological approaches have

resulted in contradictory conclusions (Emptage et al., 2001; Carter
et al., 2002; Lelli et al., 2003; Beurg et al., 2005; Cadetti et al., 2006;
Suryanarayanan and Slaughter, 2006). An additional source of
variability in the study of CICR relies on the existence of different
isoforms of RyRs (Lanner et al., 2010). Furthermore, drugs used in
the study of CICR can also alter other Ca2+ homeostatic mecha-
nisms, such as store-operated Ca2+ entry (SOCE), which can also
modulate neuronal (Emptage et al., 2001) and ribbon synaptic
transmission (Szikra et al., 2008). Nevertheless, numerous evi-
dences point to the existence of a bona fide physiological role for
CICR in synaptic transmission, although the distinct mechanism
remains unclear (Hua et al., 1993; Llano et al., 2000; Sharma and
Vijayaraghavan, 2003; Collin et al., 2005; Gordon and Bains, 2005;
Bardo et al., 2006).

ROLE OF CICR IN CENTRAL SYNAPTIC TRANSMISSION
In neurons and cardiac cells, CICR is a graded rather than an
all-or-none phenomenon in which release of Ca2+ from stores
increases in a graded fashion with increasing stimulus strength
(Ca2+ channel activation; Fabiato, 1985; Beuckelmann and Wier,
1988; Hua et al., 1993; Usachev and Thayer, 1997; Berridge, 1998).
Additionally, neuronal regenerative CICR can also be observed by
incubating with a sensitizing agent such as caffeine and applying
suprathreshold electrical stimulation (Usachev and Thayer, 1997).
Local Ca2+ nanodomains generated by activation of close Ca2+
channels are sufficient to induce Ca2+ release from the ER (Stern,
1992; Stern et al., 1999). Ca2+ influx and efflux microdomains
may exist as separate identities in the ER. Presynaptically, such spa-
tial distribution suggests that different active zones could activate
RyRs independently to coordinate intracellular release through
the lumen of the ER network (Friedman and Voeltz, 2011; Chen
et al., 2014). This scenario is consistent with multiple coinci-
dent exocytic events triggered by Ca2+ stores instead of nearby
Ca2+ channels. Multivesicular release and compound fusion of
synaptic vesicles is reported in central neurons (Tong and Jahr,
1994; He et al., 2009). Presynaptic information can be linearly
transmitted to the postsynaptic terminal through multivesicu-
lar release in those synapses where receptors are not saturated
nor desensitized (Singer et al., 2004), thus supporting short-term
synaptic plasticity (Oertner et al., 2002; Quinlan and Hirasawa,
2013). Moreover, multivesicular release caused large miniature
postsynaptic currents (maximinis) as large as 1 nA in cerebellar
Purkinje cells (Llano et al., 2000). Ryanodine (100 μM) decreased
the amplitude and frequency of mIPSCs and selectively elimi-
nated maximinis, indicating that presynaptic RyRs are involved
in the generation of multivesicular release (Llano et al., 2000).
Extracellular Ca2+ removal abolished the presence of these max-
iminis and reduced the mean amplitude of uniquantal mIPSCs,
suggesting that presynaptic Ca2+ reduction leads to depletion of
Ca2+ stores and disruption of multivesicular release (Llano et al.,
2000).

Together with cytoplasmic Ca2+ buffering, extrusion through
plasma membrane ATPases and uptake into organelles, release
of Ca2+ from intracellular stores contributes to the control of
cytoplasmic basal Ca2+ levels. However, ER Ca2+ levels fur-
ther confer memory of previous activity (Berridge, 1998). The
amount of releasable Ca2+ from neuronal ER is proportional to
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the Ca2+ load contained in its lumen, which in turn depends
on the cytosolic Ca2+ levels (Sitsapesan and Williams, 1990; Hua
et al., 1993; Garaschuk et al., 1997; Berridge, 1998; Krizaj et al.,
1999). Furthermore, RyR sensitivity is augmented by high lumi-
nal Ca2+ levels (Fill and Copello, 2002). Therefore, the amount
of Ca2+ sequestered in the ER may become larger after con-
secutive stimulation and dependent on the magnitude of prior
release. Intracellular Ca2+ stores have a role in neuronal synaptic
plasticity (Zucker, 1989). At neuromuscular junctions, inhibitors
of mitochondrial Ca2+ uptake and release blocked post-tetanic
potentiation (Tang and Zucker, 1997). Nevertheless, numerous
experimental results suggests that the ER is a highly dynamic intra-
cellular Ca2+ store ideally suited for regulating different forms
of synaptic plasticity (Fitzjohn and Collingridge, 2002; Baker
et al., 2013). In addition, CICR has been implicated in long-
term forms of synaptic plasticity. Genetic or pharmacological
disruption of RyRs enhanced long-term potentiation (LTP) and
impaired long-term depression (LTD) in CA1 pyramidal neu-
rons [Futatsugi et al., 1999; Nishiyama et al., 2000; but also see
Qin et al. (2012)], suggesting that Ca2+ from intracellular stores
may contribute to decrease the threshold for LTD expression
(Reyes and Stanton, 1996). Since sustained moderate Ca2+ rise
induces NMDAR-dependent depression of synaptic transmission,
postsynaptic steady-state CICR might support LTD under con-
tinuous synaptic activity, maybe through the recruitment of a
subpopulation of AMPAR-containing vesicles. According to this,
NMDAR-dependent LTD required Ca2+ release from ryanodine-
sensitive stores in CA3–CA3 hippocampal synapses (Unni et al.,
2004). Furthermore, the coupling of postsynaptic AMPARs and
Ca2+ stores could adjust synaptic strength depending on the num-
ber of synchronically activated synapses, switching the direction
of synaptic plasticity from LTP to LTD (Camire and Topolnik,
2014). Similarly, both pre and postsynaptic ryanodine-sensitive
Ca2+ stores were necessary for LTD induction in hippocampal
GABAergic synapses (Caillard et al., 2000). LTP is reported to
rely on IP3Rs in presynaptic ER of sympathetic ganglia synapses
(Cong et al., 2004). Moreover, synaptic plasticity can be mod-
ulated by the control of Ca2+-dependent vesicle mobilization
between different vesicle pools (Alabi and Tsien, 2012), a mech-
anism potentially regulated by presynaptic Ca2+ stores (Levitan,
2008).

Most synapses with low probability of release show synaptic
facilitation, a short-term form of plasticity in which repeated stim-
ulation leads to a transient increase in the probability of synaptic
release. CICR can sustain paired-pulse facilitation (PPF), a form
of plasticity lasting hundreds of milliseconds to seconds. During
PPF, the amplitude of a second excitatory postsynaptic potential
(EPSP) becomes larger than a first EPSP, a phenomenon often
attributed to residual Ca2+ from the first pulse summing up with
the second pulse (Katz and Miledi, 1968). In pyramidal hippocam-
pal neurons, blocking CICR with ryanodine or cyclopiazonic acid
(CPA) reduced the enhancement in the second stimulus when sep-
arated by tens of milliseconds (Emptage et al., 2001) suggesting
that CICR may be the source of some residual calcium. Thapsi-
gargin also suppressed synaptic facilitation during high-frequency
stimulation in hippocampal synapses (Zhang et al., 2009), fur-
ther pointing to a role of CICR in short-term plasticity. The

recruitment of reserve vesicles near active zones could be the func-
tional target of CICR, modulating synaptic strength and mediating
certain forms of synaptic plasticity (Bardo et al., 2006). How-
ever, mobilization of vesicles from the reserve pool has also been
attributed to Ca2+ leakage from mitochondrial stores (Billups and
Forsythe, 2002; Storozhuk et al., 2005), suggesting that short-term
vesicle mobilization can be modulated by multiple Ca2+ stores.
Nevertheless, the role of CICR in short-term synaptic plastic-
ity remains controversial (Carter et al., 2002), and more data are
needed to clarify the role of CICR on the milliseconds-to-seconds
time scale.

CICR IN PHOTORECEPTOR RIBBON SYNAPSES
Aside from central synapses, CICR also plays a role in ribbon
synaptic transmission in the retina and inner ear. Ribbon synapses
support fast and sustained transmission of graded inputs through
multivesicular release of synaptic vesicles in unique presynap-
tic organelles called synaptic ribbons. The existence of CICR
was demonstrated in rods and cones, the two types of pho-
toreceptors (Krizaj et al., 1999; Suryanarayanan and Slaughter,
2006; Szikra and Krizaj, 2006). In rods, a depolarization-evoked
intracellular Ca2+ rise spread from the active zone across the
synaptic terminal and could be blocked by ryanodine, suggesting
that CICR has a presynaptic role in retinal synaptic transmis-
sion (Cadetti et al., 2006). Blocking Ca2+ sequestration into
the ER by thapsigargin and CPA, two sarco/ER Ca2+ ATPase
(SERCA) inhibitors, decreased the magnitude of depolarization-
evoked and caffeine-evoked presynaptic Ca2+ transients, pointing
to the ER as the intracellular Ca2+ store involved in CICR at
photoreceptors (Szikra and Krizaj, 2007). Although its phys-
iological effect varies among preparations, ryanodine gener-
ally promotes RyR opening at low micromolar concentrations
(around 1–5 μM) whereas it blocks RyRs at higher concen-
trations (50–100 μM; Verkhratsky, 2005). Ryanodine (10 μM)
increased cytoplasmic Ca2+ levels in somas and synaptic ter-
minals of rods, consistent with its effect as RyR agonist (Babai
et al., 2010b). Similarly, caffeine, which is known to sensitize
RyRs to Ca2+, triggered a robust transient Ca2+ increase fol-
lowed by prolonged reduction (Krizaj et al., 1999). Ryanodine
(20 μM) suppressed these caffeine-evoked effects (Krizaj et al.,
1999). In addition, Ca2+ substitution by barium, a divalent
ion which is poorly sequestered into stores (Kwan and Put-
ney, 1990; Adachi-Akahane et al., 1996), also suppressed caffeine
effects (Krizaj et al., 1999). Immunohistochemistry studies showed
RyRs in terminals of cones and rods (Krizaj et al., 2003, 2004),
along with partial colocalization between ER-containing Ca2+
ATPase SERCA2 and Ribeye, the most abundant protein in
synaptic ribbons (Babai et al., 2010b). All these data support
the existence of CICR in photoreceptors and point to a real
function of Ca2+ stores in phototransduction. In addition to
CICR, SOCE also contribute to ribbon synaptic transmission
by regulating presynaptic Ca2+ homeostasis (Szikra et al., 2008,
2009).

Evidence for the role of presynaptic CICR in ribbon synap-
tic transmission was obtained at rod-horizontal cell (Cadetti
et al., 2006) and rod-bipolar cell ribbon synapses (Suryanarayanan
and Slaughter, 2006). Mitochondrial Ca2+ uptake occurs in
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photoreceptors and bipolar presynaptic terminals only after strong
depolarization (Zenisek and Matthews, 2000; Krizaj et al., 2003;
Wan et al., 2012). However, the major role of mitochondria
near synaptic ribbons is to provide the energy needed to pump
Ca2+ outside the terminal (Zenisek and Matthews, 2000; Lin-
ton et al., 2010). Unlike mitochondria, the ER is directly involved
in presynaptic CICR at retinal ribbon synapses. Caffeine incu-
bation elicited a brief depolarization followed by a progressive
hyperpolarization in horizontal cells, suggesting that presynaptic
caffeine-sensitive Ca2+ stores modulate neurotransmitter release
at the ribbon synapse (Krizaj et al., 1999). Similarly, light-evoked
currents in horizontal cells were reduced by ryanodine (100 μM),
demonstrating the importance of CICR in this synapse and sug-
gesting a potential presynaptic site of action (Babai et al., 2010b).
In paired recordings from rods, blocking CICR with ryanodine
reduced the later portions of the horizontal cell EPSC (Cadetti
et al., 2006; Suryanarayanan and Slaughter, 2006). This effect was
more prominent after prolonged stimulation, pointing to a key
role of CICR on the later components of synaptic release (Cadetti
et al., 2006). Ryanodine also reduced the intraretinal b-wave, the
bipolar cell-evoked component of electroretinogram (Babai et al.,
2010b). Light-evoked postsynaptic currents in bipolar cells were
abolished by 100 μM ryanodine (Suryanarayanan and Slaughter,
2006). In rod-bipolar synapses, ryanodine reduced both phasic
and sustained transmitter release at rod physiological potentials
(Suryanarayanan and Slaughter, 2006). The predominant effect
of ryanodine on the late part of the bipolar EPSCs at different
rod potentials pointed to a direct physiological role of CICR in
sustained exocytosis of synaptic vesicles at rod terminals. More-
over, caffeine addition while blocking presynaptic Ca2+ channels
with cadmium, evoked EPSCs in bipolar cells (Suryanarayanan
and Slaughter, 2006), suggesting that Ca2+ released from stores
is capable of evoking EPSCs. In this view, continuous mod-
erate activation of voltage-dependent calcium channels would
activate CICR-dependent exocytosis of vesicles, whereas strong
stimulation could trigger vesicle exocytosis directly due to abrupt
larger calcium loads through voltage-dependent calcium chan-
nels. This hypothesis points to a role for CICR in the resupply of
vesicles for exocytosis during continuous stimulation. The large
spontaneous postsynaptic events observed in paired recordings
likely represents coordinated release of multiple vesicles (Surya-
narayanan and Slaughter, 2006). The frequency and amplitude of
these spontaneous EPSCs was reduced by ryanodine, suggesting
a role for CICR in coordinating multivesicular release (Surya-
narayanan and Slaughter, 2006). Bipolar cells present two EPSC
components in response to rod depolarization: a transient and
a sustained component of slower onset. The sustained synap-
tic component was reduced by 100 μM ryanodine or 5 mM
BAPTA, pointing to a role for CICR in the exocytosis of vesi-
cles recruited from a reserve pool (Suryanarayanan and Slaughter,
2006). Addition of ryanodine (100 μM) also reduced the size of
the larger spontaneous EPSCs, thought to emerge from coordi-
nated neurotransmitter release, suggesting the potential role of
CICR in synchronizing the fusion of multiple vesicles (Surya-
narayanan and Slaughter, 2006). Since the recruitment of vesicles
involves sites located a few hundreds of nanometers from the
Ca2+ channels, it is possible that vesicle trafficking is modulated

by the summation of Ca2+ signals from multiple nanodomains.
This would reduce noise from stochastic Ca2+ channel open-
ings, improving the signal-to-noise ratio and allowing CICR to
ultimately regulate sustained release. Alternatively, CICR could
facilitate the coordinated fusion of vesicles far from the active
zone. Extrasynaptic exocytosis of vesicles or prefusion of vesicles
before reaching the active zone are alternative scenarios consis-
tent with this idea. Supporting this view, long depolarization
pulses (>200 ms) applied to rods evoked the exocytosis of vesi-
cles located far from synaptic ribbons (Chen et al., 2013). These
ectopic exocytic events were triggered by CICR, suggesting the
potential contribution of ER to maintained synaptic release of vesi-
cles (Chen et al., 2014). By contrast, ectopic ribbon-independent
synaptic release in rod bipolar-AII amacrine cell synapses was
independent on intracellular calcium stores (Mehta et al., 2014),
suggesting differential CICR contributions to different types of
ribbon synapses.

CICR IN HAIR CELLS
The release of Ca2+ from intracellular stores has been demon-
strated in hair cells of different animals in auditory and vestibular
organs, where pharmacological modulators of Ca2+ stores and
RyRs exerted an effect on Ca2+ hotspot amplitude, Ca2+ basal lev-
els, membrane ion channels or hair-cell membrane capacitance.
Imaging and electrophysiological experiments showed the exis-
tence of CICR in hair cells of frog semicircular canal (Hendricson
and Guth, 2002; Lelli et al., 2003), turtle auditory papilla (Tucker
and Fettiplace, 1995; Schnee et al., 2011b), and mammalian inner
hair cells (IHCs; Kennedy and Meech, 2002) and outer hair cells
(OHCs; Lioudyno et al., 2004).

In vestibular hair cells of the frog semicircular canal, caffeine
(10 mM) increased intracellular Ca2+ levels, an effect that was
diminished by ryanodine (40 μM; Lelli et al., 2003). Additionally,
incubation with caffeine (1 mM) potentiated depolarization-
evoked Ca2+ transients in hair-cell hotspots of the semicircular
canal. Conversely, ryanodine (40 μM) reduced depolarization-
evoked Ca2+ transients. In a minority of cells, caffeine (500 μM)
also evoked membrane capacitance increases whereas ryanodine
(40 μM) reduced voltage-dependent capacitance increases (Lelli
et al., 2003). Interestingly, this reduction was more apparent after
repeated stimulation. The presence of RyRs in vestibular hair
cells was also suggested by immunohistochemical evidence (Perin
et al., 2012). In addition, the contribution of CICR to hair-cell
synaptic transmission was further confirmed at postsynaptic com-
partments. The dose-dependent reduction of semicircular canal
afferent discharge after incubation of caffeine, ryanodine and
thapsigargin suggested a physiological role for Ca2+ stores in
vestibular synaptic transmission (Hendricson and Guth, 2002).
Postsynaptically, caffeine (20 mM) increased and ryanodine
(1 mM) decreased spontaneous action potentials in the vestibu-
lar nerve (Lelli et al., 2003). The complete reduction of multiunit
vestibular afferent discharge after incubation of xestospongin C
(1 μM), an IP3R blocker, also pointed to the presence of pre
or postsynaptic IP3-sensitive Ca2+ stores (Hendricson and Guth,
2002). Similarly, IP3R inhibitors and compounds that increase IP3

production modulated vestibular discharge in frog semicircular
canal (Rossi et al., 2006).
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Hair cells of the basilar papilla, the auditory organ of rep-
tiles, amphibians and birds also contain intracellular Ca2+ stores.
BHQ (50 μM), a specific blocker of ER CaATPase, and caffeine
(20 mM) elevated Ca2+ levels throughout the cell (Tucker and
Fettiplace, 1995; Tucker et al., 1996), confirming the presence
of ER Ca2+ stores. BHQ and thapsigargin prolonged the dura-
tion of Ca2+-dependent SK currents (Tucker et al., 1996) and
increased Ca2+-dependent inactivation of L-type Ca2+ channels
(Lee et al., 2007). These results confirm that ER Ca2+ homeostasis
has an influence near the hair-cell membrane and suggest that
the Ca2+ buffering and releasing capabilities of the ER might
be separated spatially to avoid functional interference. More
recently, a non-linear rise in the intracellular Ca2+ levels obtained
by high-speed Ca2+ imaging during prolonged depolarization
further pointed to the existence of CICR (Schnee et al., 2011b;
Figure 1A).

Intracellular Ca2+ stores were identified in IHCs of the mam-
malian cochlea. Inhibitors of ER Ca2+ uptake such as BHQ
(100 μM), thapsigargin (200 nM), or CPA (30 μM) increased
resting cytoplasmic Ca2+ levels and slowed the recovery time
after brief depolarization in neonatal IHCs (Kennedy, 2002). An
increase in intracellular Ca2+ baseline levels was also observed
after 10 mM caffeine application in adult guinea pigs IHCs (Beurg
et al., 2005), but not after 5 mM caffeine application in imma-
ture mice IHCs (Kennedy, 2002). Ryanodine (20 μM) reduced
both amplitude and rise rate of depolarization-evoked Ca2+ tran-
sients in neonatal IHCs (Kennedy and Meech, 2002), a result that
could not be reproduced in IHCs from 14 to 18 days-old mice
(Frank et al., 2009). The amplitude of Ca2+-dependent K+ cur-
rents was reduced by ryanodine (20–100 μM) or caffeine and
thapsigargin (1 μM), demonstrating that the activity of RyRs
located in the ER modulate Ca2+ levels around plasma mem-
brane channels in mature IHCs (Marcotti et al., 2004; Beurg
et al., 2005). In fact, immungold-EM localized RyRs in the ER
at the base of IHCs and cisternae of the basolateral membrane
(Grant et al., 2006). Compound action potentials in the audi-
tory nerve were reversibly inhibited by intracochlear perfusion
of ryanodine (50–100 μM), further confirming the physiologi-
cal relevance of hair-cell CICR in synaptic transmission (Beurg
et al., 2005). Substitution of K+ by cesium (Cs+) in the intracel-
lular pipette solution is often used in patch-clamp experiments to
block K+ conductances and isolate Ca2+ currents. Interestingly,
Cs+ reduced Ca2+ increase in IHCs by an unknown intracellu-
lar mechanism, apparently blocking CICR (Kennedy and Meech,
2002). However, this effect was not observed in basilar papilla hair
cells (Schnee et al., 2011b).

Mammalian OHCs present a robust CICR mechanism associ-
ated to efferent innervation (Ashmore and Ohmori, 1990; Sridhar
et al., 1997; Evans et al., 2000; Lioudyno et al., 2004; Grant et al.,
2006). Similarly, application of ATP to the hair bundle of OHCs
triggered the release of Ca2+ from IP3R-containing apical intra-
cellular stores (Mammano et al., 1999). In addition to their
electromotile behavior that supports cochlear amplification of
incoming sounds, OHCs support synaptic transmission to type II
afferents in response to loud sounds (Brown, 1994; Weisz et al.,
2012). A potential role for CICR in type II afferents synaptic
transmission has never been experimentally addressed.

ROLE OF CICR IN HAIR-CELL SYNAPTIC TRANSMISSION
Despite the numerous reports demonstrating the presence of
intracellular Ca2+ stores in hair cells, their precise physiolog-
ical role has not been clarified (Tucker and Fettiplace, 1995;
Evans et al., 2000; Hendricson and Guth, 2002; Kennedy, 2002;
Lelli et al., 2003; Marcotti et al., 2004; Beurg et al., 2005). The
observation that Ca2+ stores regulated extrasynaptic BK chan-
nels lead to the hypothesis that CICR could counteract elevated
Ca2+ accumulation through BK channel activation to hamper
synaptic transmission during sound overstimulation or ischemia
(Beurg et al., 2005). Several lines of evidence, however, lead to
the proposition that Ca2+ stores are involved in hair-cell ribbon
synaptic transmission. Synaptic transmission in auditory hair cells
is characterized by an unusual broad distribution in the size of
postsynaptic EPSCs, a unique feature that likely originates from
the synchronized fusion of synaptic vesicles. The large range of
vesicle sizes observed could additionally be due to prefusion of
synaptic vesicles (Schnee et al., 2013). In turtle hair cells, lower-
ing external Ca2+ dramatically reduced the frequency and size
of burst-like EPSCs (Schnee et al., 2013), but the potential con-
tribution of Ca2+ released from intracellular stores to complex
EPSCs remains to be experimentally tested. The open probabil-
ity of voltage-dependent Ca2+ channels controls the transient
changes in presynaptic Ca2+ levels, allowing fast conduction of
transient auditory information in adult animals (Brandt et al.,
2005; Fedchyshyn and Wang, 2005). Calcium stores set the open
probability of L-type Ca2+ channels, potentially modulating spon-
taneous release from ribbon synapses (Lee et al., 2007). Inhibition
of ER Ca2+ pumps with BHQ or thapsigargin lead to faster and
increased Ca2+ channel inactivation (Lee et al., 2007). Unlike
Ca2+ channels in mammalian IHCs, Ca2+ channels in bird and
turtle auditory hair cells were half inactivated at resting potentials
(Schnee and Ricci, 2003; Lee et al., 2007), opening the possibility
of a presynaptic control of synaptic plasticity through the reg-
ulation of Ca2+ channel inactivation by calcium stores. Despite
the lack of evidence that Ca2+ stores are indeed located in close
proximity to active zones, Ca2+ stores could modulate the Ca2+
concentration sensed near plasma membrane channels (Marcotti
et al., 2004; Beurg et al., 2005). Therefore, although a physiologi-
cal role for CICR in tonic synaptic transmission would appear to
be more feasible, a contribution to phasic transmission cannot be
ruled out.

Although the existence of CICR in hair cells has been ratified in
different studies, a unifying theory that enlightens its physiologi-
cal relevance in synaptic transmission is still missing. The recent
development of new technologies is opening new avenues for the
understanding of the role of CICR in synaptic transmission at
hair-cell ribbon synapses (Schnee et al., 2011a; Castellano-Munoz
et al., 2012). Dual sine capacitance experiments, which monitor
vesicle fusion in real time, identified two different release com-
ponents during prolonged depolarization (Schnee et al., 2011b).
A first linear component, proportional to the Ca2+ load, was
equivalent in size to the fusion of the pool of vesicles near the
synaptic ribbon (Figure 1B). The onset of a later larger superlinear
component was Ca2+-load dependent and resembled non-linear
exocytic components reported in bipolar and chromaffin cells
(Seward et al., 1996; Wan et al., 2010). This superlinear component
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FIGURE 1 | (A) Hair cells show non-linear calcium increases during
depolarization. Upper panel shows a swept-field confocal image of a single
turtle auditory hair cell during patch clamp experiments.
Hylite594-conjugated ribbon-binding peptide in the internal solution defined
the location of synaptic ribbons for subsequent calcium imaging recordings
(note that peptide also binds unspecifically to the pipet). In the lower panel,
calcium levels were monitored in response to depolarization by swept-field
confocal microscopy at 500 frames per second (fps) using the low-affinity
calcium dye fluo4FF. Black and green traces correspond to intracellular
locations near and far from synaptic ribbons (circles in upper panel). Arrow
points the onset of supralinear calcium rise. (B) Hair cells show time-variant
exocytic enhancement. In an independent experiment, calcium currents and
real-time membrane capacitance were obtained by dual sine capacitance
methods. Eleven minutes after whole cell configuration, a superlinear

release was first obtained during prolonged moderate depolarization (black
trace). The onset of superlinear release was shifted by equivalent calcium
load 5 min later (red trace). (C) Intracellular calcium stores could modulate
the recruitment of vesicles to the plasma membrane. Calcium influx
through L-type calcium channels triggers exocytosis of synaptic vesicles
near the active zone (1). In parallel, calcium also activates RyRs (2),
triggering the release of calcium stored in the ER at sites far from the
ribbon (3). CICR allows the recruitment of vesicles from reserve pools to
the vicinity of the ribbon (4). (ER = endoplasmic reticulum; IP3R = inositol
triphosphate receptor; SERCA = sarco/endoplasmic reticulum calcium
ATPase; RaRP = rapid releasable pool; ReRP = readily releasable pool.)
Mitochondria and calcium pumps maintain homeostatic calcium levels in
cytoplasm (5). Arrows depict the direction of calcium influx and vesicle
trafficking.

could represent local buffer saturation leading to endosomal
exocytosis (Coggins et al., 2007). Alternatively, this superlinear
component could represent the fusion of newly recruited vesicles
from the reserve pool evoked by CICR. In this scenario, reserve
vesicles would be recruited by the release of stored Ca2+ at a dis-
tance of the active zones (Figure 1C). The two-kinetics behavior
observed in capacitance recordings was paralleled by high-speed
Ca2+ imaging experiments, where a supralinear intracellular Ca2+
rise was initiated at the vicinity of the ribbon and subsequently
spread throughout the hair-cell cytoplasm (Figure 1A; Schnee
et al., 2011b). In this view, it is conceivable that the exocyto-
sis rate of vesicles from the readily releasable pool (RRP) with
the terminal could be dependent on the Ca2+ load carried by
voltage-dependent Ca2+ channels whereas the recruitment onset
of reserve vesicles would be dependent on the onset of intracel-
lular Ca2+ release (in turn triggered by plasma membrane Ca2+
influx). These two mechanisms would work in parallel to allow
both phasic and tonic transmitter release for prolonged periods
of time. In fact, the reduction in Ca2+ transients and exocyto-
sis in hair cells by ryanodine application was more apparent after
repeated stimulation, pointing to a CICR effect on the reserve pool
of vesicles (Lelli et al., 2003). According to this idea, the existence
of a Ca2+-dependent mechanism necessary to speed up the supply

of new vesicles to the RRP during repetitive stimulation was pro-
posed in neurosecretory cells (von Ruden and Neher, 1993; Voets
et al., 1999). Central and ribbon synapses also contain calcium-
dependent mechanisms of vesicle replenishment (Dittman and
Regehr, 1998; Stevens and Wesseling, 1998; Wang and Kaczmarek,
1998; Gomis et al., 1999; Shakiryanova et al., 2005) that play a
direct role in encoding receptor potential into changes of sus-
tained release rates (Jackman et al., 2009; Babai et al., 2010a).
Moreover, the rate at which vesicles are recruited to the RRP
depends on the levels of free Ca2+ and is modulated by synap-
tic activity (Stevens and Wesseling, 1998). These observations
are consistent with a graded form of CICR being continuously
triggered by Ca2+ influx, allowing the resupply of synaptic vesi-
cles to active zones. Temporal regulation of vesicle recruitment
may uncover new forms of presynaptic plasticity in hair-cell rib-
bon synapses (Figure 1B; Alabi and Tsien, 2012). It is important
to note that the experimental dissection of the kinetics of both
fusion and recruitment of reserve synaptic vesicles is only possible
by the use of hyperpolarizing holding potentials used in patch-
clamp experiments (Schnee et al., 2011b). Unlike most central
neurons, these potentials do not represent physiological resting
conditions, since hair cells are moderately depolarized at rest due
to the contribution of the mechanotransduction channel in the
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hair bundle. Conversely, more physiological holding potentials
showed an overlapping of both components (Schnee et al., 2011b).
Moreover, prepulse experiments using depolarization steps pre-
ceded by physiological resting potentials demonstrated an increase
in exocytosis along with an increase in synaptic strength and a
reduction in synaptic latency (Goutman and Glowatzki, 2011;
Schnee et al., 2011b). All these experiments suggest that inces-
sant Ca2+ influx allows hair-cell ribbon synapses to operate in
a continuously facilitated mode at resting membrane potentials,
thus optimizing the timing and size of postsynaptic responses in
the auditory nerve. Future experiments are needed to address the
nature and physiological relevance of both the exocytic super-
linear component and the non-linear intracellular Ca2+ rises in
the recruitment of vesicles mediated by CICR for hair-cell ribbon
synaptic transmission.
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