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Within neural networks, synchronization of activity is dependent upon the synaptic
connectivity of embedded microcircuits and the intrinsic membrane properties of
their constituent neurons. Synaptic integration, dendritic Ca?t signaling, and non-linear
interactions are crucial cellular attributes that dictate single neuron computation, but
their roles promoting synchrony and the generation of network oscillations are not well
understood, especially within the context of a defined behavior. In this regard, the lamprey
spinal central pattern generator (CPG) stands out as a well-characterized, conserved
vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized
oscillations in which neural elements from the systems to cellular level that control
rhythmic locomotion have been determined. We review the current evidence for the
synaptic basis of oscillation generation with a particular emphasis on the linkage between
synaptic communication and its cellular coupling to membrane processes that control
oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic
function found in many vertebrate systems to the accessible lamprey central nervous
system in which the relationship between neural network activity and behavior is well
understood. This enables us to address how Ca?* signaling in spinal neuron dendrites

orchestrate oscillations that drive network behavior.
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INTRODUCTION

Orchestration of neuronal activity within networks is integral to
correct execution of behavior. Synchronization between groups
of neurons is an organizational feature of many neural net-
works found in the central nervous systems of invertebrates
(Wehr and Laurent, 1996; Riffell et al., 2009) to vertebrates
(Womelsdorf et al., 2014) alike, and between microcircuits. Large-
scale synchrony between neurons is particularly evident in the
spinal (Grillner, 2003; Goulding, 2009) and brainstem networks
(Koshiya and Smith, 1999) controlling rhythmic movement, but
are also common to hippocampal and neocortical networks
(Buzsdki and Draguhn, 2004; Grillner et al., 2005; Yuste et al.,
2005). Synchronously active microcircuits, like the neurons that
comprise the lamprey spinal central pattern generator (CPG),
are driven through the synaptic connectivity of excitatory and
inhibitory neurons combined with intrinsic burst-terminating
electrical properties (Wallén and Grillner, 1987; Buchanan, 1993).
However, little is known about the electrical and integrative
properties of the complex dendritic architecture of lamprey spinal
neurons where synaptic- and voltage-dependent conductances
shape potentials arriving at the soma. In contrast, the integra-
tive properties of cortical pyramidal neuron dendrites and their
synaptic inputs have been extensively characterized (Spruston,
2008), while less is known about how these intrinsic properties
generate rhythmic network activity, and ultimately the behaviors
they are thought to subserve. To understand how neural networks
generate complex patterns of activity underlying behaviors, it will

be necessary to understand both the specific patterns of connec-
tivity between neurons and how individual neurons respond to
the inputs that they receive. Thus, this review seeks to merge
disparate fields of research—dendritic integration and spinal
central pattern generation. In doing so, we hypothesize that
the ionic mechanisms driven through two rhythm-generating
conductances, namely the synaptic interaction between ensem-
bles of NMDA receptors (NMDARs) and Ca?*-dependent K+
channels, may have general implications for the synchronization
of spinal to cortical networks. Thus, to explore the idea that
active dendritic properties are at the core of this behavior, we
examine in detail the lamprey spinal network and draw from
other areas of dendritic research to enhance our understanding
of what occurs at the level of the dendritic synapse to generate
behavior.

SUPRASPINAL NETWORKS IN THE BRAINSTEM INITIATE
AND MAINTAIN LOCOMOTOR DRIVE

Vertebrate locomotion is initiated and maintained by evolu-
tionarily conserved serial pathways originating in the forebrain
(Ericsson et al., 2013; Grillner et al., 2013), projecting to the
mesencephalic locomotor region (MLR; Dubuc et al., 2008)
and then to command neurons of the reticulospinal (RS) sys-
tem, which innervates the entire rostro-caudal extent of the
spinal cord, including cervical and lumbar centers in mam-
mals (Goulding, 2009), and all segmental levels in fish as well
as lamprey (Buchanan et al.,, 1987). However, following their
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activation by the brainstem, it is the circuits and neurons of
the spinal CPG (Buchanan and Cohen, 1982) that create the
complex synergy that rhythmically activates the locomotor mus-
culature (Grillner et al,, 2008). The structure of descending
commands to spinal CPGs and the synaptic connectivity of the
spinal network itself provides an opportunity to understand
how dendritic activation within behaviorally relevant circuits
underlies the astonishing complexity of vertebrate behavioral
patterns. The circuitry of the lamprey CPG is well understood
(Grillner et al., 2000, 2008) including the identities of the key
neurons (Rovainen, 1974; Buchanan and Cohen, 1982), their
neuronal targets, and neuropharmacology (Alford et al., 2003).
However, in common with most neurons, these circuit com-
ponents possess a complex dendritic morphology (Figure 1),
yet we understand little of the spatiotemporal profile of den-
dritic activation within these neurons and the role that such
patterns of activation might play in the physiological activity
of the neurons during behavior. This lack of understanding
is true for simple inputs, but particularly during goal-directed
locomotion. This is partly because tracing the spatial distribu-
tion of physiological targets of neurons is challenging, but also
because most studies of CPGs, whether in simple systems like
the lamprey, or in more complex systems such as mammals,
use isolated spinal cords and activate the networks pharmaco-
logically (Sigvardt et al., 1985; Rossignol et al., 1998; Kyriakatos
et al., 2011). This undoubtedly obscures the precise physiolog-
ically relevant spatiotemporal activation patterns of dendritic
synapses that would otherwise drive these behaviors in vivo. In
studies of spinal motor activity this has been largely overlooked
perhaps due to the strong resemblance of electrophysiological
output (i.e., fictive locomotion), or even actual movement, to
observed locomoting animals. Despite this similarity, it is cru-
cial to understand how physiological patterns of synaptic input
and intrinsic membrane electrodynamics generate rhythmic
behaviors.

THE SYNAPTIC CONNECTIVITY OF THE SPINAL CPG
NETWORK DRIVES RHYTHMIC NETWORK OSCILLATIONS
The very fluid, controlled nature of lamprey locomotion is pro-
duced after RS axons activate the local circuit neurons within
the spinal ventral horn (Figure 2). Among these neurons, col-
lectively referred to as ventral horn neurons (VHNS), the best
characterized neurons responsible for pattern generation are exci-
tatory interneurons (EINs) that provide ipsilateral, glutamatergic
excitation (Buchanan and Grillner, 1987; Buchanan et al., 1989),
while crossed caudally projecting interneurons (CCINs) provide
contralateral, glycinergic inhibition (Grillner and Wallén, 1980;
Alford and Williams, 1989). Motor neurons are the final common
output neuron of each segment, which bundle into ventral roots
(VRs) as they leave the spinal cord, before synapsing directly
onto myotomal cells of the trunk musculature (Buchanan and
Cohen, 1982). The precise, synaptic connectivity of the VHNs
within and between individual segments serves to ipsilaterally
excite (i.e., EINs), while simultaneously delivering contralateral
inhibition (i.e., CCINs; Buchanan and Grillner, 1987). This recip-
rocally inhibited network ensures that within each segment, when
one side of the trunk musculature contracts, the contralateral
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FIGURE 1 | Lamprey spinal motoneurons have a complex dendritic
architecture. (A) Schematic representation of an isolated lamprey brain and
spinal cord. Spinal motoneurons and their complete dendritic architecture
can be retrogradely labeled through an intramuscular injection of a
dextran-conjugated fluorescent dye. Labeling (green) is visible on the side
and segment of injection through axons converging into ventral roots (VRs)
and to their respective neurons. Expansion shows a single spinal segment
with multiple motoneurons labeled as in (B). (B) A 3D reconstruction of
motoneurons labeled from one spinal ventral root to emphasize the
complexity of their structure and dendritic trees. Neurons were labeled by
injecting the muscle wall of an animal with 5 pL of 5 mM Oregon Green
488 BAPTAT Dextran. After 24 h the animal was sacrificed and the spinal
cord fixed and cleared. A confocal stack was imaged to generate the full
extent of the motoneurons in one spinal segment (Viana di Prisco and
Alford, 2004).

side is inhibited. Lateral interneurons, which project ipsilaterally
to inhibit CCINSs, facilitate the relief of reciprocal inhibition
(Buchanan, 1982). However, the importance of lateral interneu-
rons in maintaining network rhythmicity has been less empha-
sized because alternating, rhythmic bursting can persist in their
absence as demonstrated by computer simulation (Wallén et al.,
1992).

Work in lamprey (Grillner et al., 1981; Brodin et al., 1985,
1988; Brodin and Grillner, 1985; Buchanan and Grillner, 1987),
Xenopus tadpoles (Dale and Roberts, 1984; Roberts and Alford,
1986), rats (Kudo and Yamada, 1987), and cats (Douglas et al.,
1993) demonstrates that spinal glutamate receptor-mediated
transmission activates and maintains locomotion. These data
are supported by recordings of excitatory postsynaptic poten-
tials (EPSPs) onto motoneurons and premotor interneurons
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FIGURE 2 | Schematic representation of the lamprey spinal central
pattern generator. (A) Spinal CPG neurons receive both ipsilateral
glutamatergic (red) input from excitatory interneurons (EINs, red) and
contralaterally projecting glycinergic inhibition (blue) from reciprocally
inhibiting, crossed glycinergic interneurons (CCINs, blue). Output of the CPG
occurs from motoneurons (green), which directly synapse onto myotomal
cells of the trunk musculature to cause muscle contraction producing

midline

ventral root
output

rhythmic locomotion. (B) Output pattern recorded using glass suction
electrodes from paired, contralateral (top vs. bottom traces) VRs showing
alternating bursting of the spinal network during rhythmic locomotion. The
reciprocally connected network described in (A) prevents excitation of the
contralateral spinal cord when the ipsilateral side is bursting for each cycle
(burst-to-burst), leading each side of the spinal cord to be precisely 180°
out-of-phase from the other (Alford et al., 2003).

(Dale and Roberts, 1985; Brodin et al., 1988; Noga et al., 2003)
and pharmacological manipulation of the resultant behaviors
(Brodin and Grillner, 1985; Dale and Roberts, 1985; Caza-
lets et al., 1992; Chau et al., 2002; Rybak et al., 2006).
This neurotransmission both directly excites neurons of the
CPG, and also activates complex non-linear membrane inter-
actions, or oscillations, in these neurons mediated by NMDAR
voltage-dependency and Ca?* permeability coupled to the
activation of Ca?*-dependent currents. The cellular processes
underlying such oscillations are believed to be central to the
coordination of locomotor behavior. In lampreys the iden-
tity of the descending glutamatergic RS command neurons is
well-defined (Dubuc et al, 2008) and similarly spinal neu-
rons that release glutamate locally within the spinal ventral
horn (i.e., EINs) have been identified (Buchanan et al., 1989;

Buchanan, 1993) as has their network role (Wallén et al,
1992).

One prominent feature of the spinal network is that it
transforms unpatterned, exogenous glutamatergic input into a
patterned, rhythmic output. The details of synaptic connectiv-
ity responsible for this phenomenon have been substantially
explored in the lamprey (Wallén and Grillner, 1987; Grillner
et al., 2001; Grillner, 2006) and the Xenopus embryo (Dale and
Roberts, 1984, 1985). More recently, work in higher vertebrates
(Masino et al., 2012) has emphasized how well conserved this
network motif is throughout the vertebrate subphylum includ-
ing lampreys, fishes, amphibians, chelonids and mammals (Dale
and Roberts, 1984; Sigvardt et al., 1985; Kudo and Yamada,
1987; Hernandez et al., 1991; Guertin and Hounsgaard, 1998;
Gabriel et al., 2009; Masino et al., 2012). After complete
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spinal transection (Cohen and Wallén, 1980; Brodin et al., 1985),
the lamprey swimming network can still generate the electro-
physiological correlates of swimming. While recording output
from pairs of contralateral VRs using glass suction electrodes,
excitatory amino acid (EAA) receptor agonists, such as kainate,
D-glutamate, or N-methyl-D-aspartic acid (NMDA; Brodin et al.,
1985; Brodin and Grillner, 1985; Wallén and Grillner, 1987),
bath-applied to an isolated spinal cord (devoid of muscle or any
other surrounding tissue) generates antiphasic bursts of activity
across the spinal midline—the phase relationship across sides
of the spinal cord is enforced by glycinergic inhibition (Cohen
and Wallén, 1980; Alford and Williams, 1989)—and the same
rostro-caudal phase lag as seen in intact behavior (Wallén and
Williams, 1984). This network behavior, termed “fictive locomo-
tion”, refers to the electrical output of the spinal CPG. Thus, the
network acts as a CPG, a term that refers collectively to centrally
located, local circuit spinal neurons that provide precise rhythmic
output from spinal motoneurons. The spinal CPG operates in
the absence of both sensory feedback from the spinal dorsal
roots or descending networks and is found in all vertebrates
(Kahn and Roberts, 1978; Forssberg et al., 1980; Roberts et al.,
1981; Sholomenko and Steeves, 1987; Delvolvé et al., 1997; Field
and Stein, 1997; Masino and Fetcho, 2005). Thus, the ability
to generate rhythmic output via network oscillations is inherent
to the spinal network itself and does not require supraspinal
control.

SINGLE NEURONS ARE INTRINSICALLY RHYTHMIC

The study of spinal neurons offers a unique insight into how prop-
erties of neural networks emerge from membrane activity at the
cellular level and provides a straightforward behavioral context—
locomotion—in which to place this activity. EAA agonists, like
NMDA, cause the membrane potential (V,,,) of individual VHNs
in isolated spinal cords to undergo repetitive oscillations that
are in-phase with the ipsilateral VR of the corresponding hemi-
segment (Sigvardt et al., 1985; Wallén and Grillner, 1987). During
the depolarized phase, the cells can fire multiple action potentials
(APs) before the cell is repolarized. This finding demonstrates
how electrical properties of single cells within a network scale to
direct the behavior of the network at large. Most VHNSs oscillate
in NMDA driven by phase-appropriate synaptic excitation from
EINs and subsequent hyperpolarization from CCINs (Buchanan
and Cohen, 1982). However, when tetrodotoxin (TTX) is applied,
spiking is abolished, while the underlying V,, oscillation persists
(Wallén and Grillner, 1987). Since TTX pharmacologically iso-
lates the recorded neuron by preventing synaptic communication
within the network, the cell then oscillates with tonic exposure
to NMDA. This phenomenon, termed NMDA-dependent, TTX-
resistant oscillations (NMDA-TTX oscillations), is seen in most
lamprey VHNs. This demonstrates that spinal neurons show
intrinsic membrane properties that are capable of hyperpolarizing
the cell during constant depolarizing challenge from an agonist.
The net effect is to produce V,, oscillations. Removal of Mg?*+
from the perfusing Ringer’s solution abolishes the oscillation
and causes the neurons to remain at depolarized potentials
because Mg?* confers voltage-sensitivity to the NMDAR (Wallén
and Grillner, 1987). Thus, the intrinsic membrane property of

spinal neurons that causes oscillations is subject to the voltage-
dependency of Mg?* block of the NMDAR.

More generally within the nervous system, NMDARs have
been well characterized as non-specific cation channels permeable
to Nat K¥, and Ca?t (MacDermott et al., 1986; Ascher and
Nowak, 1988). More recently, NMDAR-dependent Ca’* entry
has been demonstrated to be integral to dendritic computation
(Branco et al., 2010) through regenerative “NMDA spikes” in
pyramidal neurons (Schiller and Schiller, 2001; Larkum et al.,
2009) with roles spanning from the induction of synaptic plas-
ticity (Alford et al., 1993) to behavior (Smith et al., 2013b). In
lamprey VHNs, removal of Ca** from the ringer and replacement
with Ba** (an equivalent divalent cation which can also permeate
Ca’* ionophores) during NMDA-TTX oscillations causes the cell
to become similarly trapped at a depolarized V,,. Thus, Ca** is
necessary to hyperpolarize the cell from the depolarized state.
Ca’* activates myriad Ca*>*-dependent proteins. In particular,
VHNSs contain Ca?*-dependent K* channels (El Manira et al.,
1994; Wall and Dale, 1995; Han et al., 2007; Li and Bennett,
2007), which upon binding Ca’*, rapidly open a K channel
that hyperpolarizes the cell. This “excitation-inhibition coupling”
is a mechanism that effectively allows the cell to “turn off”
autonomously following activation.

The Ca**-dependent K channel of the Kc,2 subtype (for-
merly SK2 (Wei et al., 2005)) participates in two distinct processes
in lamprey VHNs both of which are integral to the behavioral
locomotor output of the spinal cord. Its most well-described
role follows the AP when depolarization activates N- and P/Q-
type (Wikstrom and El Manira, 1998) voltage-gated Ca®* chan-
nels (VGCCs) and the entering Ca?* activates Kc,2 channels
to cause an afterhyperpolarization (AHP; Figure 3; Hill et al.,
1992; Meer and Buchanan, 1992). The AHP can be divided into
fast, medium and slow subcomponents, of which the medium
AHP (mAHP) is mediated by Kc,2 channels (Bond et al., 2004).
Due to slow kinetics (decay time constant of ~200 ms), the
mAHP mediates spike frequency adaptation, the reduction in
spike frequency from repeated spiking, by raising the relative
threshold for subsequent AP generation due to an increase in
K* conductance. Blockade of Kc,2 channels with the selective
antagonist, apamin, increases spike frequency from intracellular
current pulses (Meer and Buchanan, 1992; Diaz-Rios et al., 2007;
Jones and Stuart, 2013). Kc,2 channels are extremely important
for regulating neuronal firing, conserved among different species
and cell types (Meer and Buchanan, 1992; Sah and Bekkers, 1996;
Marrion and Tavalin, 1998; Wikstrom and El Manira, 1998; Faber
and Sah, 2002; Bloodgood and Sabatini, 2007; Jones and Stuart,
2013).

The second role for Kc,2 lies in the plateau termination
and membrane repolarization during NMDA-TTX oscillations
(Figure 3). The ionic mechanism driving V,, oscillations
is well-characterized and is hypothesized to proceed as: (1)
NMDAR activation depolarizes VHNS; (2) increasing NMDAR
conductance by ejecting Mg?>* from the pore; (3) causing further
depolarization and Ca®* entry via the NMDAR as the V,,
plateaus; (4) which activates Kc,2 channels to hyperpolarize
the cell; and (5) ending the depolarized plateau to repolarize
the cell where it can repeat the cycle (Wallén and Grillner,
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FIGURE 3 | Repolarizing Kca2 channels are spatially segregated in
lamprey spinal VHNs according to their function and mechanism of
activation. (A) Top: An isolated lamprey CNS can be used to study the
brain and spinal circuits controlling locomotion. Pressure-ejection of
l-glutamate into the lamprey mesencephalic locomotor region (MLR)
induces short episodes of fictive locomotion, the electrophysiological
correlate of locomotion. Using a dual-pool recording chamber,
pharmacological agents can be selectively applied to the spinal cord,
without interfering with descending commands originating in the brainstem
that initiate and maintain locomotion. Locomotor bursts are recorded
directly from left and right VRs. Bottom: A long locomotor episode with
(Continued)

FIGURE 3 | Continued

regular, alternating bursts (control) follows after a puff of glutamate into the
MLR (arrow, glutamate). Blockade of Kc,2 channels with the selective
antagonist, apamin, decreases the burst frequency and disrupts the
alternating locomotor rhythm. This demonstrates the necessity of Kc,2
channels for correct alternation and regularity of the locomotor rhythm
(Nanou et al., 2013). (B) The effect of Kc,2 channel blockade on locomotion
can be explained by the role the channel plays at the cellular level. Within
VHNSs, Kca2 currents may be evoked either at synapses (top left) whereby
synaptic release of glutamate activates NMDAR-mediated Ca%* entry and
thereby closely located Kca2 channels. It is this Kca2-mediated current that
is critical for the termination of NMDA-TTX oscillations (blue portion of
trace) shown below recorded from somatic microelectrode recordings.
Kca2-mediated currents are also responsible for the mAHP seen following
action potential firing shown at bottom left. However, this current is

activated following Ca®* entry from VGCCs.

1987). Selective blockade of Kc,2 channels with apamin (El
Manira et al., 1994) or UCL 1684 (Alpert and Alford, 2013)
prolongs the oscillation, and can even abolish the oscillation
completely. The cell becomes trapped in a depolarized state,
similar to extracellular Ca?t removal, the substitution of Ca*t
for Ba*t, or non-specific blockade of K* channels (Grillner
and Wallén, 1985; Grillner et al., 2001). Thus, Kc,2 channels
are necessary for rhythmogenesis (Figure 3) in lamprey VHNs
by supplying a cell-autonomous repolarization, or “off signal”,
without the need of network inhibition (Nanou et al., 2013).

DENDRITIC Ca2* SIGNALING IS DYNAMIC AND
DETERMINED BY CELLULAR AND MICROCIRCUIT
PROPERTIES

Kc,2 channels within a single neuron have more than one distinct
computational role. Two have been identified in lamprey VHNs,
both subject to intracellular Ca** dynamics. Such a functional
sub-specialization may be explained both by distinct spatial loca-
tions of channel expression and the adequate spatial and func-
tional coupling to distinct sources of Ca?* contributing to Kc,2
activation (Figure 3). Indeed, N- and P/Q-type (Wikstrom and
El Manira, 1998) VGCCs are activated during the AP in lamprey,
triggering Ca®" entry that activates Kc,2 channels underlying the
mAHP. However, the mAHP activated by somatic current injec-
tion is unaffected by NMDA application (Hill et al., 1989). This
distinct separation between mAHP activation and NMDA-TTX
oscillation repolarization can be explained by NMDAR-generated
Ca’* entry occurring in spatially distinct cellular sub-regions
from VGCC-generated Ca** entry during the AP. Across different
species and neuron types, the precise subtypes of VGCCs can
differ, but to mediate the mAHP, K¢c,2 channels must be suffi-
ciently close to VGCCs to be activated by their Ca’* permeation.
Similarly, K¢, 2 channels mediating repolarization during NMDA-
TTX oscillations should be coupled to a distinct Ca®>* source, or
a Ca’" source in a distinct subcellular location. The two likely
candidates for the latter are NMDARs and VGCCs (Wallén and
Grillner, 1987)—located separately from those responsible for
the mAHP (Hill et al., 1989)—while Ca®T released from internal
stores might also contribute. NMDAR activation is necessary to
initiate oscillations, but as they lead to membrane depolarization,
this may subsequently activate VGCCs. However, release from
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internal stores likely contributes little because their depletion has
no effect on NMDA-induced swimming (Krieger et al., 2000)—
a behavior to which NMDAR-dependent intrinsic oscillations
contribute. The subcellular location of K¢,2 channels responsible
for the repolarization may also be critical because physiological
NMDAR activation requires the presynaptic release of glutamate,
which occurs only at synapses. Determining the route of Ca**
entry for repolarization of the oscillation is important for under-
standing how distinct Ca?* domains and their coupling to K¢,2
channels impacts computation both within individual neurons
and between synaptically connected neurons.

The spatial and temporal patterning over which dendritic
Ca?* signaling occurs in spinal motor system VHNs during loco-
motion in lamprey (or in other vertebrate systems) is unknown.
Do many dendrites receive synchronous input from their various
synaptic partners? Does input occur in discrete spatial locations?
The location and timing of synaptic input is crucial for the trans-
mission of potentials arriving at the soma, which will greatly influ-
ence neuronal output (Larkum et al., 1999; Stuart and Hausser,
2001; Jarsky et al., 2005). Indeed, dendritic mechanisms that
are location-dependent and rely on clustered NMDAR-dependent
input generate plateau potentials and can change the mode of cell
firing (Major et al., 2008; Augustinaite et al., 2014; Grienberger
et al., 2014). Elucidating this pattern within lamprey spinal neu-
rons will inform how the location and timing of Ca®* entry leads
to Kca2 channel activation, and furthermore, how synaptic activ-
ity distributed across a dendritic tree is integrated to produce cell
rhythmicity. This, in turn, will facilitate our understanding of how
intrinsic membrane properties combined with synaptic input
causes synchronization between neurons of the CPG. Neuronal
Ca’* signaling can have distinct spatial components, easily iden-
tifiable using Ca’* imaging. APs will lead to Ca>* entry wherever
VGCCs are driven above threshold, and can cause many regions
of a cell (e.g., soma and proximal dendrites) to show synchronized
increases in intracellular Ca?t (Ca®*;). In contrast, local Ca®*
signaling domains (i.e., micro- and nano-domains) in dendrites
can occur following neurotransmitter receptor activation (e.g.,
NMDAR), but also from VGCCs following depolarization from
local synaptic potentials (Augustine et al., 2003). Synaptic signals
are remarkably localized, confined to individual dendritic spines
or discrete areas in dendritic shafts. For this reason, Ca** imaging
can directly identify active synapses. Each type of Ca** signaling
domain may be considered to be a distinct processing unit within
a neuron because Ca’* signals can regulate local Ca?*-dependent
processes precisely where free Ca?T levels transiently escape local
buffering. However, Ca’* signals exceeding this local threshold
are transient—Ca’" is rapidly buffered by Ca** -binding proteins,
and then extruded via membrane pumps, or sequestered in intra-
cellular stores (Augustine et al., 2003; Berridge, 2006). This places
temporal and spatial restrictions on diffusion of Ca** within
neurons and is an important consideration when assessing the
degree of localization. Dendritic morphology, like the presence of
spines (~1 pm in length), is a large determinant for the extent
of spread of Ca?" because diffusion is restricted at the spine
neck (Nimchinsky et al., 2002). Lamprey spinal neuron dendrites
lack spines, but still posses fine compartments along dendritic
shafts (~10 pwm, see Figure 1; Viana di Prisco and Alford, 2004;

Alpert and Alford, 2013) that may theoretically serve a similar
purpose—the local restriction of the flow of ions and intracellular
messengers (Svoboda et al., 1996). Thus, morphology and the
intrinsic properties of the dendritic membrane impacts Ca’*"
dynamics and the integration of electrical and chemical signals.

The functional distinction between global and local Ca?*
signals and their associated topography is integral to single neu-
ron computation necessary to generate rhythmic activity. The
synaptic localization of Ca?* signals may represent the encoding
of distinct presynaptic information. Global, synchronized Ca**
signals can be generated by back-propagating action potential
(bAP)-driven VGCC activation in dendrites (Schiller et al., 1997;
Stuart et al., 1997; Svoboda et al., 1997). When Ca?*; is ele-
vated during these events, the number of parallel computations
being performed by the dendritic arbor is effectively reduced.
In contrast, local and spatially distributed NMDAR-dependent
synaptic Ca** signals reflect multiple discrete, simultaneous
computations (Chen et al,, 2011). Each synapse can thus be
understood to be its own computational unit, capable of being
selectively tuned to support distinct information arriving within
a network.

Multiple, distinct routes can lead to Ca®* entry. In behav-
ing neurons within some networks, these mechanisms may
work in concert, leading to nonlinear interactions between ion
channels and Ca®* sources when occurring simultaneously. For
instance, following presynaptic release of glutamate, AMPA recep-
tors (AMPARs), NMDARs and metabotropic glutamate receptors
(mGluRs) may be activated in the postsynaptic compartment.
AMPARs are responsible for fast depolarization, and can locally
activate nearby VGCCs to cause Ca’t entry. Local depolariza-
tion, or depolarization induced from bAPs can alleviate Mg?"
block of the NMDAR, facilitating Ca*" influx during concurrent
and subsequent release of glutamate at that synapse (Yuste and
Denk, 1995; Nevian and Sakmann, 2004; Bloodgood and Sabatini,
2007). During bAPs, layer 5 pyramidal neurons have been shown
to require tight spatial coupling between Ca’* entry through
R-type channels and Kc,2 channels in proximal dendrites and
spines (Jones and Stuart, 2013). Group I mGluR activation can
lead to the release of Ca?* from internal stores (Frenguelli et al.,
1993; Kettunen et al., 2002; Larkum et al., 2003; Topolnik et al.,
2009; Plotkin et al., 2013). Release from internal stores has been
shown to activate Ca>*-dependent KT channels in many neurons
and species (Kawai and Watanabe, 1989; Akita and Kuba, 2000;
Yamada et al., 2004; Faber, 2010; Nakamura and Yokotani, 2010).
It is unknown if such combinatory mechanisms are present in
lamprey spinal neurons, but lamprey neurons do possess all the
necessary components. Indeed, specific agonists and antagonists
acting on discrete components have well-described cellular and
network effects (Alford et al., 2003). Any modulation of Ca**
entry, either increasing or decreasing, within close proximity to
Kca2 channels, could impact subsequent channel activation and
particular effects on the locomotor behavior. For example, an
enhancement of Ca?" could lead to early burst termination—
an effect that, if it were to occur within many neurons simulta-
neously, would scale to the behavioral level to terminate muscle
contraction earlier within the locomotor cycle. Upon repeated
enhancements in Ca?*, during rhythmic activity, this could
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facilitate a fast swimming rhythm. Defining their roles while
acting in concert is necessary to delineate how Ca’* entry and
Kca2 activations drives oscillation generation.

The location of Ca?* entry and the distance to its secondary
effectors determines the efficacy with which Ca?* will reach its
target (Marrion and Tavalin, 1998). If the site of Ca?* entry is
located far from Kc,2 channels, then the probability of Ca**
binding to a Kc,2 channel is diminished compared to its binding
to other endogenous buffers that are located more proximally
or are cytosolic and diffusible. Thus, a larger Ca?* signal will
be necessary to outcompete endogenous buffers. Conversely, if
Kca2 channels are located close to the site of Ca** entry, then
depolarization will be quickly and locally counteracted by K*
activation. For K¢,2 channels to generate the mAHP, they must be
sufficiently close to the site of Ca®* entry generated by AP-driven
VGCC activation. This functional coupling has been demon-
strated in numerous species and cell types (Sah and Bekkers,
1996; Marrion and Tavalin, 1998; Wikstrom and El Manira,
1998; Faber and Sah, 2002; Bloodgood and Sabatini, 2007; Jones
and Stuart, 2013). At present, the distance between the site of
Ca’" entry and Kc,2 channels can only be estimated based on
differences between BAPTA and EGTA-mediated occlusion of
Kca2 activation in lamprey spinal VHNs. The range has been
estimated to be between 20 and >200 nm in multiple CNS
neuron types depending on the target’s affinity for Ca®* (Fakler
and Adelman, 2008). A recent measurement has suggested that
Kca2 channels activated following APs exhibit weak coupling to
VGCCs, as they are occluded by EGTA, the slow Ca’* buffer
(Kforwara = 1.5 X 10° M~!s7!) (Roberts, 1993), placing the
separation at greater than ~100 nm in neocortical pyramidal
neurons (Jones and Stuart, 2013). Occlusion of K¢,2 channel
activation from NMDAR-dependent Ca?* entry using BAPTA,
the fast Ca?* buffer (Kppyara = 6 x 108 M~'s™!) (Roberts,
1993), demonstrates a narrow range of 20-50 nm (Ngo-Anh
et al.,, 2005), with experiments in lamprey suggesting similar
degree of coupling (Alpert and Alford, 2013; Nanou et al.,
2013).

For Kc,2 channels to repolarize NMDA-TTX V,, oscillations,
they must be activated by NMDAR-dependent Ca’>* entry. The
subcellular expression of ion channels, including Kc,2 chan-
nels, is unknown in lamprey, while some spatial information
has been detailed for mammalian hippocampal neurons. Kc,2
channel immunoreactivity demonstrates channel expression on
dendritic spines in CAl pyramidal neurons (Sailer et al., 2004;
Ballesteros-Merino et al., 2012) in addition to shafts and soma
in cultured mice hippocampal neurons (Ngo-Anh et al., 2005).
Recently, however, using single-molecule atomic force microscopy
with unprecedented spatial resolution (<10 nm (Miiller et al.,
2009)), Kca2 channels were shown to be in high concentration
in the dendrites relative to the soma of live, cultured hippocampal
neurons (Maciaszek et al., 2012). Functional evidence for com-
plexes of NMDARs and Kc,2 channels has been demonstrated
in many species and cell types. NMDAR-mediated field poten-
tials are potentiated by apamin in CA1l hippocampal pyramidal
neurons (Gu et al., 2008). Direct NMDA application leads to
an inward current followed by an apamin-dependent outward
current (Shah and Haylett, 2002; Nanou et al., 2013). Apamin

potentiates both synaptically evoked NMDAR EPSPs on CAl
dendrites, while also potentiating apical spine Ca’" transients
(Ngo-Anh et al,, 2005). However, it was later demonstrated
using 2-photon glutamate uncaging that Ca’™ entry via R-
type VGCCs is necessary and directly coupled to Kc,2 channels
at these spine synapses, whereas NMDAR-dependent Ca’* is
insufficient to activate Kc,2 channels (Bloodgood and Sabatini,
2007). This discrepancy was recently reconciled with experiments
demonstrating that K4.2-containing channels and NMDARs are
differentially coupled to R-type VGCCs and NMDARs, respec-
tively (Wang et al., 2014b). Furthermore, Kc,2 channel activa-
tion by NMDAR-induced spine Ca?* transients is also occluded
by BAPTA, but not by EGTA, indicating a very close physical
coupling of the route of Ca’* entry and the Kc,2 channel
(Ngo-Anh et al., 2005)—a similar role for NMDARs and Kc,2
channel is also demonstrated in the lateral amygdala (Faber
et al., 2005) and in layer 5 neocortical pyramidal neurons
(Faber, 2010). Furthermore, overexpression of Kc,2 channels
depresses synaptically evoked glutamatergic EPSPs (Hammond
et al., 2006). Due to the role of NMDAR-dependent Ca?* entry
in synaptic plasticity, blockade of Kc,2 channels facilitates the
induction of LTP (Stackman et al., 2002) because this, in turn,
facilitates Ca’* entry through NMDARs, presumably by aug-
menting depolarization. Similarly, downregulation of Kc,2 chan-
nels is necessary for amplification of dendritic responses in a
compartment- (Ohtsuki et al., 2012) or synapse-specific (Lin
et al., 2008) manner, partially explaining the subsequent poten-
tiation of current.

Thus, the very precise subcellular targeting of Kc,2 channels
to ion channels responsible for Ca®* transients (demonstrated
by sensitivity to rapid Ca?* binding by BAPTA) will profoundly
impact cell firing rates, dendritic integration, and processing
both in real-time during individual cycles of locomotor activity,
but also in the long-term. The molecular complexing of Ca**
sources to secondary effector proteins, like Kc,2 in lamprey,
will consequently impact spike-timing through activation of the
mAHP (Buchanan and Grillner, 1987; Wallén and Grillner, 1987;
Alford and Williams, 1989; Wallén et al., 1989; Hill et al., 1992;
Hochman et al., 1994; Wall and Dale, 1995; Buchanan, 2001;
Harris-Warrick, 2002; Wang, 2010) in addition to burst termi-
nation (El Manira et al., 1994; Alpert and Alford, 2013; Nanou
et al,, 2013) during NMDAR-dependent rhythmic activity. These
intrinsic membrane properties have direct consequences on spinal
neuron output, and hence the locomotor pattern generation of
the spinal network.

EVIDENCE FOR A DENDRITIC MECHANISM OF INTRINSIC
OSCILLATIONS IN THE CNS

In lamprey VHNS filled with a Ca?T-sensitive dye, Ca®T; oscil-
lates in-phase with VR bursts and V,, oscillations, varying with
different NMDA-induced swimming speeds (Bacskai et al., 1995;
Viana di Prisco and Alford, 2004). In contrast, during activ-
ity that was subthreshold to action potential firing, the soma
showed no Ca’* fluctuations, while the dendritic fluorescence
oscillated in-phase with the V,,, with the largest oscillations in
Ca’*; found in the distal dendrites. When spiking, the somatic
Ca’* then showed spike-dependent activity, which is in-phase
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with V,, oscillations because spiking occurs at the depolarized
phase of activity. However, despite spikes also elevating dendritic
Ca’* signals, the largest increases in fluorescence occurred in
the soma, likely reflecting somatically localized VGCC activation
(Viana di Prisco and Alford, 2004). The elevated dendritic signals
could be due to dendritic VGCC activation, enhanced NMDAR
conductance due to local depolarization from bAPs, or both. The
phase relationships of the Ca?* oscillations in dendrites relative
to V,, oscillations suggest that these Ca?* signals are responsible
for K¢,2 activation, and hence repolarization of the membrane.
This result along with experiments discussed earlier (Grillner
and Wallén, 1985; Wallén and Grillner, 1987) provide substan-
tial evidence that NMDAR-dependent Ca>* entry underlies the
repolarization of V,,, oscillations.

Results from experiments in which the spinal CPG is activated
by application of exogenous NMDA also imply that rhythmic
V,, oscillations are driven by phasic Ca** oscillations that are
synchronized across large regions, if not all, of the dendritic tree
(Figure 4). However, during bath-application of NMDA, both
synaptic and extrasynaptic NMDARs are activated and thus the
dendritic Ca?* signals are likely to be much less spatially and
temporally constrained than signals driven during physiologi-
cally evoked locomotion. This forces the concerted activation
of all NMDARs when the dendritic membrane is depolarized,
which would consequently synchronize all parts of the neu-
ron. Thus, it is unclear if during NMDA-evoked locomotion
whether network synchrony is driven by synchronized presy-
naptic activity caused directly by bath-applied NMDA, or if
rhythmicity emerges from more physiologically derived synap-
tic integration of distributed input and is then transformed
into well-defined V,, oscillations. Similarly, the spatiotempo-
ral profile of dendritic activation and Ca’" signaling underly-
ing membrane potential oscillations during locomotion remains
unknown. This profile will, however, be particularly important for
understanding how membrane properties drive the activity of the
network.

Synchronized oscillations are widespread in the CNS. While
critical for the generation of motor rhythms, they are key compo-
nents of many neural systems. In the neocortex and hippocampus,
oscillations at the cellular level are correlated with synchrony
at the network level (Contreras and Steriade, 1995) and are
thought to underlie cognitive processes such as working memory
(Llinds, 1988), spatial navigation, and memory encoding (Buzsaki
and Moser, 2013). Both theoretical approaches and experimental
evidence suggest that the cellular basis for working memory
relies upon persistent firing of networks generated by recurrent
synaptic excitation of NMDARs due to its slow kinetics and
voltage-dependency (Lisman et al., 1998; Wang, 2001) conferring
bistability (Durstewitz et al., 2000). NMDA-TTX oscillations are
also found in midbrain dopamine neurons (Johnson et al., 1992;
Deister et al., 2009) cat neocortical pyramidal neurons (Flatman
et al., 1986), rat inferior olivary neurons (Placantonakis and
Welsh, 2001), Xenopus RS neurons (Li et al., 2010), guineau pig
and rat trigeminal motor neurons (Kim and Chandler, 1995;
Hsiao et al., 2002), and rat and cat thalamocortical neurons
(Leresche et al., 1991), demonstrating a similar intrinsic oscilla-
tory mechanism to lamprey spinal neurons.

fluorescence
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i
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FIGURE 4 | NMDA-evoked, TTX-resistant oscillations in lamprey VHNs
show simultaneous oscillations in Ca?* throughout the dendritic tree.
(A) VHN neurons were labeled with the Ca?*-sensitive dye, Oregon Green
488 BAPTA1, by pressure injection from a recording microelectrode and
recorded during oscillations evoked by application of NMDA (100 M) in
TTX (1 wM). Pseudocolored, raw images are shown from the trough of the
hyperpolarization (left, denoted by # in (C)) and the peak of depolarization
(right, denoted by * in (C)). Colored numbers and arrows point to discrete
regions of interest whose fluorescence measurements are shown in (C).
Fluorescence intensity scale shown to the right. (B) Current clamp
recording of the membrane potential oscillations. (C) Simultaneous to the
membrane potential oscillations in (B), Ca?* recorded using the fluorescent
dye Oregon Green 488 BAPTA1 shows transient increases in concentration
in the dendrites. In the proximal dendrites, the oscillations are above a
higher baseline Ca?* evoked by NMDA application than that recorded in the
distal dendrites, however, all recorded regions of the dendrites exhibit
these Ca?* oscillations. All Ca?t fluorescence is normalized to the
fluorescence at rest prior to the application of NMDA. The regions recorded
are indicated by colored numbers in (A) and (C) (Alford et al., 2003).

Although arrangements involving NMDARs and Kc,2 chan-
nels have been shown in many other systems and synapses, their
functions have not been expressly linked to specific behaviors or
to rhythm generation, but rather have been proposed to serve a
more generalized mechanism for tempering synaptic potentials
and synaptic plasticity (Shah and Haylett, 2002; Stackman et al.,
2002; Maher and Westbrook, 2005; Ngo-Anh et al., 2005; Gu
et al., 2008; Lin et al., 2008; Faber, 2010; Harvey-Girard and
Maler, 2013). Apamin or intracellular dialysis with BAPTA pro-
longs glutamate-induced plateau potentials and Ca** transients
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in CAl pyramidal neuron distal apical dendrites (Wei et al.,
2001; Cai et al., 2004), but these plateau potentials are pro-
duced through a combination of R-type VGCCs, NMDARs and
bAPs (Takahashi and Magee, 2009), and thus does not explic-
itly link Ca®* entry via NMDARs to Kc,2 activation. NMDAR-
dependent activation of Kc,2 channels at layer 5 pyramidal
neuron synapses (Faber, 2010) indicates the necessary compo-
nents are present, but the mechanism of dendritic oscillation
generation has yet to be explored. Recently, a dendritic mech-
anism for synchronizing spatially disparate synaptic input has
been described in CAl pyramidal neurons, which has implica-
tions in the synchronization of hippocampal networks (Vaidya
and Johnston, 2013). In lamprey spinal neurons, the nonlinear
dynamics of the NMDAR combined with its spatial coupling
to Kc,2 channels confers V,, bistability, enabling these neurons
to be oscillators to synchronize spinal networks for rhythmic
locomotion.

EVIDENCE FOR CLOSE COUPLING OF NMDARs AND K¢,2
CHANNELS

If NMDARSs are the primary route of Ca?* entry necessary for
repolarization, then synaptically activated NMDARs will evoke
highly localized Ca*™ entry within spinal neuron dendrites,
and this Ca’* must be located sufficiently close to Kc,2 chan-
nels to activate an outward current. EIN stimulation causes
localized, NMDAR-dependent Ca’** entry in VHN dendrites
(Alpert and Alford, 2013). NMDAR EPSCs are sufficient to
activate Kt currents, which are blocked by the Kc,2 blockers,
apamin and UCL 1684, or following whole cell dialysis with
BAPTA. In contrast, EGTA dialysis is ineffective at preventing
Kca2 activation (Nanou et al., 2013). Furthermore, BAPTA also
prevents repolarization from depolarized plateaus in oscillating
neurons induced by NMDA in TTX, whereas those dialyzed
with EGTA are able to repeatedly repolarize (Alpert and Alford,
2013). Since BAPTA, but not EGTA, occludes the binding of
Ca*t to secondary effectors, presumably K¢,2, the channel must
be located physically close to the site of Ca’* entry (Marrion
and Tavalin, 1998; Ngo-Anh et al., 2005; Fakler and Adelman,
2008).

Any possible role for VGCCs in directly providing Ca®*
to drive the repolarization is somewhat limited by the volt-
age threshold of activation relative to the V,, oscillation range.
Lamprey VHNSs contain multiple subtypes of VGCCs includ-
ing N-, P/Q-, and L-type channels with varying contributions
to depolarization-evoked whole-cell currentsl (El Manira and
Bussieres, 1997) and presumably distinct cellular localizations
(Llinés and Yarom, 1981; Llinds, 1988; Westenbroek et al., 1990,
1992; Mills et al., 1994; Isope et al., 2012). In cultured lamprey
spinal neurons, N- and P/Q-type channels account for ~75%
of the total whole cell VGCC current, while L-type current
contributes ~15% with the residual Ca?* current uncharac-
terized, but sensitive to Cd**t, the non-specific VGCC blocker
(EI Manira and Bussieres, 1997). However, these values are likely
impacted by reduced dendritic arbors in culture and space clamp
issues common to somatic recordings. Cd>* abolishes whole-cell
current in situ, yet NMDA-TTX oscillations persist in Cd**
(Alpert and Alford, 2013), while simultaneous Ca?*; oscillations

are insensitive to selective blockade of N- and P/Q-type VGCCs.
L-type channels couple to Kc,2 channels in hippocampal pyra-
midal neurons (Marrion and Tavalin, 1998), while Ca?>* imaging
suggests that this coupling may exist in a subset of dendritic loci
in lamprey (Wang et al.,, 2013) because modulation of L-type
channels impacts Ca?* oscillations and the V,, oscillation wave-
form (Wang et al., 2014a). The current-voltage (I-V) relationship
of VGCCs in VHNs shows minimal activation at —60 mV, with
significant activation occurring between —40 mV and —30 mV,
peaking between —10 and 0 mV (El Manira and Bussieres,
1997; Alpert and Alford, 2013). Interestingly, the same V,,, where
VGCCs become activated, —40 mV, is also the peak plateau poten-
tial reached during membrane potential oscillations in NMDA
(Alpert and Alford, 2013). Thus, for the majority of VHNS, the
neurons oscillate subthreshold to the VGCC activation thresholds
except for the initial transient peak of the oscillation amplitude.
Indeed, NMDA application reveals a depolarizing step-evoked
inward current that occurs within the V,, oscillation range at
substantially more hyperpolarized V,,s than currents mediated by
VGCCs in these neurons. Similarly, Ca?*-imaging indicates that
Ca*" entry within the oscillation range is robustly potentiated
and dominated by NMDAR-dependent Ca** entry (Alpert and
Alford, 2013). During voltage steps in NMDA, biphasic currents
are generated. This NMDA-induced inward current followed by
an outward current is present within the oscillation range (i.e.,
below —40 mV) and blocked by BAPTA, but not EGTA, again
reflecting a close functional coupling between NMDAR current
and presumably K¢,2 channel activation leading to the outward
current. Therefore, both V,, and Ca?T; oscillations are driven
through a dendritic mechanism requiring closely apposed ensem-
bles of NMDARs and Kc,2 channels and little contribution of
Ca** from VGCCs.

DENDRITIC STRUCTURE AND SYNAPTIC INTEGRATION OF
PRESYNAPTIC MICROCIRCUITRY OF VENTRAL HORN
NEURONS

In general, the origin of presynaptic input, synapse location
within the dendritic tree, and electrotonic distance to soma
informs the computation performed by the postsynaptic neuron.
Spatially and anatomically compartmentalized dendritic targeting
by presynaptic axons is found in many vertebrate neural circuits
including the tectum (Bollmann and Engert, 2009), hippocam-
pus (Pouille and Scanziani, 2004; Jarsky et al., 2005), neocortex
(Weiler et al., 2008; Anderson et al., 2010), and cerebellum (Ito,
2006; Gao et al., 2012). Variability in presynaptic activity can lead
to variation of the topology of Ca?" signaling postsynaptically
where it may be encoded predictably onto distinct dendritic
compartments (Bollmann and Engert, 2009; Xu et al., 2012).
In other instances, Ca*>* signaling is unpredictably encoded and
may demonstrate extremely heterogeneous expression of activ-
ity, even at neighboring synapses (Chen et al., 2011). Global
Ca’* signals generated by AP-induced VGCC activation may
appear qualitatively similar to those generated from convergent
presynaptic activation leading to a global rise in Ca?*. However,
the computation performed by a neuron is distinct, depend-
ing on the modality of Ca’* signaling. Somatic signals pro-
vide intrinsic information about cell firing, while local, synaptic
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signals inform about the spatial and functional connectivity of
the network and its activation state. Indeed, the computational
ability of a neuron’s dendrites is intimately tied to and ultimately
informed by presynaptic inputs, whose activity leads to discern-
able behavioral functions postsynaptically (Jia et al., 2010). In
hippocampal and neocortical pyramidal neurons, neighboring
dendritic synapses are more likely to be activated synchronously
than synapses spaced further apart (Kleindienst et al., 2011;
Takahashi et al., 2012). This functional clustering is NMDAR-
dependent and likely due to synchronized and convergent tar-
geting of multiple presynaptic axons projecting to the recorded
neurons, rather than a single presynaptic axon making multiple
contacts. Such functional clustering may be important for circuit
orchestration during development (Kleindienst et al., 2011) and
experience-dependent synaptic plasticity (Makino and Malinow,
2011). Furthermore, NMDAR activation is essential for nonlinear
boosting of temporally and spatially integrated synaptic potentials
(Polsky et al., 2004). Synaptic potentials arriving at the soma
from discrete synaptic events can vary according to degree of
clustering (Losonczy and Magee, 2006) and the direction and
velocity of synaptic input along single dendritic branches (Branco
et al., 2010). The patterning of synaptic input has profound
consequences on Ca’T; and this “within dendritic branch” form
of computation is NMDAR-dependent. Furthermore, synaptic
plasticity—the Ca?* -dependent change in strength of a synapse—
can occur selectively at a single synapse (Matsuzaki et al., 2004;
Enoki et al., 2009; Makino and Malinow, 2011). Thus, postsy-
naptic responses to Ca’*, and hence dendritic computational
capacity (Poirazi and Mel, 2001), are highly dynamic and depend
on presynaptic input and subsequent post-synaptic Ca?* signals
as well as the function of the circuit in which the neuron is
embedded.

Discrete targeting provides neurons with more processing
power (Hidusser and Mel, 2003; Polsky et al., 2004) by integrating
origin-specific, segregated streams of presynaptic information.
This is further enhanced as the location and expression of var-
ious voltage-gated ion channels and synaptic receptors varies
between different types of neurons but also subcellularly, between
different regions of a single neuron (Migliore and Shepherd,
2002; Williams and Stuart, 2003; Jones et al., 2014). Such circuit
and dendrite dynamics may also be present in spinal networks
controlling movement. A well-defined topographic map of spinal
motoneuron recruitment in larval zebrafish proceeds from the
ventral to dorsal spinal cord as swimming frequency increases
(McLean et al.,, 2007) and neurons are recruited functionally
according to intrinsic rhythm-generating capabilities and require-
ment for presynaptic oscillatory synaptic drive (Menelaou and
McLean, 2012). However, the interneurons that drive motoneu-
ron recruitment demonstrate more complex activation patterns
(McLean et al., 2008). The spatial targeting of motoneuron or
interneuron dendrites and the integration of synaptic inputs con-
ferring rhythmicity have yet to be defined, but dendritic filopodial
activity follows a topographic pattern that maps (Kishore and
Fetcho, 2013) onto their recruitment order (McLean et al., 2007)
and subsequent electrical activity level, delineating behavioral
function to dendrites located in discrete regions along the dorso-
ventral axis. Thus, the location and targeting of specific dendritic

subregions by spatially defined presynaptic neurons may suggest
a functional role for individual dendritic branches (Wei et al.,
2001; Poirazi et al., 2003; Branco and Héusser, 2010), or perhaps
even synapses (Jia et al., 2010), in the output of a given motor
neuron.

Dendrite distribution has been shown to differ for motoneu-
rons innervating distinct muscles in the chick spinal cord (Okado
et al., 1990). Mice motoneuron dendrites are genetically oriented
to particular spinal territories, which influence the connectivity
patterns of their proprioceptive afferent inputs (Vrieseling and
Arber, 2006). The targeting of dendrites into specific lamina
provides distinct opportunities for different classes of presynaptic
excitatory and inhibitory interneurons to also target different
dendritic regions (Kosugi et al., 2013). Drosophila motoneu-
ron dendrites are topographically organized whereby individual
neurons genetically target their dendrites to precise anatomi-
cal territories centrally, representing their muscle distribution
peripherally (Landgraf et al., 2003; Brierley et al., 2009). Within
a single dendritic tree there can be a heterogeneous patterning of
excitatory synapses (Mauss et al., 2009) and, furthermore, distinct
dendritic subtrees can target discrete regions of the neuropil
(Vonhoff and Duch, 2010). Therefore, organizational principles
orchestrating spinal circuits controlling locomotion are subject
to genetic, developmental, and activity-dependent specificity, but
determining the function of distinct subcellular targeting requires
further investigation.

SYNAPSE-SPECIFICITY OF Kc,2 CHANNELS IS
BEHAVIORALLY RELEVANT

The precise coupling of synaptically activated receptors and sec-
ondarily activated ion channels may complement anatomical
specificity of excitatory connections. The behavioral importance
of this coupling becomes evident when considering how descend-
ing brainstem RS neuron drive interacts with the spinal cord CPG.
In vertebrates, RS neurons receive feedback modulation from the
spinal CPG that causes them to fire in-phase with the rostral
spinal segments (Kasicki et al., 1989; Sirota et al., 2000; Dubuc
et al.,, 2008). This phenomenon creates a paradox with respect
to RS innervation of the spinal CPG. In lamprey, each VHN
receives input from both local circuit interneurons (glutamater-
gic and glycinergic) (Buchanan, 1982; Buchanan and Grillner,
1987) and descending RS axons (glutamatergic) (Buchanan et al.,
1987; Brodin et al., 1988). Thus, a single VHN may receive two
distinct types of glutamatergic contacts. Since the animal creates
a rostro-caudal phase lag of 360° from head to tail (Wallén
and Williams, 1984), substantial regions of the spinal cord are
necessarily out-of-phase with RS neuron firing. Furthermore,
as the fish swims, RS axon APs are initiated in the brainstem
and project throughout the length of the spinal cord where
they excite local CPGs. The AP propagation rate is faster than
the speed of the mechanical wave driven by the propagation of
neural excitation by segmental CPGs (~10 Hz traveling wave).
Thus, there are two traveling waves, RS axon-generated AP prop-
agation and CPG neural waves, which are out-of-phase across
substantial rostro-caudal regions of the spinal cord and whose
phase mismatch varies with locomotor frequency (Figure 5). This
phase mismatch precludes RS axons from being phase-locked
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FIGURE 5 | Phase-matched and phase-mismatched excitatory
synapses in the spinal cord of lamprey. (A) As the lamprey swims it
generates a traveling wave from head to tail. The sinusoidal body curvature
illustrated here represents a single moment in body movement during a
bout of swimming. During swimming, command excitation is continually
provided by RS axons whose somata in the brainstem (encircled in black)
fire (blue) in phase with the rostral spinal CPG neurons. This is illustrated by
the rostro-caudal overlap of red and blue. It is the output of spinal segments
that causes ipsilateral muscle contraction (red). Due to the speed at which
the action potential (AP) propagates along RS axons, the AP invades more
caudal areas of the spinal cord whose associated muscles do not undergo
contraction because the CPG wave (responsible for contraction) travels at a
delay relative to the AP This leads to regions along the spinal cord where AP
firing overlaps with inhibited musculature (illustrated by overlap of blue and
white regions in the middle). This would predictably lead VHN excitation at
inappropriate times during the swim cycle. This phase mismatch between
RS axons and CPG neurons may be avoided by synapse-specific Kc,2
channel activation. (B) Circuit model in which excitation from EINs (red
outlined cell) projects to other VHNs (black outlined cell) locally within the
spinal cord. NMDAR currents from these neurons (black trace, NMDAR
EPSC) are enhanced by the addition of apamin, the specific Kc,2 channel
antagonist, to block Kc,2 currents (blue trace). (C) RS synapses from large
descending axons (black shaded bar) which project throughout the spinal
cord, show NMDAR currents (black trace, NMDAR EPSC) that are

unaffected by apamin (blue trace) (Alpert and Alford, 2013).

with VHNs, thus removing the need for pre- and postsynaptic
synchronization conferred by coupling of NMDARs and Kc,2
channel activation.

Accordingly, it may be considered problematic for RS
synapses expressing NMDARs to be coupled to Kc,2 chan-
nels, which would instill a strict phase-relationship between
the pre- and post-synaptic neuron via excitation-inhibition
coupling. In contrast, spinal EINs are appropriately phase-locked
to their targets because the extent of their spinal projections are

limited (Buchanan et al., 1989). This hypothesis is supported
by experiments utilizing paired recordings between RS axons
and VHNSs, demonstrating that postsynaptic NMDAR-mediated
responses are insensitive to apamin (Cangiano et al., 2002; Alpert
and Alford, 2013). In contrast, glutamatergic synapses between
EINs and other VHNs within the spinal cord exhibit strong
NMDAR coupling to Kc,2 channels (Alpert and Alford, 2013;
Nanou et al., 2013), conferring excitation-inhibition coupling and
phase-locking as the CPG waves propagate between segments.
Such synapse-specificity emphasizes the highly localized nature of
dendritic Ca®* signals and the profound importance for restrict-
ing Ca?* entry within local domains (Figure 5). Within this
framework, the synapse-specificity of Kc,2 channel activation is
crucial for creating synchrony between neurons of the spinal net-
work. Thus, the synaptic localization of the K¢,2 channel coupled
to NMDARs is not just important for opposing depolarization,
but together with the precise function of the presynaptic neuron,
establish the foundation for generating network rhythmicity.

NEUROMODULATION OF K¢,2 CHANNELS MEDIATING
LOCOMOTION

Locomotion is also activated and modulated by monoaminergic
systems. Bath-applied serotonin (5-HT), alone or within a cock-
tail of monoamines, can activate locomotion and fictive locomo-
tion in many preparations (Cazalets et al., 1992; Rossignol et al.,
2002). Like glutamate, spinal release of 5-HT originates from both
intraspinal (Schotland et al., 1995, 1996; Zhang and Grillner,
2000) and brainstem neurons (Zhang et al., 1996; Abalo et al.,
2007; Antri et al., 2008; Barreiro-Iglesias et al., 2008). In lam-
preys, bath-applied 5-HT has a well-defined modulatory effect
on the CPG—it slows ventral root bursting during both spinal
exogenous agonist-evoked (Wikstrom et al., 1995) and brainstem-
evoked locomotion (Gerachshenko et al., 2009). 5-HT mediates
its effects both pre- and post-synaptically through mechanisti-
cally distinct but behaviorally convergent effects. Postsynaptically,
5-HT modifies the activation of Kc,2 channels. This postsy-
naptic effect is mediated at two distinct subcellular sites. 5-HT
suppresses burst termination during fictive locomotion induced
by NMDA (Harris-Warrick and Cohen, 1985), an effect present
during NMDA-TTX driven intrinsic oscillations (Wallén et al.,
1989) and which is analogous to blockade of K¢,2 channels with
apamin (El Manira et al., 1994) or UCL 1684 (Alpert and Alford,
2013). This prolongation of the oscillation may be mediated
by direct interaction of 5-HT receptors on Kc,2 channels, or
alternatively, via an indirect inhibition of NMDARs (Schotland
and Grillner, 1993) or VGCCs (Wang et al., 2014a) supplying
Ca** for Kc,2 channels responsible for the repolarization. Inter-
estingly, the effects of 5-HT are absent when the network is
activated by kainate, which will not activate NMDARs directly.
This suggests that NMDAR-dependent Ca’* entry contributing
to burst termination (Alpert and Alford, 2013; Nanou et al., 2013)
is necessary for 5-HT to modulate the oscillation and that 5-HT
receptors inhibit Kc,2 channels activated directly by NMDAR-
mediated Ca?T permeation.

In addition to effects of 5-HT directly on NMDAR-mediated
oscillations, 5-HT;a receptors (Wikstrom et al., 1995) inhibit
N-type VGCCs (Hill et al., 2003), reducing Ca?* necessary for
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Kca2 channel activation involved in mAHP (Wikstrom and EI
Manira, 1998). This effect is accordingly limited to individual
neurons that spike repetitively during locomotion (or fictive
locomotion). Thus, 5-HT interactions with Kc,2 channels are
important in controlling firing rates in lamprey (Wallén et al,,
1989; Hill et al., 1992; Meer and Buchanan, 1992) as well as other
systems, but are also integral to the ionic mechanism contribut-
ing to NMDAR-dependent oscillatory properties (Harris-Warrick
and Cohen, 1985; El Manira et al., 1994; Alpert and Alford, 2013;
Nanou et al., 2013).

Presynaptically, 5-HT modulates glutamate release from
intraspinal connections (e.g., EIN-VHN synapses) as well as from
RS command neurons (Buchanan and Grillner, 1991; Blackmer
et al., 2001, 2005). This effect mediated by 5-HTp receptors acts
synergistically with the effects on Kc,2 channels. It also lengthens
the locomotor burst duration during agonist- and (Schwartz
et al., 2005) brainstem-evoked locomotion (Gerachshenko et al.,
2009) by blocking synaptotagmin/SNARE complex interactions
(Blackmer et al., 2005). This reduces cleft glutamate concentra-
tion, which leads to a selective reduction of AMPAR activation
because NMDARs respond to low glutamate cleft concentrations
more readily than do AMPARs (Patneau and Mayer, 1990; Choi
et al., 2000; Schwartz et al., 2007). Sustained NMDAR activa-
tion combined with reduced AMPAR activation slows bursting
recorded during fictive locomotion. This is similar to pharma-
cologically induced locomotion, which shows slower burst rates
in NMDA compared to AMPA or kainate (Brodin et al., 1985;
Alford and Grillner, 1990). It may in part be attributed to the
slow and fast kinetics of NMDARs and AMPARs, respectively
(Alford and Grillner, 1990), but is also a function of the spinal
network in which repetitive activation that causes augmenting
synaptic responses as seen in 5-HT favors slower rates of fictive
locomotion (Kozlov et al., 2001; Svensson et al., 2001). Therefore,
the complement of excitation of different glutamate receptors on
VHN dendrites and the subsequent integration of those inputs, in
conjunction with K¢,2 channels, is subject to serotonergic mod-
ulation of both synaptic transmission and intrinsic membrane
properties. These very different effects of modulators impacting
synaptic function and Kc,2 converge to influence the output of
single neurons that scale to alter motor output.

Thus, the serotonergic system in the spinal cord plays a crucial
role in modulating the output of the spinal network. While
these results, whether mediated by pre- (Schwartz et al., 2005;
Gerachshenko et al., 2009) or postsynaptic (Harris-Warrick and
Cohen, 1985; Wallén et al., 1989; Wikstrom et al., 1995) 5-HT
receptors explain effects of exogenous 5-HT, pharmacological
application obscures crucial information regarding the spatiotem-
poral pattern of 5-HT release during swimming. Nevertheless, it
is clear that 5-HT has profound effects on neural patterns and
phase relationships within the spinal cord during locomotion and
that this effect is substantially mediated through effects on Kc,2
channel activation.

IMPORTANCE OF STUDYING DENDRITIC PROPERTIES
WITHIN A BEHAVING NETWORK

In all vertebrates, 5-HT and glutamate applied exogenously
can initiate and influence locomotor-like activity. While it is

remarkable that systemic drug application can reliably produce
ethologically relevant locomotor patterns in lamprey (Sigvardt
et al., 1985) and in other model systems (Rossignol et al.,
1998; Kyriakatos et al., 2011), NMDARs in vivo are not phys-
iologically activated by a tonic and diffuse release of gluta-
mate. Instead, the release of neurotransmitter and subsequent
receptor binding is exquisitely targeted to discrete postsynap-
tic loci with temporal precision. The physiological activation
of NMDARs in any circuit is almost entirely mediated by the
synaptic release of glutamate. This will only occur at synapses,
and only following presynaptic release of glutamate at those
synapses. This constrains the activation of NMDARSs spatially and
temporally, as well as the Kg,2 channels that are subsequently
activated.

While pharmacological activation of the spinal network
is presumably far from physiological, it has remained to be
demonstrated just how distinct this artificial induction is from
supraspinal control of descending command neurons and subse-
quent spinal CPG activation. It is important to note that gener-
ating rhythmic activity and appropriate phase coupling has many
theoretical solutions (Wallén et al., 1992; Williams, 1992). In the
spinal network that generates swimming, there can be multiple
pathways which achieve a similar behavioral mode (Menelaou
and McLean, 2012), an idea that emerged from the study of
invertebrate CPGs (Marder and Bucher, 2007). In Xenopus larval
tadpoles, there may be little specificity in anatomical connections
early in development (Li et al., 2007) suggesting that precise
dendritic targeting is not necessary for functional circuit forma-
tion. Instead, a very basic scaffolding of neuronal connections
is sufficient to construct early behaviors (Roberts et al., 2014).
However, the specificity of microcircuit connectivity is subject
to change. Synapses are plastic as is the dendritic architecture
(Kishore and Fetcho, 2013). Nevertheless, synaptic connectiv-
ity and subsequent location-dependent dendritic integration is
paramount to neural computation within microcircuits control-
ling behavior.

Furthermore, our understanding of how monoamines in
general and 5-HT in particular act in vivo is even less cer-
tain than glutamate because exogenous application of these
modulators over an artificially and pharmacologically activated
network merely compounds errors and cannot match physi-
ological release. Indeed, monoamine cocktails with glutamate
agonists evoke spinal network activity (Rossignol et al., 1998;
Masino et al., 2012) and when applied individually to active
networks, monoamines modulate network activity (Barbeau and
Rossignol, 1990; Rossignol et al., 1998). To develop a compre-
hensive understanding of the true pattern of synaptic drive to
spinal neurons and microcircuits requires a more physiological
method of activation of these spinal circuits than has previously
been employed (Issberner and Sillar, 2007; Dubuc et al., 2008;
McLean et al., 2008; Kyriakatos et al., 2011), while retaining the
capacity to study them directly from the subcellular to systems
level.

Bath-applied NMDA leads to a large increase in baseline
Ca?*; while Ca’>™ oscillations are synchronized throughout
the dendrites of a single neuron (Bacskai et al., 1995; Viana
di Prisco and Alford, 2004). In this context, all NMDARs will
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become active and are independent of presynaptic release of
glutamate. Under these conditions, the precise relationship
between activated routes of Ca’t entry, whether NMDARs or
VGCCs, may become obscured. This may allow Kc,2 channels
to couple to Ca’T microdomains as opposed to nanodomains
implied by their physiological BAPTA sensitivity. Indeed, in
VHNs dialyzed with EGTA, oscillation plateau progressively
lengthen immediately following whole-cell access, on a time
course equivalent to the diffusion of dyes to the most distal
dendrites (Alpert and Alford, 2013). This may be interpreted
as a progressive increase in EGTA-mediated Ca?* buffering
into the distal dendrites where Ca?t oscillations are largest
(Viana di Prisco and Alford, 2004), preventing some Ca%t from
binding Kc,2 channels to cause the repolarization (Alpert and
Alford, 2013). This effect suggests that Ca** diffusing greater
distances from its site of entry can, under certain circumstances,
activate Kc,2 channels, which then contribute to the
repolarization. Nevertheless, even under these non-physiological
conditions of bath applied NMDA, cells dialyzed with
BAPTA displayed immediate, severely impaired repolarization
(Alpert and Alford, 2013).

The ability of NMDAR-induced Ca®* entry to bind Kc,2
channels in Ca** microdomains may be an artifact of bath-
applied NMDA and the robust increase in intracellular Ca’*,
which may also cause Ca?*-induced Ca’* release from internal
stores. However, it was recently demonstrated that this Kc,2
channel conductance is physiologically activated by synaptically
driven NMDAR-mediated Ca** entry (Alpert and Alford, 2013)
and is vital for the proper functioning of the network during
brain-evoked locomotion (Nanou et al., 2013). If the spatially
and temporally precise synaptic activation of glutamate receptors
during locomotion is sensitive to blockade of Kc,2 channels,
then it should follow that there is complementary patterning
dendritic Ca?T entry which drives the activation of Kc,2 channels
important for rthythm generation. However, we know very little
about the spatiotemporal pattern of dendrite activation during
behavior and how synaptic input is integrated in real time to
impact cell output.

Several recent advances have made it possible to begin to
assess how dendrites integrate incoming synaptic information
within an active, behaving network. Dendritic spatiotemporal
Ca’"™ dynamics in active networks are crucial to understanding
how physiological patterns of synaptic input are integrated in
real time to shape the cellular output and have only recently
been investigated. With new advances in genetically encoded Ca**
indicators (Muto et al., 2011) and in vivo 2-photon microscopy,
it is now becoming possible to “watch dendrites in action”
and correlate their activity to sensory input and behavioral
output (Dombeck et al.,, 2010; Xu et al., 2012; Smith et al.,
2013b; Grienberger et al., 2014). However, particularly in the
lamprey model system, but presumably in other systems like
zebrafish, there is a distinct advantage in imaging dendritic
behavior-the activity of spinal motoneuron and interneuronal
dendrites and the subsequent electrical output of individual cells
can be precisely correlated to the real time network output,
whose role in generating behavior is well characterized and
directly measureable. Such multilevel analyses will undoubtedly

enhance our understanding of how nervous systems generate
behavior from subcellular to systems level with unprecedented
detail.
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