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There is growing interest in understanding calcium dynamics in dendrites, both
experimentally and computationally. Many processes influence these dynamics, but in
dendrites there is a strong contribution of morphology because the peak calcium levels
are strongly determined by the surface to volume ratio (SVR) of each branch, which is
inversely related to branch diameter. In this study we explore the predicted variance of
dendritic calcium concentrations due to local changes in dendrite diameter and how this
is affected by the modeling approach used. We investigate this in a model of dendritic
calcium spiking in different reconstructions of cerebellar Purkinje cells and in morphological
analysis of neocortical and hippocampal pyramidal neurons. We report that many published
models neglect diameter-dependent effects on calcium concentration and show how
to implement this correctly in the NEURON simulator, both for phenomenological pool
based models and for implementations using radial 1D diffusion. More detailed modeling
requires simulation of 3D diffusion and we demonstrate that this does not dissipate the
local concentration variance due to changes of dendritic diameter. In many cases 1D
diffusion of models of calcium buffering give a good approximation provided an increased
morphological resolution is implemented.
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INTRODUCTION
Intracellular Ca2+ has a central role in the information processing
capabilities of neuronal dendrites. Ca2+ entering through voltage-
gated Ca2+ channels (VGCC) and ligand-gated channels gives
rise to cytosolic Ca2+, which in turn controls Ca2+-activated K+
(KCa) channels during dendritic Ca2+ spikes (Goldberg et al.,
2004; Womack and Khodakhah, 2004; Kampa and Stuart, 2006).
Free cytosolic Ca2+ can also activate complex molecular sig-
naling pathways involved in different forms of synaptic and
dendritic plasticity (Konnerth et al., 1992; Kampa et al., 2006;
Rancz and Hausser, 2006; Canepari and Vogt, 2008; Antunes and
De Schutter, 2012). The cytosolic spread and dynamics of Ca2+
in dendritic morphologies are controlled by intracellular Ca2+
mechanisms like diffusion, endogenous buffers, internal stores,
exchangers and pumps (Berridge, 1998; Augustine et al., 2003;
Hartmann and Konnerth, 2005). Therefore, correct representa-
tion of Ca2+ related mechanisms in complex dendritic structures
is crucial in construction of biophysically faithful multi-scale
models of dendrites.

In addition to intracellular Ca2+ mechanisms and ion chan-
nel distributions, dendritic geometry has been shown to greatly
affect the spatial variability of Ca2+ dynamics (Lev-Ram et al.,
1992; Regehr and Tank, 1994; Schiller et al., 1995; Holthoff
et al., 2002; Rozsa et al., 2004). The effects of dendritic geom-
etry on Ca2+ transients are often quantified in terms of the

surface to volume ratio (SVR). This is because Ca2+ influx
scales with membrane surface while the change in Ca2+ con-
centration due to diffusion and buffering strongly depends
on the volume. This results in larger amplitude transients
expected in small diameter dendrites because they have a
large SVR. Considering each dendritic segment as a cylinder,
SVR is inversely proportional to the diameter of the cylinder.
Therefore, even in the absence of intracellular Ca2+ mecha-
nisms (endogenous buffers, internal Ca2+ stores) and diffu-
sion, changes in dendritic diameter across the dendrite will
result in spatially variable Ca2+ levels. Moreover, because Ca2+
buffering and diffusion are also affected by geometry, den-
drite diameters can also affect the decay time constants of
Ca2+ transients (Holthoff et al., 2002). In this paper we char-
acterize this spatial variability in Purkinje cell models and
explore implementation issues that affect how well a biophys-
ically detailed dendrite model can capture the spatio-temporal
variability of Ca2+ dynamics caused by local variation of dendrite
diameters.

Traditionally, a Ca2+ pool with a single relaxation time con-
stant is used to model intracellular Ca2+ dynamics (Destexhe
et al., 1994). Such models compute the effects of Ca2+ influx
accurately but combine all removal systems, including diffusion,
into one process with a fixed time constant. They usually rep-
resent the Ca2+ concentration in a submembrane shell with a
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fixed depth. Previously, we have shown that these pool based
models can not capture the complex dynamics of intracellu-
lar Ca2+ because they fail to simulate the multiple time scales
at which interactions between VGCC and KCa channels occur
(Anwar et al., 2012). Here we extend the comparison of Ca2+
pool to complex Ca2+ dynamics models to the spatial domain. We
will show that many model implementations in the literature do
not compute correct volumes for the submembrane shell and that
accuracy of morphological reconstruction is a more important
concern than the limitations of only modeling 1D radial diffusion.
In addition we provide detailed instructions on how to model bio-
physically realistic Ca2+ dynamics in compartmental models of
dendrites.

MATERIALS AND METHODS
MORPHOLOGY RECONSTRUCTIONS
Purkinje cell morphologies
Dendritic morphologies of 10 Purkinje cells (PC 3–12) used in
this study were obtained from the NeuroMorpho database (http://
neuromorpho.org). An additional Purkinje cell morphology (PC
2) used in this study was provided by Ede Rancz and Michael
Häusser, UCL, London, UK. Considering the small sample size of
available PC neurons (11 cells) and their large variability in den-
dritic diameters, we decided to obtain an additional morphology
(PC 1) with carefully reconstructed diameters.

PC morphology with carefully reconstructed diameters
All procedures for the care of animals were according to
the Science Council of Japan Guidelines for Proper Conduct
of Animal Experiments, and also the guideline approved by
OIST Graduate University Animal Resources Section. A 4-week
old mouse was anesthetized with isofluorane and decapitated.
The cerebellum was removed from the skull and immedi-
ately collected into a vial containing ice cold carbogenated
ACSF: NaCl 125 mM, KCl 2.5 mM, NaH2PO4 1.2 mM, MgSO4

1.9 mM, Glucose 10 mM, NaHCO3 25 mM, CaCl2 2 mM at 300-
305 mOsm. Sagittal slices of 250 μm thickness were cut and
placed in a recording chamber with carbogenated ACSF. The
glass electrode (4 MOhm) was filled with intracellular solu-
tion containing potassium gluconate 140 mM, NaCl 10 mM,
HEPES 10 mM, EGTA 0.2 mM, MgATP 4 mM, NaGTP 0.4 mM,
Phosphocreatine 10 mM and 50 μM Alexa 594 (Invitrogen) with
pH 7.3 and 300 mOsm.

A custom-built two-photon microscope (MOM, Sutter) with
a Ti:sapphire laser (Vision II, Coherent), GaAsP photomulti-
plier tubes, and a 25x water (NA 1.05, Olympus) objective
lens was used to acquire a 3D image stack of the Alexa-
filled Purkinje cell with a z-step size of 0.25 μm and an xy
field of view of 1024 × 1024 pixels. Next, the acquired 3D
image stack was deconvoluted using AutoQuantX2 software
(Media Cybernetics) using a theoretical point spread func-
tion (1–5 iterations) based on specifications from the image
acquisition parameters. Later, the dendrite of Purkinje cell
was reconstructed with Neurolucida, MBF Bioscience, (http://
www.mbfbioscience.com/neurolucida). A different reconstruc-
tion of the same Purkinje cell has previously been used in
Anwar et al. (2013).

Ca2+ SPIKING MODEL
The detailed model of spontaneous Ca2+ spike generation was
derived from the original biophysical model (Schmidt et al.,
2003; Anwar et al., 2012) developed in the NEURON simulator
(Hines and Carnevale, 1997). The model contained four types
of ion channels: P-type Ca2+ channel (Pmax = 2 × 10−4 cm/s,
GHK equation) (Swensen and Bean, 2005), T-type Ca2+ chan-
nel (Pmax = 8 × 10−6 cm/s, GHK equation) (Iftinca et al., 2006),
BK-type Ca2+-activated K+ channel (Gmax = 7 × 10−2 S/cm2)
(Cox et al., 1997) and SK-type Ca2+-activated K+ channel
(Gmax = 3.1 × 10−4 S/cm2) (Hirschberg et al., 1998; Solinas
et al., 2007), plus a leak channel (Gmax = 1 × 10−6 S/cm2 and
Erev = −61 mV).

Ca2+ BUFFERING MODELS
Intracellular Ca2+ was modeled using the following Ca2+
buffering mechanisms.

Ca2+ pool
The exponential decaying Ca2+ pool was modeled as

d[Ca2+]i

dt
= − ICa2+(t)

2Fdeq
− β([Ca2+]i − [Ca2+]0) (1)

where [Ca2+]i is intracellular Ca2+ concentration, [Ca2+]0 is
Ca2+ concentration at rest and is 45 nM, ICa(t) is total Ca2+ cur-
rent per unit area through VGCC, F is the Faraday’s constant, deq

is the equivalent depth of a submembrane shell to define the vol-
ume for effective Ca2+ concentration, and β is the decay time
constant. The values for depth (d) and β, 0.169 μm and 6.86 ms−1

respectively, were obtained from a past study (Anwar et al.,
2012), where these values were fitted to generate dendritic Ca2+
spikes.

Two different definitions for deq were used. The first def-
inition (SPold), uses a mechanism widely used in multi-
compartment modeling studies using NEURON (e.g., Miyasho
et al., 2001; Poirazi et al., 2003; Hemond et al., 2008; Hay
et al., 2011) that takes the volume of the submembrane
shell to be directly proportional to its depth d and therefore
deq = d. This results in an incorrect volume of submem-
brane shell (see details in Results). The second definition
(SPnew) used in this study computed an equivalent depth
(deq) for each submembrane shell, which gives the correct vol-
ume (see details in Results) when used in the mechanism
described by (1):

deq = d − d2

diam
(2)

where diam is the diameter of each compartment.

Detailed Ca2+ dynamics
The detailed Ca2+ dynamics model used in this study was
obtained from our previous study (Anwar et al., 2012). It included
calbindin (CB) and parvalbumin (PV) as buffers. In addition
to Ca2+, both PV and 80% of CB were diffusible (Schmidt
et al., 2005; Anwar et al., 2012). A single surface-based Ca2+
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pump was modeled using Michaelis-Menten kinetics (Sala and
Hernandez-Cruz, 1990) as follows:

pump + Ca2+ kb−⇀↽−
kf

pump − Ca2+ kext−→ pump

where pump density was 1 × 10−15 mol.cm−2, kf was 3 ×
103 mM−1.ms−1, kb was 17.5 ms−1 and kext was 72.55 ms−1.

Diffusion in NEURON simulator
In NEURON (Hines and Carnevale, 1997) simulations, diffusion
of Ca2+, free and bound buffers was allowed only in the radial
dimension, i.e., from membrane toward the center of the com-
partment and vice versa. Two different ways of discretizing space
into concentric cylindrical shells were used. The first one, the vari-
able depth scheme, is described as the standard example in the
NEURON book (Carnevale and Hines, 2006). Each compartment
is subdivided into radial shells (Figure 1) and the number of shells
is computed using:

Shells =
⌊

diam

4d
+ 1.5

⌋
(3)

where Shells is the number of radial shells, diam is diameter of
the compartment and d is depth of the outer radial shell, which
was 0.1 μm. The discretization of the compartment volume into
radial shells, where the depth of inner radial shells is twice the
depth of outer radial shell, resulted in a varying depth of all shells,
depending on the diameter of the compartment. The depth (d1)
of the outer shell and the inner most shell is then:

d1 = diam

4(Shells − 1)
(4)

and the other shells have a depth of 2 × d1 (see Figure 1).

FIGURE 1 | Cytosolic compartmentalization for diffusion from

membrane toward the center of a cylindrical compartment. Schematic
diagram shows two different ways of dividing the compartment volume
into concentric shells. The DM mechanism (left) has a fixed number of
shells and the depths of all shells vary so that the sum equals the
compartment diameters, the outer shell also has a smaller depth than
subsequent shells. In the DMFD mechanism (right) all shells have an
identical, fixed depth except for the core shell whose depth is adjusted to
get the correct compartment diameter. The number of shells is given by
compartment diameter.

We also implemented a fixed depth scheme, where all the
radial shells except the inner most core shell had a constant depth
(Figure 1). The number of shells was computed using:

ShellsFD =
⌈

diam

2d

⌉
(5)

Here d1 as well as the depth of other shells was always 0.1 μm,
and the core shell had a variable depth (≤0.1 μm). Note that to
model radial diffusion with a variable number of shells, a sepa-
rate mechanism with a unique configuration of shells for every
compartment with a different diameter needs to be created in
NEURON.

Diffusion in STEPS simulator
To allow 3D diffusion in the stochastic reaction-diffusion sim-
ulator STEPS (Hepburn et al., 2012), the dendritic morphology
(part of PC 1) was discretized into tetrahedral mesh using CUBIT
(http://cubit.sandia.gov).

COMPUTER SIMULATIONS
All the simulations were run using a time step of 0.02 ms.
Model scripts for all models used in this work are avail-
able at http://senselab.med.yale.edu/modeldb/ShowModel.asp?
model=155731.

Ca2+ spike generation in realistic morphologies
Spontaneous Ca2+ spikes were generated using realistic mor-
phologies of PCs with ion channels uniformly distributed over
the dendrites. The Ca2+ spike generation model was simulated
with the following conditions: temperature of 34 Celsius, initial
voltage of −60 mV, membrane capacitance of 1.12 μF.cm−2 and
axial resistance of 250 Ohm.cm.

Ca2+ transients in single compartments
Ca2+ transients were simulated using different Ca2+ buffering
models in single compartments with diameter varying from 0.1
to 6 μm in steps of 0.1 μm. The P-type Ca2+ channel with Pmax

of 5.2 × 10−5 cm/s was included in the model for Ca2+ influx.
A “ramp-like” voltage step protocol (same as in Anwar et al.,
2012) was used to depolarize the compartment to the voltage at
which physiological dendritic Ca2+ spikes are generated.

Ca2+ transients in part of dendritic morphology
Ca2+ transients in a part of PC 1 dendritic morphology were sim-
ulated using the detailed Ca2+ dynamics model with 1D diffusion
in NEURON and with 3D diffusion in STEPS. Because of the
long runtime for 3D diffusion simulations it was not possible to
simulate a complete PC in STEPS.

A uniform current (in mA/cm2) recorded during a Ca2+ spike
was applied to each compartment in the NEURON simulations to
evoke a constant shape of the spike. Two types of compartmental-
ization approaches were used in these simulations. Firstly, using
a single compartment per dendritic section (Total sections =
45). Secondly, each of the dendritic section was split into mul-
tiple (1–22) sections (Total sections = 300), where each section
consisted of adjacent traced points on the dendrite.
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Ca2+ influx in STEPS was implemented using first-order sur-
face based Ca2+ influx reaction (X −→ X + Ca2+), where “X”
channels (100,000) were distributed uniformly over the surface
triangles (∼92,000) of the mesh. At each time point, the influx
rate per channel was updated based on the Ca2+ influx profile
(obtained using the total current applied in the NEURON sim-
ulation). Due to high rate and uniformity of influx, effects of
stochasticity were negligible. The results of STEPS simulations in
this study are reported as the mean computed over 10 trials.

RESULTS
In this study we explore the effect of dendrite diameter on Ca2+
dynamics in models of different complexity. Figure 2 shows that
simulation results are strongly influenced by how one implements
the model by comparing the integrated Ca2+ concentrations (for
all time points in a time window, the sum of Ca2+ concentrations
multiplied by the time step) in three different models of a spon-
taneous burst of Ca2+ spikes (Figure 2D; see the corresponding
currents in Figure 2E) computed using the NEURON simula-
tor. Figure 2A shows the result when using a simple pool model
to compute Ca2+ concentrations based on an approach used in
most NEURON simulations (SPold, e.g., Miyasho et al., 2001;

Poirazi et al., 2003; Hemond et al., 2008; Hay et al., 2011). Using
this approach no gradients of Ca2+ concentration are predicted
within the dendrite; this result is unlikely to be physiological
considering the large variation in SVR across the dendrite. The
model in Figure 2B (SPnew) also uses a simple pool but imple-
mented differently; it results in strong Ca2+ gradients with higher
concentrations in thin dendritic branches as expected from the
SVR. Finally we simulated a detailed Ca2+ dynamics models with
buffers and radial 1D diffusion (Figure 2C, DM). This shows
similar gradients as SPnew, but with higher Ca2+ peak values
as expected from previous work comparing DM to simple pool
models (Anwar et al., 2012).

Next we will describe in detail the differences between SPnew

and SPold and then analyze the diameter dependence in SPnew

and DM.

INACCURACY OF Ca2+ VOLUMES IN SIMPLE POOL MODELS AND
THEIR EFFECTS ON Ca2+ LEVELS
Many multi-compartment dendritic models use a single pool
model of Ca2+ buffering, which simulates only the submembrane
Ca2+ concentration to control KCa channels. These phenomeno-
logical models convert Ca2+ current passing through VGCC to

FIGURE 2 | Spatial Ca2+ gradients strongly depend on type of model

implementation. Panels (A–C) show maps of the integrated calcium levels
in the dendrite during a spontaneous burst of Ca2+ spikes (panel D). The
dendritic branches are color coded to show the integrated calcium levels
using a 20 ms window around the peak Ca2+ concentration of the first
dendritic Ca2+ spike. The color scales used in these maps are nonlinear
(using histogram equalization) to enhance the contrast. (A) Single Ca2+ pool
model using SPold mechanism results in homogenous Ca2+ levels. (B) Single

Ca2+ pool model using SPnew mechanism results in variable Ca2+ levels.
(C) Detailed Ca2+ dynamics model with buffering and 1D diffusion results in
variable Ca2+ levels with larger Ca2+ gradients. (D) Voltage traces show the
first spike of the Ca2+ burst for each model in all dendritic compartments for
the 3 different models (see color code in Figure). The inset shows complete
traces. (E) The underlying Ca2+ and KCa currents (recorded from all dendritic
compartments) for the Ca2+ spike of the three different models (see color
code in Figure).
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FIGURE 3 | Errors introduced by incorrect submembrane volumes of

single pool models. (A) Comparison between cylindrical dendritic
compartments with diameters of 1 μm (left) and 0.5 μm (right) with
submembrane shells with a depth of 0.1 μm. A correct implementation of
the volume of the submembrane shell representing the single Ca2+ pool
(SPnew mechanism) results in a SVR that depends on the compartment
diameter. (B) For the same compartments using the SPold mechanism
results in volumes that are too large and have a constant SVR. The
cross-sectional area of each compartment (black disks shown in A) is
unfolded and drawn to show that the actual volume of the submembrane
shell (SPnew) is smaller than the volume used in the SPold mechanism. The
red triangles represent extra cross-sectional area included in the volume of
SPold. (C) Ca2+ transients generated using a “ramp-like” voltage command
in single compartments with diameters ranging from 0.2 to 6 μm in steps

of 0.1 μm. P-type Ca2+ channel with Pmax of 5.2 × 10−5 cm/s was used for
Ca2+ influx. Inset: comparison of peak amplitudes of Ca2+ transients using
SPold and SPnew show that the first mechanism causes exactly the same
transient in all compartments, whereas, SPnew causes transients
with varying peak Ca2+ amplitudes. (D) Error in peak Ca2+ levels
caused by using the SPold mechanism [error = (max([Ca2+]SP_old) −
max([Ca2+]SP_new)/max([Ca2+]SP_new))]. Pool models used β-values of 0.02,
6.86, and 10 ms−1; and depth (d) values of 0.05, 0.1, 0.15, 0.2, and
0.25 μm. The lower edge of shaded areas of each color shows error in
peak calcium for β-value of 10 ms−1, whereas, the upper edge of shaded
areas of each color show error for β-value of 0.02 ms−1. The colored
asterisks show corresponding error for β-value (used to model PC
dendrites) of 6.86 ms−1. Inset highlights large errors for branches with
small diameters (diam ≤ 1 μm).

Ca2+ concentration using a submembrane shell of fixed depth, d
[Equation (1); Figure 3A]. The volume of a submembrane shell
(as for SPnew) is defined as:

Vols_new = Volf − Volc = πd(diam − d)L (6)

where Volf denotes the volume of a full compartment, Volc
denotes the volume of the core, d is the depth of submem-
brane shell, diam is the diameter of compartment and L is
its length. Using such a representation of submembrane shell,
SVRnew equals

SVRnew = SA

Vols_new
= diam

d(diam − d)
(7)

where SA is the surface area of the compartment. Note that
SVRnew is less dependent on diameter than the SVR for the com-
plete volume (1/diam), but, as shown in Figure 3A, SVRnew still
increases for smaller diameters.

However, we noticed that most of the Ca2+ shell models
implemented in NEURON use an incorrect volume for the
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submembrane shell (Figure 3B). In those models (SPold), the
volume of a submembrane shell is defined as:

Vols_old = SA × d = πdiamLd (8)

Using such a representation of submembrane shell, gives SVRold

SVRold = SA

Vols_old
= 1

d
(9)

Because the depth (d) of submembrane shells is usually taken
constant for variable diameter compartments, SVRold is con-
stant and independent of the dendrite diameter. As a result,
we observe changes in peak amplitudes of the simulated Ca2+
transients using SPnew in compartments with different diame-
ters (Figure 3C) while the same compartments with SPold always
show exactly the same Ca2+ transient.

Since pool based models are phenomenological models, the
values of depth (d) and decay time constants (β) can be tuned
to approximate the desired behavior of intracellular [Ca2+]. In
Figure 3D we show how the error of using SPold (compared to
SPnew) depends on the values of d and β used. The errors in peak
Ca2+ were computed using β-values of 0.02 ms−1 (Traub and
Llinas, 1977), 6.86 ms−1 (Anwar et al., 2012), and 10 ms−1 (De
Schutter and Bower, 1994) and using submembrane shells with
depths ranging from 0.05 to 0.25 μm. The error increases with the
size of depth used, as expected from SVRnew. More importantly,
these errors become significantly larger for smaller diameters

(diam <1 μm) and may reach up to 80% for 0.1 μm diame-
ter compartments (inset of Figure 3D). Typically, distal dendrites
have large numbers of dendritic branches with diameters less
than 1 μm.

In the rest of our study we will only focus on SPnew and DM to
investigate how well they can capture Ca2+ gradients in dendrites.

DETAILED Ca2+ DYNAMICS MODEL CAUSE LARGE SPATIAL
VARIABILITY OF Ca2+ LEVELS IN REALISTIC DENDRITIC
MORPHOLOGIES
Figure 2 demonstrates in one dendritic morphology that SVR dif-
ferences cause sharper Ca2+ gradients when it was modeled using
DM compared to SPnew. We next investigated whether this is a
systematic observation by simulating the dendritic Ca2+ spike
model in 11 additional dendritic reconstructions of PCs using
both methods and comparing the results (Figure 4). For each PC,
the ion channels were distributed uniformly on its dendrite and
each unbranched segment had a constant diameter.

Because this study mostly focuses on local differences in Ca2+
concentration, we summarized the data on spatial gradients by
computing the ratio of integrated [Ca2+] in adjacent dendritic
segments and plotting the distributions of these ratios in Figure 4.
We observe a wide range of distributions of spatial fluctuations
of Ca2+ levels in different neuron reconstructions, with the his-
tograms of some neurons (e.g., PC 2 and 5) showing very large
tails and other ones only small fluctuations (ratio < 2). This
observation may be related to differences in the quality of the
reconstructions (see Discussion). But in all cases, the DM model

FIGURE 4 | Biophysically detailed Ca2+ dynamics model causes larger

differences in calcium levels in adjacent dendritic branches than single

pool models. Histograms of ratios between integrated calcium from
adjacent dendritic branches for 12 different PCs using SPnew and DM. To

make the differences between cells more visible only the range of ratios 1–3
is shown, for the two cells that have significantly larger ratios the full
distribution is shown in the inset. PC1 is shown in Figure 2. Integrated Ca2+
was computed for 20 ms around the first peak of Ca2+ transients for all PCs.
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always results in a wider range of Ca2+ fluctuations as compared
to SPnew.

VARIABILITY OF DIAMETERS IN MORPHOLOGICAL RECONSTRUCTIONS
OF NEURONS
In Figure 4 we used a common approach in compartmental mod-
eling: we ignored small variations in diameter by taking only a
single compartment for each unbranched segment. However, due
to the large jumps in Ca2+ concentrations between neighboring
compartments observed in some parts of the model (Figures 2, 4)
we wondered about the realism of this assumption of uniform
diameter. We investigated this issue both in the 12 PCs mod-
eled previously as well as in 284 neocortical and 38 hippocampal
pyramidal neuron reconstructions, because larger changes in
diameter may be present in morphological classes where the level
of branching is not as extensive as in PCs. For both neuron types
we computed the coefficient of variation (CV) of diameters for
every dendritic segment (between two branch points) based on all
the measurements available in the morphological reconstruction
(Figure 5). We observed a large variability in CV of reconstructed
morphologies of neurons obtained from different laboratories for
both cell classes (see Discussion), but overall the variability of
diameter was much larger in pyramidal neurons where in many
cells more than a quarter of the unbranched segments had CVs
of 0.4 or more. In PCs more than half of the reconstructions
had CVs of 0.2 or more in at least a quarter of their unbranched
segments.

Our analysis suggests that for pyramidal neurons even more
care should be taken when converting dendritic segments into
cylindrical compartments. A good representation of dendritic
segments with rapidly varying diameters is essential to model
intracellular Ca2+ concentrations correctly (see also Figure 8).

EFFECT OF VOLUME DISCRETIZATION ON DETAILED Ca2+ DYNAMICS
MODELS
Though the implementation of 1D diffusion in concentric cylin-
drical shells may seem straightforward, the NMODL language
used in NEURON actually makes it difficult to do this in a flex-
ible way and we discovered that many existing models do not
implement it correctly. The standard example in the NEURON
book (Carnevale and Hines, 2006) is a variable depth scheme
where the volume is divided over a fixed number of concentric
shells (4 in the standard example) with variable depth Equations
(3) and (4) and Figure 1: DM, note that the submembrane and
core shells have a smaller depth than the others). Many models
using NEURON implement exactly this mechanism: 4 shells and
all with variable depth. Because the volume of the submembrane
shell is used to convert inward Ca2+ currents into a Ca2+ con-
centration that directly activates KCa channels, varying its depth
will affect the computed value of this Ca2+ concentration. From a
biophysical perspective there is no reason why the depth of a sub-
membrane shell that is assumed to simulate the effective volume
affecting the Ca2+ sensors of KCa channels (Fakler and Adelman,
2008; De Schutter, 2010) should vary greatly with dendrite diam-
eter. We will therefore consider two issues: the number of shells
to be modeled and a submembrane shell with variable (DM) or
fixed depth (DMFD).

FIGURE 5 | Large changes in diameters of unbranched dendritic

segments exist in Purkinje and Pyramidal neurons. Stacked histograms
show the distribution of CV values for the diameters changes over
unbranched dendritic segments in Purkinje cells (A, N = 12) and in
neocortical and hippocampal pyramidal neurons (B, N = 322). Notice the
presence of large variability of diameters (CVs > 0.2 or more) in many
neurons and the large neuron to neuron differences which are mostly
caused by lab to lab differences in reconstruction quality (see text).

If one wants to vary the number of shells modeled depend-
ing on compartment diameter, which is the correct solution, a
separate NEURON mechanism has to be created for each specific
number of shells that is required. Some authors have therefore
decided to use a fixed number of shells with variable depth of
each shell (Migliore et al., 1995; Lazarewicz et al., 2002; Gold
et al., 2007; Lavzin et al., 2012) (Figure 1: DM), but this can lead
to significant errors in simulated submembrane Ca2+ concentra-
tion in large diameter dendrites if the number of shells is taken
to be small (Figure 6A: circles). These errors show both a positive
and negative component depending on compartment diameter,
suggesting that two types of error contribute. Indeed, when we
repeated these simulations with a fixed submembrane shell depth
d1 of 0.1 μm and the rest of the volume divided over the remain-
ing shells with equal, variable depths (FD: Figure 6B: triangles)
only a positive error, increasing with diameter, remains. Because
this error is quite small for a large number of shells, a model
with the same large number of shells in every compartment will
give accurate results in NEURON, but this may cause unaccept-
ably slow runtimes (Anwar et al., 2012) so it is better to vary the
number of shells [DMFD mechanism, Equation (5)].

The next question is then how to compute shell depth as the
depth of at least one shell has to vary to fit the total exactly to
a variable compartment diameter. As already mentioned, in the
standard NEURON implementation (Carnevale and Hines, 2006)
the depths of all shells vary with compartment diameter [vari-
able depth scheme; Equations (3) and (4) and Figure 1: DM],
including that of the submembrane shell. In effect, the depth
of the submembrane shell (d1) may vary between d − 0.25 d
and d + 0.25 d. In Figure 6C, the broken line shows the the-
oretical error of Ca2+ influx conversion to Ca2+ concentration
using the variable depth scheme (range of d1 due to discretization:
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FIGURE 6 | Inaccuracies of different calcium 1D diffusion models result

in erroneous calcium levels. (A) Errors introduced by making the number
of concentric shells independent of compartment diameter, for 4, 8, or 12
shells respectively. Two mechanisms are implemented: the standard
NEURON scheme with variable depths for all shells (circles) and an FD
scheme where the submembrane shell has a constant depth d1 = 0.1 μm
and the rest of the shells has variable depth (triangles). The DMFD

mechanism is used as reference. Note that for both mechanisms the errors
become large for diameters beyond 2 μm if only four shells are used (as is
the case in some NEURON models). (B) Ca2+ transients generated using a
“ramp-like” voltage command in single compartments (see Figure 3C for
details) comparing the responses of the DM and DMFD models. Both
models show very similar behavior with only small numerical differences.
(C) Errors due to discretization of radial shells in DM, which may result in
variable d1 resulting in rapid changes of submembrane shell volume for

(Continued)

FIGURE 6 | Continued

increasing compartment diameter. The broken line with asterisks shows
errors related to conversion of Ca2+ influx to Ca2+ concentration with
variable depth d1 of the submembrane shell (it varies between 0.075 and
0.125 μm due to discretization) as compared to fixed d1 of 0.1 μm (DMFD).
The solid lines with diamonds shows the actual error in free Ca2+ in the
submembrane shell for DM models for different sizes of Ca2+ influx as
indicated. Note that these errors are much smaller than predicted by the
Ca2+ influx conversion.

0.075–0.125 μm). The larger predicted errors in these cases are
associated with small diameters, where small changes of diam will
result in bigger changes in d1 Equation (4) and submembrane
shell volume.

These errors are large and should not be ignored. But what is
the effect of these geometrical errors on actual computed Ca2+
concentrations? To quantify this we simulated Ca2+ transients
using a mechanism with a variable number of shells, all with
the same depth of 0.1 μm except for the core shell which has
a variable diameter [DMFD, Equation (5) and Figure 1], which
is assumed to give the most accurate solution. We found that
DM and DMFD show very similar peak amplitudes and decay
time constants for different diameter compartments (Figure 6B),
resulting in much smaller errors in peak amplitudes of Ca2+ using
DM compared to DMFD than theoretically predicted (Figure 6C).
The error depends on the size of Ca2+ influx in a nontrivial way,
but for all levels of Ca2+ influx it was small with the largest
error only about 4%. This significant difference with the theo-
retical prediction is due to strong buffering (especially in PCs;
(Hartmann and Konnerth, 2005) and diffusion of Ca2+, which
removes most of Ca2+ entering into the submembrane shell.

How do the different Ca2+ buffering models respond to local
fluctuations of dendrite diameter in terms of Ca2+ levels? To esti-
mate the effect of dendritic diameter changes on Ca2+ dynamics
using each model, we computed the ratio of integrated Ca2+ tran-
sients measured in each of the pair of simulated compartments
using SPnew, DM and DMFD for many possible pairs of den-
dritic diameters (range: 0.1–6.0 μm with increments of 0.1 μm)
(Figure 7). As explained previously, the SPold model does not
show any sensitivity to changes in diameters. For SPnew, large
ratios (>2) are limited to combinations where a compartment
with an extremely small diameter (≤0.3 μm) is connected to one
with large diameters. For DM and DMFD, this region expands
to all compartments with diameter less than or equal to 1 μm
that are connected to ones with larger diameters. Therefore, the
detailed Ca2+ dynamics models are more sensitive to changes
in dendritic diameter compared to pool based models, which
explains the differences observed in Figure 3. But, although the
sensitivity maps of DM are noisier than those of DMFD, due to
the use of variable depth submembrane shells in DM, overall these
maps are quite similar to each other.

We conclude from Figures 6, 7 that correct simulation of radial
1D Ca2+ diffusion requires a variable number of concentric shells
that scales with compartment diameter, but that the Ca2+ dynam-
ics are less sensitive to the actual scheme used to compute the
depth of these shells.
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FIGURE 7 | Different Ca2+ buffering model respond variably to

changes in dendrite diameters. Predicted ratio of integrated Ca2+
concentration (100 ms window) for different combinations of
diameters of pairs of dendritic compartments using (A) SPnew,

(B) DM, and (C) DMFD. The maps are derived from the data
shown in Figure 3C (A) and Figure 6B (B,C). The color scales
used in these maps are nonlinear (using histogram equalization) to
enhance the contrast.

SPATIAL DIFFERENCES IN Ca2+ LEVELS PERSIST WITH 3D DIFFUSION
The predictions of Figure 7 are based on no (SPnew) or only radial
1D diffusion (DM and DMFD). In this case, would the predicted
large Ca2+ transients disappear in the presence of 3D diffusion?
Also, what happens if dendritic diameter varies more smoothly
than possible in a model using electrical compartmentalization?
To address both issues, we used the STEPS simulator (Hepburn
et al., 2012), which uses tetrahedral meshes to accurately represent
detailed morphologies and 3D diffusion of molecules to simulate
Ca2+ dynamics.

When we simulated Ca2+ transients with the detailed Ca2+
dynamics model in part of a PC dendritic arbor using STEPS,
we still observed large fluctuations in Ca2+ levels along the dif-
ferent branches. Figure 8A shows the integrated Ca2+ levels for
each tetrahedron located within 0.1 μm from the membrane. The
large fluctuations of Ca2+ levels appear to be related to den-
drite diameter. High Ca2+ levels are observed in dendritic regions
with small diameter (Figure 8B) and at the tips of terminating
branches. Higher levels at the tips are due to the higher SVR as a
result of their small diameters and the reduced effective diffusion
because of the closed end condition (the latter is not predicted
by radial diffusion models). Overall we conclude that neither 3D
diffusion nor smooth changes in dendrite diameter reduce the
pronounced Ca2+ gradients caused by variable dendrite diame-
ter, raising the question what level of detail is necessary to model
this effect correctly?

To address this question, we compare NEURON and STEPS
simulations using two different compartmentalization schemes
in NEURON. First, we simulated Ca2+ transients in NEURON
using multiple compartments per unbranched segment to cap-
ture all changes in dendritic diameters (Figure 8D; right panel).
For comparison Figure 8D (left panel) shows the STEPS simu-
lation with mean integrated Ca2+ concentration computed for
all tetrahedrons corresponding to every NEURON compartment.
Next, we made a similar comparison with NEURON simula-
tions where every unbranched dendritic segment is considered as
a single compartment (Figure 8F), which is the approach used
in many compartmental models. Comparing these spatial maps

(Figures 8D,F), we observe only small differences between sim-
ulations with 1D diffusion (NEURON) or with 3D diffusion
(STEPS). However, the actual Ca2+ levels are different in the
respective simulations. To quantify the difference in Ca2+ levels
between the two approaches and how they relate to fluctuations
in dendritic diameters we computed the ratios of Ca2+ levels
and diameters for all adjacent segments. Figure 8E shows Ca2+
ratios in adjacent compartments for small compartment sizes
(data shown in Figure 8D) and Figure 8G shows Ca2+ ratios in
adjacent compartments with one compartment per unbranched
dendritic segment (data shown in Figure 8F). The compari-
son of Figure 8E with Figure 8G clearly shows that the use of
large compartments will result in larger jumps in Ca2+ levels
between adjacent compartments. Using many small compart-
ments to capture the continuous change of dendritic diameters
results in much smoother and smaller changes in Ca2+ levels. The
overall behavior of these changes in Ca2+ levels (Figures 8E,G)
is similar, respectively, to the ratios of diameters in the origi-
nal morphological reconstruction and to the ratios for adjacent
compartments diameters for one compartment per unbranched
segment (Figure 8C). This confirms that the simulated Ca2+ gra-
dients are largely caused by the SVR effect. Finally, notice that the
effect of 3D diffusion is more prominent when using small com-
partments (Figure 8D, bigger difference between NEURON and
STEPS simulation).

DISCUSSION
For a long time (until early 1960s), dendrites were thought
to be passive structures, whose main function was to transfer
and sum information from presynaptic to postsynaptic neu-
rons (for review see Johnston et al., 1996). During the past
couple of decades, it has been shown that dendrites contain a
variety of voltage-gated channels (Llinas et al., 1992; Markram
and Sakmann, 1994; Stuart and Sakmann, 1994; Magee and
Johnston, 1995; Magee and Carruth, 1999; Lorincz and Nusser,
2010), voltage-dependent NMDA channels (Losonczy et al.,
2008; Polsky et al., 2009; Major et al., 2013) and KCa channels
(Golding et al., 1999; Womack and Khodakhah, 2002, 2003),
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FIGURE 8 | Large differences in calcium levels in adjacent dendritic

branches persist in presence of 3D diffusion. (A) STEPS model using 3D
buffered diffusion to compute the Ca2+ concentration resulting from the
burst of Ca2+ spikes. Spatial map of integrated calcium (140 ms window)
in a piece of carefully reconstructed PC dendritic arbor (part of PC 1).
Every colored dot drawn at the center coordinates of each tetrahedron
belonging to the mesh in which 3D diffusion was simulated shows the
integrated Ca2+ in that particular tetrahedron. Only tetrahedrons
representing the submembrane region are plotted. The color scales used
in these maps are nonlinear (using histogram equalization) to enhance the
contrast. (B) Spatial map of dendritic diameters in the dendrite shown in
(A,D,F). (C) Normalized histograms compare the ratios of adjacent
diameters in the original morphological reconstruction with similar ratios of
diameters of adjacent compartments in the NEURON model (1 segment

per unbranched section). (D,E) NEURON simulation with many
compartments for each unbranched segment, carefully reflecting the
variability of dendrite diameter. Data for the STEPS simulation are averaged
over all tetrahedrons representing the corresponding NEURON
compartment. (F,G) NEURON simulation with a single compartment for
each unbranched segment, data for the STEPS simulation averaged for
corresponding NEURON compartments. (D,F) Spatial maps of integrated
submembrane Ca2+ concentration using the detailed calcium dynamics
model with 3D diffusion (STEPS) and 1D radial diffusion (NEURON) are
shown for the different compartmentalization schemes. (D) and (F) Use
same color as in A. (E,G) Normalized histograms show the ratios of
integrated Ca2+ concentration between every adjacent compartment using
simulations with 3D diffusion (STEPS) and 1D diffusion (NEURON) for the
results shown in (D,F) respectively.

Frontiers in Cellular Neuroscience www.frontiersin.org July 2014 | Volume 8 | Article 168 | 10

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Anwar et al. Calcium dynamics depend on dendritic diameters

which make these structures active. In addition to their role in
neuronal excitability and dendritic integration, dendrites with
thousands of synapses also serve as a venue of memory stor-
age through induction of synaptic plasticity. Intracellular Ca2+ is
involved in many processing capabilities of dendrites. Ca2+ enter-
ing through VGCC and NMDA channels gives rise to cytosolic
Ca2+, which in turn activates various K+ channels and sev-
eral molecular signaling pathways underlying synaptic plasticity.
Therefore, it is important to correctly understand the dynamics
of intracellular Ca2+ in dendrites with complex morphological
structures.

PREVIOUS MODELING OF DETAILED CALCIUM DYNAMICS
The complexity of dendritic geometry and structure has been
studied extensively to investigate its effects on propagation of
action potentials, its role in synaptic efficacy and its effects
on limiting interaction across different active dendritic regions
(Mainen and Sejnowski, 1996; Vetter et al., 2001). Although
variable levels of Ca2+ in different dendritic regions have been
reported previously (Tank et al., 1988; Lev-Ram et al., 1992;
Schiller et al., 1995), only a few studies specifically investigated
the effect of dendritic diameters on Ca2+ dynamics (Holthoff
et al., 2002; Rozsa et al., 2004). Therefore, those effects are often
omitted while constructing biophysical models of dendrites. Due
to limited quantitative information about the mechanisms con-
trolling Ca2+ levels in many neurons, phenomenological mod-
els of Ca2+ buffering, such as the single exponential decaying
pool, are commonly used for biophysical neuronal modeling.
Such models when used correctly capture only some aspects
of the highly complex behavior of intracellular Ca2+ buffer-
ing dynamics. In our previous work (Anwar et al., 2012), we
showed that pool based models of Ca2+ buffering fail to cor-
rectly predict peak Ca2+ concentrations and decay time con-
stants important for the interaction between VGCC and KCa

channels. In this study, we investigated the effect of dendritic
diameters on Ca2+ dynamics using a modeling approach. Our
results (Figures 2, 4) show that pool based models have lim-
ited ability to capture the spatial variability of Ca2+ dynamics
in morphologically complex dendrites as compared to a detailed
Ca2+ dynamics model with radial 1D diffusion. The detailed
Ca2+ dynamics model shows different peak amplitudes of Ca2+
levels as well as different (and multiple) decay time constants
(Figure 6B). In contrast, pool based models with correct sub-
membrane volume only show different peak amplitudes of Ca2+
levels (Figure 3C).

In general, many studies, including this one, ignore addi-
tional properties of real neurons that will affect Ca2+ dynamics.
The most important of these simplifications are the assump-
tion of constant density of Ca2+ channels, which is known
to be not true for many neurons (for review see Johnston
et al., 1996; Migliore and Shepherd, 2002), and the omission
of the effect of organelles in the cytoplasm that block dif-
fusion and have additional membrane Ca2+ pumps (mainly
endoplasmic reticulum and mitochondria). Another important
determinant of Ca2+ dynamics is inhomogeneous distribution
of Ca2+ buffers in dendrites of a given neuron, as well as their
properties, causing competitive binding of Ca2+ to available

Ca2+ buffers and Ca2+ pumps (Markram et al., 1998). While
the density of channels can easily be changed in compartmen-
tal models, accurate representation of intracellular organelles is
possible in mesh based models only. We do not expect that
inclusion of these properties would significantly change our
conclusions.

IMPORTANCE OF ACCURATE MORPHOLOGICAL RECONSTRUCTION
Dendrites have variable diameters. Typically, the diameter of
dendrites taper with increasing distance from the soma. It is gen-
erally assumed that the change in diameter of an unbranched
dendrite is relatively small as compared to the change in diame-
ter at branching, which allows representation of an unbranched
dendrite segment as a single uniform diameter compartment.
However, as shown in our morphological analysis in Figure 5,
many reconstructions of both PCs and pyramidal neurons show
great diameter variability within their unbranched segments, with
CV values sometimes reaching above 0.5. This implies that a
correct Ca2+ dynamics model should represent this diameter
variability by having several compartments for each unbranched
segment (Figures 8D–E), but also that the quality of the mor-
phological reconstruction is of utmost importance. We observed
great differences of the diameter variability between different neu-
ral reconstructions which often could be related to the laboratory
where the reconstructions have been done, as was reported previ-
ously for pyramidal neurons (Scorcioni et al., 2004; Szilagyi and
De Schutter, 2004; Holmes et al., 2006). Because it seems more
likely that human error causes an undersampling of diameter
changes than an exaggeration, we assume that the reconstruc-
tion with high diameter CV tend to be more reliable. Finally,
one should be aware that software like CVapp (Cannon et al.,
1998), which converts morphology files into formats suitable for
NEURON simulation, uses a specific discretization scheme that
changes diameters at branch points (Figure S1).

Although morphological reconstructions obtained using elec-
tron microscopy (EM) capture dendrites much more precisely,
because of rapid fluctuations in dendritic surface those recon-
structions are not suitable for compartment based models. The
proper use of EM reconstructions in modeling Ca2+ dynamics
will require more advanced simulators with support for surface
or tetrahedral meshes (e.g., M-Cell, STEPS). Also, this will require
more detailed description of Ca2+ related mechanisms (e.g., spa-
tial distribution of VGCa channels, KCa channels, buffers, pumps
and internal calcium stores).

SIMULATOR IMPLEMENTATION ISSUES
Almost all biophysically detailed models have been constructed
using either the GENESIS or NEURON simulators. These soft-
ware packages are based on compartmentalization of den-
dritic structures into multiple iso-potential cylinders, where
voltage, currents and concentrations are computed for each
of those compartments independently. Since these compart-
ments are based on electrical properties of dendrites, bio-
chemical representation of intracellular mechanisms in these
compartments is always an approximation of the related bio-
physical process. Such a simplified molecular representation may
result in unrealistic behavior of the model, depending on the
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rationale behind the assumption and its accuracy. One such
example is the commonly used single pool model to simu-
late intracellular Ca2+ in the NEURON simulator Equations
(8) and (9). The conversion of influx to intracellular Ca2+
concentration in these models is incorrect, which is due to
the use of an inaccurate volume of the submembrane shell
(Figure 3B). Although this inaccuracy does not influence the
results of single compartment models dramatically because it
can be easily tuned by adapting the shell depth, it becomes
critically important in multi-compartment models. This incor-
rect single pool model will always underestimate the influx
(Figure 3C), which may require unrealistic distribution of den-
dritic VGCC and KCa channels during model construction
and cause a mismatch in input resistance between model and
actual cell, and it will not predict any spatial gradients of
Ca2+ concentration due to fluctuations of dendrite diameter
(Figure 2A).

More detailed Ca2+ dynamics models using radial 1D diffu-
sion are thought to be more accurate, but again the compart-
mentalization of the dendrite may result in either an inaccurate
or incomplete representation of model. It is a major challenge to
model diffusion in the NEURON simulator correctly. NEURON
allows radial (toward the center of each dendritic compart-
ment) and longitudinal (from one compartment to neighboring
compartment) diffusion. Radial diffusion requires virtual sub-
membrane shells (Figure 1), where shells typically have a vari-
able depth, depending on the diameter of each compartment.
Furthermore, longitudinal diffusion is only allowed if the adja-
cent compartments have the same number of shells which will
introduce a larger error (Figure 6A) unless a very large number
of shells is used everywhere. Conversely, though theoretically the
variable submembrane depths of the standard NEURON scheme
(DM) should result in large errors, this effect was strongly fil-
tered by the diffusion and buffering mechanisms, resulting in
only small differences (Figure 6C) with a method (DMFD) that
ensures a fixed depth of the submembrane shell. It should be
noted, however, that these differences may be larger in models of
other neurons because the buffering capacity of PCs is exception-
ally high (Hartmann and Konnerth, 2005). Control simulations
showed that although the extent of the changes in Ca2+ levels
varied in models with lower buffers concentrations, the depen-
dence of Ca2+ levels on changes in diameters persisted (results
not shown).

Neither of the issues just mentioned are relevant for the
GENESIS simulator. Both submembrane pools (as the concpool
object, De Schutter and Bower, 1994) and radial diffusion (as the
difshell object, De Schutter and Smolen, 1999) are implemented
correctly and are easy to set up. Conversely, it is time consum-
ing to create multiple calcium dynamics mechanisms with radial
diffusion in NEURON because a separate mechanism has to be
written for each set of diameters (see Materials and Methods)
and this requires a lot of extra care. And then, for every different
morphology, one will have to repeat the process. We expect that
multilevel declarative model description languages (Raikov and
De Schutter, 2012) may allow transparent and correct compart-
ment based assignment of molecular mechanisms in NEURON
in the future.

RECOMMENDATIONS FOR CORRECT MODELING OF DENDRITIC Ca2+
DYNAMICS
Even in PCs, where the estimated Ca2+ diffusion range is only
about 5 μm (Santamaria et al., 2006), we observe effects of 3D
diffusion on Ca2+ transients compared to when only radial 1D
diffusion is used, especially when Ca2+ concentration is aver-
aged over short distances only (Figures 8D,E). Nevertheless, the
error introduced by the 1D approach is much smaller than the
errors caused by inaccurate morphologies (Figure 8C) and simu-
lating 3D diffusion in tetrahedral meshes is quite slow. However,
3D diffusion must be included in biophysically accurate models
of synaptic plasticity or models involving Ca2+ based signaling
pathways.

For most of modeling projects with the goal of capturing
excitability and integrative properties of dendrites, a correct
implementation of 1D radial diffusion and buffering in NEURON
(or any other compartment based simulator) will be an ade-
quate approximation. It is then important to implement a variable
number of submembrane shells, with larger number of shells in
larger diameter compartments, and best using a fixed depth of
the submembrane shell [DMFD model: Figure 1, Equation (5)].
The model should be based on a high quality morphological
reconstruction (Jacobs et al., 2010) and the variability of diam-
eter along dendritic segments should be retained by having as
many compartments as required to capture diameter changes
(Figures 8D,E).

Finally, we do not recommend the use of simple pool mod-
els, unless good data on the properties of Ca2+ buffering (e.g.,
Schmidt et al., 2003 for PCs) in the neuron type to be mod-
eled is completely absent. If one is forced to use a simple pool
model, make sure it is implemented correctly [SPnew, Figure 3A
and Equations (2) and (6)].
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