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Traumatic brain injury (TBI) induces a strong inflammatory response which includes
blood-brain barrier damage, edema formation and infiltration of different immune cell
subsets. More recently, microvascular thrombosis has been identified as another
pathophysiological feature of TBI. The contact-kinin system represents an interface
between inflammatory and thrombotic circuits and is activated in different neurological
diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels.
We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and
female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor
after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain
barrier damage, thrombus formation as well as the local inflammatory response were
determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 75 IU,
1 h after cryolesion reduced lesion volumes by ~75% on day 1. This protective effect
was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor
stabilized the blood-brain barrier and decreased the invasion of immune cells into the
brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor
represents a multifaceted anti-inflammatory and antithrombotic compound that prevents
traumatic neurodegeneration in clinically meaningful settings.

Keywords: traumatic brain injury, edema, blood-brain barrier, C1-inhibitor, contact-kinin system, inflammation,

thrombosis

INTRODUCTION

Traumatic brain injury (TBI) accounts for more than 10 million
fatalities worldwide and is a leading cause of permanent disability
(Hyder et al., 2007; Roozenbeek et al., 2013). Albeit TBI is of
utmost socioeconomic relevance, its underlying pathophysiology
is still incompletely understood and specific therapies are lacking
(Roozenbeek et al., 2013). After the initial impact, which irretriev-
ably destructs the adjacent brain regions, a self-propagating dele-
terious cascade is unleashed that causes secondary tissue damage
(Shlosberg et al., 2010). Inflammation is one of the most relevant
contributors to this cascade (Cederberg and Siesjo, 2010). Early
after trauma the brain endothelium upregulates cellular adhesion
molecules and this activation step enables trafficking of inflam-
matory cells (neutrophils, macrophages) from the blood stream
to the sites of tissue damage (Schwarzmaier et al., 2013). Those
peripheral cells together with resident cell populations (endothe-
lial cells, microglia, astrocytes) produce myriads of highly active
mediators such as cytokines and chemokines that perpetuate the
inflammatory response (Schmidt et al., 2005). Another charac-
teristic of severe brain trauma is structural disintegration of the

blood-brain barrier, which in consequence leads to the forma-
tion of brain edema (Shlosberg et al., 2010). Excessive edema
can damage otherwise healthy brain regions by compression
and is a frequent cause of delayed neurologic deterioration in
trauma patients. Pharmaceuticals able to substantially influence
inflammation or edema formation in TBI are not available and
decompressive surgery, which is a highly invasive procedure, failed
to prove efficacy in trauma patients in a recent phase III trial
(Cooper et al., 2011).

Apart from inflammation, microvascular dysfunction and
progressive thrombus formation are increasingly recognized as
important players in the pathophysiology of brain trauma and
may account for the frequently observed immediate decline in
regional cerebral blood flow which can also affect remote brain
areas (Dietrich et al., 1996; Schwarzmaier et al., 2010; Prodan
etal., 2013; Sillesen et al., 2013). Most interestingly, there is accu-
mulating evidence of a tightly regulated interplay between throm-
botic and inflammatory mechanisms during TBI (Schwarzmaier
et al., 2010, 2013) and related CNS disorders such as ischemic
stroke (Langhauser et al., 2012; Kleinschnitz et al., 2013), and this

Frontiers in Cellular Neuroscience

www.frontiersin.org

September 2014 | Volume 8 | Article 269 | 1


http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fncel.2014.00269/abstract
http://www.frontiersin.org/Journal/10.3389/fncel.2014.00269/abstract
http://community.frontiersin.org/people/u/168833
http://community.frontiersin.org/people/u/156900
http://community.frontiersin.org/people/u/174701
http://community.frontiersin.org/people/u/107551
http://community.frontiersin.org/people/u/156543
mailto:christoph.kleinschnitz@uni-wuerzburg.de
mailto:christoph.kleinschnitz@uni-wuerzburg.de
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Albert-Weissenberger et al.

C1-Inhibitor protects from focal brain trauma

“thrombo-inflammation” might be accessible to specific thera-
peutic interventions (Nieswandt et al., 2011; Magnus et al., 2012).

The serine proteases coagulation factor XII (FXII) and plasma
kallikrein together with their substrate kininogen build the
contact-kinin system (Renné, 2012). The contact-kinin system
fosters vascular permeability and inflammation by the formation
of short-lived kinins while at the same time is linked to thrombus
formation via the FXII-driven intrinsic coagulation cascade. All
components of the contact-kinin system have been identified
in the brain (Camargo et al., 1973; Kariya et al., 1985; Kizuki
et al,, 1994) and activation of the contact-kinin system has been
described after TBI both experimentally as well as in humans
(Auer and Ott, 1979; Trabold et al., 2010; Albert-Weissenberger
et al., 2013). Hence, the different members of the contact-
kinin system represent attractive targets to combat injury-induced
inflammation and thrombosis.

Cl-Inhibitor (C1-Inh) belongs to the superfamily of serine
protease inhibitors called serpins (Davis et al., 2008). It acts as
an important endogenous regulator of the contact-kinin system
by blocking of activated FXII (FXIla) and plasma kallikrein
(Davis et al., 2010). Moreover, C1-Inh can directly interfere with
the attraction of circulating leukocytes (Cai and Davis, 2003)
and inhibits components of the complement system (Duehrkop
and Rieben, 2014). Application of Cl-Inh has proven to be
beneficial in a variety of disorders associated with inflamma-
tion (Begieneman et al., 2012; Heydenreich et al., 2012; Mejia
and Davis, 2012). In a previous publication, the group of De
Simoni evaluated the effects of Cl-Inh following controlled cor-
tical impact (CCI) brain injury in mice (Longhi et al., 2008,
2009). They showed that post-traumatic administration of the
Cl-Inh improved cognitive outcome and reduced histological
damage after CCI, a model of focal and diffuse brain damage
(Longhi et al., 2008, 2009). Importantly, they showed that C1-Inh
treatment results in a better functional outcome.

To specifically answer the question whether C1-Inh, reduces
blood-brain barrier breakdown, brain edema and lesion size in
a focal TBI model, we used a cryolesion model that produces
a standardized focal cortical lesion, breakdown of the blood-
brain barrier and vasogenic brain edema (Raslan et al., 2012),
key pathomechanisms associated with fatal outcome after focal
clinical TBI. We show that plasma-derived C1-Inh protects from
TBI in mice in a clinically relevant scenario by a combined anti-
inflammatory and antithrombotic mode of action.

MATERIALS AND METHODS

CORTICAL CRYOLESION MODEL

A total of 186 C57BL/6 mice (166 males, 22 females) were
used in this study. All experiments were approved by institu-
tional (University of Wiirzburg, Germany) and regulatory (local
government of Lower Franconia, Bavaria, Germany) authorities.
Cortical cryolesion was induced as described (Raslan et al., 2012).
Briefly, mice were anesthetized with intraperitoneal injections
of ketamine (0.1 mg/g) and xylazine (0.005 mg/g). Surgery was
performed on the right parietal cortex after exposing the skull
through a scalp incision. A copper cylinder with a tip diameter
of 2.5 mm was filled with liquid nitrogen (—196°C) and placed
stereotactically on the right parietal cortex (coordinates from

bregma: 1.5 mm posterior, 1.5 mm lateral) for 90 s. Sham-
operated animals went through the same procedure without
cooling the copper cylinder. Animals were randomly assigned to
the treatment groups by an independent person not involved in
data acquisition. We analyzed all read-out parameters while being
masked to the experimental groups.

C1-INHIBITOR TREATMENT

One hour after the induction of cortical cryolesion, mice received
a single intravenous injection of human plasma-derived C1-Inh
(Berinert® CSL Behring GmbH) at a dose of 7.5 IU or 15.0
IU (Heydenreich et al., 2012). Control animals received equal
volumes of isotonic saline (vehicle).

DETERMINATION OF LESION SIZE

Twenty-four hours or 5 days after cryolesion, mice were sacrificed
and mouse brains were quickly removed and cut in five I mm
thick coronal sections using a mouse brain slice matrix (Harvard
Apparatus). The slices were stained for 20 min at 37°C with 2%
2,3,5-triphenyltetrazolium chloride (TTC) (Sigma-Aldrich) in 1x
phosphate buffered saline (PBS) to visualize the lesion. The lesion
volume was calculated from the TTC stained slices using the
Image]J software (ImageJ software, National Institutes of Health,
USA) (Raslan et al., 2010).

DETERMINATION OF BRAIN EDEMA AND BLOOD-BRAIN BARRIER
LEAKAGE

Brain edema formation was calculated using the wet weight-dry
weight method (Langhauser et al., 2012). Briefly, brains were
removed 24 h after cryolesion and a 6-mm-thick coronal section
was dissected that included the traumatic area. The section was
divided into an ipsilesional (injured) and contralesional (nonin-
jured) part. The freshly collected tissue samples were weighted
to assess the wet weight. After that, samples were dried for 72 h
at 60°C and the dry weight was determined. The water content
(expressed as percentage) in the ipsilesional and contralesional
part was calculated using the following formula: ((wet weight—
dry weight) / wet weight) x 100.

To determine blood-brain barrier leakage 100 pl of 2% Evans
Blue tracer (Sigma Aldrich) diluted in 0.9% NaCl was i. v. injected
23 h after the induction of cryolesion (Langhauser et al., 2012).
After 24 h mice were sacrificed and brains were quickly removed.
A 6-mm-thick coronal section including the traumatic area was
cut using a mouse brain slice matrix (Harvard Apparatus). The
section was separated into an ipsilesional and contralesional part.
Then, 300 pl formamide was added and incubated for 24 h
at 55°C in the dark to extract the Evans blue dye. Tubes were
centrifuged for 20 min at 16.000 g and 50 pl of the supernatant
were transferred to a 96 well plate. Fluorescence intensity was
determined in duplicates by a microplate fluorescence reader
(Fluoroskan Ascent, Thermo Scientific) with an excitation at
610 nm and emission at 680 nm. The concentration for each
sample was calculated from a standard curve.

REAL-TIME PCR STUDIES
RNA was isolated from the whole ipsilesional hemisphere
24 h after trauma. Tissue homogenization, RNA isolation, and
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real-time PCR were performed as described (Kleinschnitz et al.,
2010; Albert-Weissenberger et al., 2012). Briefly, total RNA
was prepared with a Miccra D-8 power homogenizer (ART
Prozess-& Labortechnik) using the TRIzol reagent (Invitrogen)
and was quantified spectrophotometrically. Then, 250 pg
of total RNA was reversely transcribed with the TagMan
Reverse Transcription Reagents (Applied Biosystems) according
to the manufacturer’s protocol using random hexamers.
Relative mRNA levels were quantified with the fluorescent
TagMan technology. PCR primers and probes specific for
murine interleukin (IL)-1f (assay ID: MmO004344228_ml),
tumor necrosis factor (TNF)a (assay ID: Mm00443258
_ml), chemokine ligand 2 (CCL2) (assay ID: Mm00441242_m1),
chemokine ligand 3 (CCL3) (assay ID: Mm00441259_gl),
occludin (assay ID: Mm00500912_m1) and claudin-5 (assay ID:
MmO00727012_s1) were obtained as TagMan Gene Expression
Arrays (Applied Biosystems). Glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) and B-Actin (TagMan Predeveloped
Assay Reagents for gene expression, part number: 4352339E
and 4352341E; Applied Biosystems) were used as endogenous
controls to normalize the amount of sample RNA. The PCR
was performed with equal amounts of cDNA in the GeneAmp
7700 sequence detection system (Applied Biosystems) using
the TagMan Universal PCR Master Mix (Applied Biosystems).
Reactions were incubated at 50°C for 2 min, at 95°C for 10 min
followed by 40 cycles of 15 s at 95°C and 1 min at 60°C. Water
controls were included to ensure specificity. Each sample was
measured in triplicate and data points were examined for integrity
by analysis of the amplification plot. The A ACt method was used
for relative quantification of gene expression as described (Livak
and Schmittgen, 2001; Langhauser et al., 2012).

HISTOLOGY AND IMMUNOHISTOCHEMISTRY

Immunohistochemistry was performed as previously described
(Langhauser et al., 2012). Cryo-embedded brains were cut
into 10-pm-thick slices using a cryostat (Leica). For stain-
ing of microglia/macrophages the slices were fixed in 4% PFA
in PBS. Blocking of epitopes was achieved by pre-treatment
with 5% bovine serum albumin (BSA) in PBS for 45 min
to prevent unspecific binding. For the detection of activated
microglia/macrophages the antibody (rat, diluted 1:100, Serotec
MCA711, anti-CD11b) was diluted in PBS containing 1% BSA
and incubated overnight at 4°C. Afterwards, slides were incubated
with a biotinylated anti-rat IgG (BA-4001, Vector Laboratories)
diluted 1:100 in PBS containing 1% BSA for 45 min at room
temperature. Following treatment with Avidin/Biotin blocking
solution (Avidin/Biotin Blocking Kit, Sp-2001, Vector Labora-
tories) to inhibit endogenous peroxidase activity, the secondary
antibody was linked via streptavidin to a biotinylated peroxidase
(POD) according to the manufacturer’s instructions (Vectorstain
ABC Kit, Peroxidase Standard PK-4000, Vector Laboratories).
Antigens were visualized via POD using the chromogen 3,3'-
Diaminobenzidin (DAB) (Kem-En-Tec Diagnostics), the slices
were embedded in AquaTex (Merck) and digital images were
acquired using a Nikon microscope Eclipse 50i equipped with
the DS-U3 DS camera control unit and the NIS-Elements soft-
ware (Nikon, Japan). In order to determine the number of

macrophages and activated microglia, CD11b-positive cells were
counted for each animal on the side of injury and on the
contralateral side on five brain slices at 20x magnification. The
numbers of CD11b-positive cells are expressed as cells/mm?. Neg-
ative controls for all immunohistochemical experiments included
omission of either the primary or secondary antibody and gave no
signals (not shown).

For the assessment of the thrombosis index, hematoxylin
and eosin (H&E) staining on cryo-embedded brain slices was
performed according to standard procedures. The number of
occluded and not occluded blood vessels within the ipsilateral
hemisphere was counted in every tenth slice for control and 15.0
IU C1-Inh treated mice using a Nikon microscope Eclipse 50i and
the % of occluded vessels was calculated.

WESTERN BLOT

Cortices or basal ganglia were dissected from the ipsilateral hemi-
sphere of mouse brains and homogenized in RIPA buffer (25 mM
Tris pH 7.4, 150 mM NaCl, 1% NP-40) containing 0.1% SDS
and 4% proteinase inhibitor (complete protease inhibitor cocktail,
Roche). Samples were sonicated for 10 s. Afterwards tissue lysates
were centrifuged at 15.0 g for 30 min at 4°C and supernatants were
used for bicinchoninic acid (BCA) protein assay and subsequent
Western blot analysis. The total lysates were treated with 4x SDS-
PAGE loading buffer (final concentration: 62.5 mM Tris pH 6.8,
3% beta-mercaptoethanol, 8% SDS, 15% glycerol) at 95°C for
5 min. 20 pg of total protein was electrophoresed and transferred
to a PVDF membrane. After blocking for 30 min with blocking
buffer (5% nonfat dry milk, 50 mM Tris-HCI pH 7.5, 0.05%
Tween-20) membranes were incubated with the primary anti-
body at 4°C overnight at the following dilutions: anti-fibrinogen
antibody (rabbit, 1:10,000; Acris AP00766PU-N), anti-claudin-
5 (mouse, 1:1000; Invitrogen 35-2500), and anti-actin (mouse,
1:500,000; Sigma A5441). After a washing step with TBST (50
mM Tris-HCI pH 7.5, 0.05% Tween-20), membranes were incu-
bated for 1 h with HRP-conjugated donkey anti-rabbit IgG (for
fibrinogen) (Dianova) or donkey anti-mouse IgG (for claudin-5
and actin) at a dilution of 1:5000 and were finally developed using
ECLplus (GE Healthcare) and quantified by densitometry using
the Image]J software (National Institutes of Health, USA). The
relative densities of the protein bands of claudin-5 and fibrinogen
were normalized to actin.

STATISTICS

All results were expressed as mean =+ standard error of mean
(SEM). Numbers of animals (N = 10) necessary to detect a
standardized effect size on lesion volumes >20% on day 1 after
cortical cryolesion (vehicle-treated control mice vs. mice treated
with 15 TU Cl1-Inh) were determined via a priori sample size
calculation with the following assumptions: « = 0.05, 8 = 0.2,
mean, 20% SEM of the mean (GraphPad Stat Mate 2.0; GraphPad
Software). For statistical analysis, the GraphPad Prism 5.0 soft-
ware package (GraphPad Software) was used. Data were tested for
Gaussian distribution with the D’Agostino and Pearson omnibus
normality test and then analyzed by one-way analysis of variance
(ANOVA) with post hoc Bonferroni correction for multivariate
analyses. If only two groups were compared, unpaired, two-tailed
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Student’s t-test was applied. P-values < 0.05 were considered
statistically significant.

RESULTS

C1-INHIBITOR PROTECTS FROM FOCAL BRAIN TRAUMA IN A
CLINICALLY RELEVANT SETTING

To investigate the efficacy of exogenous Cl-Inh in acute brain
trauma, we chose a cortical cryolesion model in mice. This model
induces a rapid breakdown of the blood-brain barrier and is
associated with significant edema formation and inflammation
(Albert-Weissenberger and Sirén, 2010; Raslan et al., 2012). First,
6-week-old male C57BL/6 mice were subjected to cryolesion and
treated with 7.5 IU or 15.0 [U C1-Inh 1 h after trauma (Figure 1).
Posttraumatic treatment with 15.0 IU C1-Inh, but not 7.5 IU C1-
Inh, significantly reduced lesion volumes by >75% on day 1 as
assessed by staining of brain sections with TTC (lesion area: 5.5 &+
1.4 mm?® [control] vs. 1.7 & 0.4 mm? [15.0 TU], respectively;
* P < 0.05; Figure 1A).

Gender can have a significant impact on the clinical outcome
following TBI (Farace and Alves, 2000; Wagner et al., 2005;
Ratcliff et al., 2007). Therefore, we also subjected 6-week-old
female mice to cortical cryolesion. In line with the results in male
mice, treatment of female mice with 15.0 IU Cl-Inh 1 h after
cryolesion resulted in significantly smaller brain lesions compared
with vehicle-treated controls (lesion area 3.6 £+ 0.6 mm?> [con-
trol] vs. 1.0 + 0.4 mm?® [15.0 IU], respectively; ** P < 0.01;
Figure 1B).

Posttraumatic treatment with 15.0 IU Cl-Inh was able to
provide sustained protection against TBI. Again, 6-week-old male
C57BL/6 mice were subjected to cortical cryolesion and treated
with 15.0 IU Cl-Inh 1 h after trauma. Assessment of the brain
lesion volume after 5 days showed a significant smaller lesion size
in the 15.0 IU C1-Inh treated mice compared with vehicle-treated
controls (lesion area 3.8 £+ 0.5 mm?> [control] vs. 2.3 £+ 0.3 mm?>
[15.0 IU], respectively; * P < 0.05; Figure 1C).

PROTECTION FROM FOCAL BRAIN TRAUMA IN C1-INHIBITOR TREATED
MICE RESULTS FROM REDUCED EDEMA FORMATION, INFLAMMATION
AND THROMBOSIS
Next, we sought to elucidate the underlying mechanisms of
this Cl-Inh-specific protection in focal brain trauma. Cl-Inh
plays an important role in the regulation of vascular perme-
ability, probably by inactivating key proteases of the contact-
kinin system such as FXIla or plasma kallikrein (Davis et al.,
2010). On day 1 after cryolesion, the integrity of the blood-brain
barrier as reflected by the concentration of the vascular tracer
Evans Blue leaking into the brain parenchyma was preserved
in mice treated with 15.0 IU Cl-Inh 1 h after trauma (70.3 +
5.9 ng/mg [control ipsi] vs. 48.8 £ 4.3 ng/mg [15.0 IU ipsi],
* P < 0.05; Figure 2A). This finding correlated with significantly
less brain edema formation (as assessed by the wet weight-dry
weight method) after therapeutic C1l-Inh application (80.1 £
0.6% [control ipsi] vs. 78.5 £ 0.2% [15.0 IU ipsi], * P < 0.05;
Figure 2B).

In line with a blood-brain barrier stabilizing effect of C1-Inh in
TBI, the level of the mRNA encoding for the tight junction protein
occludin was downregulated in the brains of vehicle-treated mice

Males Day 1

Lesion volume [mm?]

Ctrl 151U Ctrl 751U 15.0 IU

8- Females Day 1

Lesion volume [mm?]

Ctrl 151U Ctrl 15.0 IU

8m Males Day 5

Lesion volume [mm?3]

151U

Ctrl

15.0 IU

Ctrl

FIGURE 1 | C1-Inhibitor (C1-Inh) protects against traumatic brain
injury in mice of both sexes. (A) Left panel shows representative
2,3,5-triphenyltetrazolium chloride (TTC) staining of 5 coronal brain
sections of 6-week-old male control mice (Ctrl) and 6-week-old male
mice treated with 7.5 IU or 15.0 IU C1-Inh. C1-Inh was always applied
1 h after cortical cryolesion and the lesion volume was assessed from
TTC staining at day 1. The lesion volume was reduced in a
dose-dependent manner with a significant reduction after treatment
with 15.0 IU (n = 11-13, * P < 0.05, One-way analysis of variance with
post hoc Bonferroni's Multiple Comparison Test). (B) Representative
TTC staining and lesion volume of 6-week-old female control and 15.0
IU C1-Inh treated mice, showing a significant reduction in lesion volume
after treatment with 15.0 IU at day 1 (n = 10-11, ** P = 0.0019,
Unpaired t-test). (C) A significant reduction of lesion volume was
detectable up to 5 days after treatment with 15.0 IU C1-Inh in
6-week-old male mice (n =10, * P < 0.05, Unpaired t-test).

compared with sham-operated controls on day 1 after cryolesion
(relative gene expression occludin: 1.0 = 0.02 [sham] vs. 0.6 +
0.04 [control], * P < 0.05; Figure 2C) but occludin mRNA level
was preserved in mice receiving 15.0 IU Cl-Inh (relative gene
expression occludin: 0.9 £ 0.1 [15.0 U], * P < 0.05; Figure 2C).
In contrast, no differences in the mRNA levels encoding for
another tight junction protein, claudin-5, could be observed
between the groups (relative gene expression claudin-5: 1.0 £
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A ipsi contra

Evans Blue extravasation

[Mg/mg brain tissue]

Ctrl

15.0lU Ctrl 15.01IU

c Occludin

1.5+

1.0

Rel. gene expression

0.0+

Sham Ctrl 15.01U

FIGURE 2 | C1-inhibitor (C1-Inh) treatment results in stabilization of the
blood brain barrier. (A) Vascular leakage on day 1 after cryolesion was
significantly decreased after treatment with 15.0 IU of C1-Inh as confirmed by
the concentration of Evans Blue detectable in the brain parenchyma (n = 6,

* P < 0.05, ns P > 0.05, One-way analysis of variance with post hoc
Bonferroni's Multiple Comparison Test, ipsi: ipsilateral hemisphere, contra:
contralateral hemisphere). (B) Edema formation as reflected by the brain
water content in the ipsi- and contralateral hemispheres of control and 15.0 IU
treated mice on day 1 after cryolesion (n =6, * P < 0.05, ns P > 0.05,

contra

B ipsi

Brain water content [%)]

Ctrl 15.0IU Ctrl 15.01U

D Claudin-5

Rel. gene expression

Sham

Ctrl 15.01U

One-way analysis of variance with post hoc Bonferroni’s Multiple Comparison
Test). (C) Relative gene expression of occludin in the ipsilateral brain
parenchyma of control and 15.0 IU treated mice 24 h after cryolesion or sham
operation (n = 7 or 3 for sham operated, * P < 0.05, One-way analysis of
variance with post hoc Bonferroni's Multiple Comparison Test). (D) Relative
gene expression of claudin-5 in the ipsilateral brain parenchyma of control and
15.0 U treated mice 24 h after cryolesion or sham operation (n = 7 or 3 for
sham operated, ns P > 0.05, One-way analysis of variance with post hoc
Bonferroni’'s Multiple Comparison Test).

0.03 [sham] vs. 0.8 = 0.05 [control] vs. 0.9 £ 0.04 [15.0 IU],
P > 0.05; Figure 2D) indicating selective regulation of specific
tight junction proteins by C1-Inh.

Structural disintegration of the blood-brain barrier facilitates
immune cell trafficking and Cl-Inh has been shown to inhibit
cell migration from the vasculature to sites of inflammation
(Cai and Davis, 2003). We therefore quantified the numbers
of immune cells invading the injured brain by immunohisto-
chemistry 24 h after the induction of cortical cryolesion. More
macrophages/microglia cells had entered the traumatic brains
of untreated control mice than of mice that had been treated
with 15.0 IU Cl-Inh 1 h after TBI (CD11b positive cells/mm?
in the lesion site (ipsilateral): 294.6 + 89.8 [control] vs. 49.4 +
23.6 [15.0 IU], * P < 0.05; Figure 3A). Interestingly, this was
paralleled by a significantly reduced mRNA expression of the C-
C motif chemokine CCL3 (relative gene expression: 33.9 & 14.1
[control] vs. 1.00 £ 0.12 [15.0 IU], * P < 0.05; Figure 3B).
CCL3 is known to promote neutrophil influx especially under
inflammatory conditions (Ramos et al., 2005; Johnson et al.,
2011; Reichel et al., 2012; de Jager et al., 2013). Accordingly,
mRNA expression of CCL2 (monocyte chemoattractant protein 1,
MCP-1) was also significantly lower in mice treated with C1-Inh

in comparison to vehicle-treated mice (relative gene expression:
147.4 + 35.1 [control] vs. 15.7 & 3.3 [15.0 IU], *** P < 0.001;
Figure 3B).

Next, we analyzed the gene expression profiles of the proto-
typic proinflammatory cytokines IL-18 and TNFa in the brains of
C1-Inh treated mice and controls 24 h after TBI. Both cytokines
have been shown to promote traumatic brain damage (Schmidt
et al., 2005). Elevation of IL-18 mRNA and TNFa mRNA in the
injured hemispheres after cortical cryolesion was less marked in
the group receiving 15.0 IU C1-Inh compared with vehicle-treated
controls (relative gene expression IL-1p: 11.7 £ 3.4 [control]
vs. 1.3 £ 0.1 [15.0 IU], ** P < 0.01; Figure 3B; relative gene
expression TNFa: 17.8 &+ 1.6 [control] vs. 1.7 £ 0.3 [15.0 IU],
% P < 0.001; Figure 3B).

Cl1-Inh also blocks FXIIa, the prime activator of the intrinsic
pathway of blood coagulation (Davis et al., 2008). Therefore, we
additionally analyzed the impact of Cl-Inh on the thrombotic
activity after cortical cryolesion. The amount of fibrin(ogen)
detected by immunoblot in the traumatic hemisphere of C1-
Inh treated mice was significantly reduced on day 1 after TBI
compared with controls (mean optical density: 3.7 & 0.8 [control]
vs. 1.9 £ 0.3 [15.0 IU], * P < 0.05; Figure 4A).
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Immunohistochemistry consistently demonstrated intravas-
cular fibrin(ogen) deposits that occluded brain vessels in
untreated mice and markedly reduced fibrin(ogen) deposits in
mice treated with C1-Inh (Figure 4B). Accordingly, histological
sections of lesioned brain tissue from untreated mice showed
numerous occlusions of vessel lumina (Figure 4B). In compari-
son, the microvascular patency was significantly increased in mice
receiving Cl-Inh (thrombosis index: 69.5 & 2.2 vs. 39.7 &+ 1.7,
®% P 2 0.001).

DISCUSSION

The salient finding of the present study is that plasma-derived C1-
Inh protects from focal brain trauma in different settings relevant
to the clinical situation. C1-Inh reduced cortical lesion volumes by
nearly 75% in male mice even when applied 1 h after the onset of
trauma. Female mice were similarly protected and the beneficial
effect was preserved at later stages after trauma. The specific anti-
inflammatory and antithrombotic properties of C1-Inh appear to
mediate this powerful neuroprotection.
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AU = arbitrary units). (B) Representative H&E staining from traumatic
hemispheres of vehicle-treated and 15.0 IU C1-Inh treated mice on day 1
after cryolesion. Occluded vessels (arrowhead in the left panel) were more
abundant in control mice when compared to vessels of 15.0 IU C1-Inh
treated mice (arrowheads in the right panel). This finding was confirmed by
the calculation of the thrombosis index showing a highly significant
reduction of occluded vessels in 15.0 IU C1-Inh treated mice on day 1 after
cryolesion (n =4, *** P < 0.001, Unpaired t-test; Scale bar 50 pm).

Recent studies indicate that the contact-kinin system is acti-
vated after brain trauma under experimental conditions (Albert-
Weissenberger et al., 2013). Trabold et al. (2010) found increased
levels of bradykinin in the brains of mice subjected to con-
trolled cortical impact and genetic depletion of bradykinin recep-
tor 2, but not bradykinin receptor 1, led to smaller contusion
volumes and a better functional outcome 7 days after TBI as
compared with wild type mice. In the cryolesion model (Raslan
et al., 2010) as well as after diffuse head trauma (weight drop
injury) (Albert-Weissenberger et al., 2012), bradykinin recep-
tor 1 seems to dominate over bradykinin receptor 2 but again
blocking of bradykinin signaling was neuroprotective in both
models. Moreover, treatment with the plasma kallikrein inhibitor
aprotinin caused a significant reduction in brain swelling in
rabbits which had undergone cold injury (Unterberg et al,
1986). Accordingly, the expression of kininogen was increased in
rat brains following fluid percussion injury (Ellis et al., 1989).
Auer and Ott (1979) described a rise of proteolytic enzymes
in the cerebrospinal fluid of patients with severe head trauma
which correlated with overall mortality and which was reversible
by aprotinin. However, comprehensive data on the activation

status of the contact-kinin system in trauma patients is not
available.

Cl-Inh is a potent inhibitor of plasma kallikrein, a key
enzyme of the contact-kinin system responsible for the release of
proinflammatory bradykinin from kininogen (Bjorkqvist et al.,
2013). In line with its antiinflammatory mode of action, Cl1-
Inh stabilized the blood-brain barrier and reduced edema for-
mation after focal cryolesion, an effect that could be ascribed
to preserved tight junction protein expression. In addition, mice
treated with Cl-Inh expressed less IL-18 and TNFa after TBI.
IL-1p and TNFa are regarded as a prototypic proinflammatory
cytokines known to aggravate traumatic brain damage (Morganti-
Kossman et al., 2002; Helmy et al., 2011). Also, significantly
fewer macrophages/activated microglia invaded the damaged
brains of Cl-Inh treated mice in comparison to vehicle-treated
controls. Macrophages/microglia are known to be involved in
lesion growth following brain injury by producing free radicals
and numerous other neurotoxic factors (van Buul and Hordijk,
2004). Several potential mechanisms might account for the anti-
migratory effects of Cl-Inh in TBI including preservation of
blood-brain barrier integrity, binding of cell adhesion molecules
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(Cai and Davis, 2003), or lowering of chemoattractant factors
such as CCL2 and CCL3.

Whereas the anti-inflammatory potential of Cl-Inh is well
established in a great variety of disease models like sepsis
(Begieneman et al., 2012; Heydenreich et al., 2012; Mejia and
Davis, 2012), ischemia/reperfusion injury (Horstick et al., 1997;
Lehmann et al., 2000; Heydenreich et al., 2012), and spinal cord
injury (Tei et al., 2008) the present description of Cl-Inh as a
powerful antithrombotic compound in TBI is novel and further
adds to our understanding of this multifaceted molecule. Of note,
the relevance of thrombotic processes in TBI has only recently
been recognized. In vivo fluorescence microscopy of the brain
revealed that microthrombi occluded 70% of venules and 33%
of arterioles after controlled cortical impact in mice indicating
that the immediate post-traumatic decrease in peri-contusional
blood flow is mainly caused by progressive microthrombosis
(Schwarzmaier et al., 2010). In addition, intravascular clotting has
been described in the same model also at later stages of lesion
development, i.e., until day 15 (Lu et al.,, 2004). Interestingly,
platelets can bind to leukocytes and endothelial cells during TBI
and this interaction further enhances dysfunction of the neu-
rovascular unit (Schwarzmaier et al., 2010). Similar observations
were recently made after experimental cerebral ischemia leading
to a redefinition of ischemic stroke as a “thrombo-inflammatory”
disease (Nieswandt et al., 2011). The antithrombotic properties
of Cl-Inh are probably mainly due to its inhibitory action on
FXIIa, the origin of the intrinsic coagulation cascade (Davis
et al., 2008). However, other mechanisms might contribute as
well. For instance, Cl-Inh has been shown to directly inhibit
thrombin activity on vascular endothelial cells via binding to
selectins (Caccia et al., 2011). Moreover, C1-Inh infusions can
reduce platelet activity in hereditary angioedema patients and
after blood xenotransplantation (Fiane et al., 1999; Coppola et al.,
2002).

Longhi et al. (2009) tested the same plasma-derived C1-
Inh formulation (Berinert®) at an identical dose (15 IU) in
the controlled cortical impact model in mice. In line with our
results, Cl-Inh significantly reduced lesion size and in addition
improved neurological outcome up to 4 weeks after trauma.
Here, the neuroprotective effect was greater when Cl-Inh was
applied already 10 min post injury compared with a delayed
application regimen (1 h post injury). Moreover, the impact of
C1-Inh on inflammatory processes and thrombus formation was
not addressed in this study.

Interesting from a translational perspective, Cl-Inh is for
many years in clinical use for the treatment of hereditary
angioedema, so far without any major safety concerns (Keating,
2009; Banerji, 2010). However, substitution of naturally lacking
Cl-Inh in individuals with angioedema obviously represents a
different situation compared with rising of C1-Inh levels above
the normal range in trauma patients. Moreover, measuring of
Cl-Inh plasma levels in mice revealed that the terminal half-
life is between 9.0 and 9.5 h (Dickneite, 1993; Caliezi et al.,
2000) while in humans, the mean half-life of C1-Inh was 62 h
after intravenous administration and 120 h after subcutaneous
administration (Martinez-Saguer et al., 2014). Finally, findings
from animal models cannot be easily transferred to the human

situation in particular in the case of cortical cryolesion which
only mimics certain aspects of brain trauma such as excessive
edema formation and inflammation (Albert-Weissenberger and
Sirén, 2010). Nevertheless, the fact that C1-Inh mediates neu-
roprotection in a broad array of neurological disease models is
reassuring (Begieneman et al., 2012; Heydenreich et al., 2012;
Mejia and Davis, 2012) and underpins its potential applicability
in the clinic.

In summary, Cl-Inh ameliorates trauma-induced neurode-
generation in different clinically relevant scenarios by counteract-
ing “thrombo-inflammation”. Therefore, C1-Inh might become
an attractive candidate to combat TBI and other neurological
conditions associated with inflammation and thrombosis.
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