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Rac GTPases are regulators of the cytoskeleton that play an important role in several
aspects of neuronal and brain development. Two distinct Rac GTPases are expressed
in the developing nervous system, the widely expressed Rac1 and the neural-specific
Rac3 proteins. Recent experimental evidence supports a central role of these two Rac
proteins in the development of inhibitory GABAergic interneurons, important modulatory
elements of the brain circuitry. The combined inactivation of the genes for the two Rac
proteins has profound effects on distinct aspects of interneuron development, and has
highlighted a synergistic contribution of the two proteins to the postmitotic maturation of
specific populations of cortical and hippocampal interneurons. Rac function is modulated
by different types of regulators, and can influence the activity of specific effectors.
Some of these proteins have been associated to the development and maturation of
interneurons. Cortical interneuron dysfunction is implicated in several neurological and
psychiatric diseases characterized by cognitive impairment. Therefore the description
of the cellular processes regulated by the Rac GTPases, and the identification of
the molecular networks underlying these processes during interneuron development
is relevant to the understanding of the role of GABAergic interneurons in cognitive

functions.

Keywords: cortex, effector, GEF, hippocampus, interneuron, Rac GTPase

INTRODUCTION

Inhibitory y-aminobutyric acid (GABA )ergic interneurons mod-
ulate brain functions (Batista-Brito and Fishell, 2009). Several
studies indicate that abnormal development of these neurons
causes the unbalance of excitatory/inhibitory signals, which may
cause the neural and intellectual impairment observed in dis-
orders such as epilepsy, autism and schizophrenia (Lewis et al.,
2005; Orekhova et al., 2007; Lawrence et al., 2010; Sebe and
Baraban, 2011; Velisek et al., 2011; Le Magueresse and Monyer,
2013). Most cortical and hippocampal GABAergic interneurons
have a common origin: they are born in the ganglionic emi-
nences (GE), transitory embryonic structures in the develop-
ing ventral telencephalon (Danglot et al.,, 2006; Wonders and
Anderson, 2006; Tricoire et al., 2011). GABAergic precursors leave
the GE migrating tangentially along three tangential streams in
the marginal zone (MZ), subplate (SP), or subventricular zone
(SVZ), towards their cortical/hippocampal destination, where
they switch to radial migration to populate the different layers of
these areas (Tanaka et al., 2006; Martini et al., 2009; Figure 1A).
Many studies have addressed the mechanisms regulating the
development of GABAergic interneurons, and led to the iden-
tification of transcription factors and extracellular cues driving
their differentiation and migration (Herndndez-Miranda et al.,
2010). Conversely, the knowledge of the intracellular mecha-
nisms driving the different phases of interneuron development is
limited.

Rho family GTPases are important regulators of cytoskele-
tal dynamics. Among them, Rac proteins are critical in several
aspects of neuronal development (de Curtis, 2008; Heasman
and Ridley, 2008). This review focuses on studies supporting
the role of Rac proteins, their regulators and effectors on the
development of cortical and hippocampal GABAergic interneu-
rons. These cells form inhibitory synapses that modulate the
output from excitatory neurons and other interneurons. These
interneurons go through a sequence of developmental events
including exit from the GEs, tangential and radial migration,
and late maturation steps including extension and branching
of axons and dendrites, target recognition, and establishment
of inhibitory synapses. Each developmental step requires the
association of extracellular signals with specific surface receptors,
resulting in the activation of proper intracellular signals. Here, I
will present the available evidence on the role of Rac proteins and
of proteins functionally-associated to these GTPases in different
steps of the development of cortical/hippocampal GABAergic
cells.

Rac GTPases REGULATE THE DEVELOPMENT OF
INTERNEURONS

Rho family GTPases are molecular switches that regulate sev-
eral processes including the organization of the actin cytoskele-
ton (Hall, 1998). The Rho family is subdivided into groups
of highly homologous proteins. One of these groups includes

Frontiers in Cellular Neuroscience

www.frontiersin.org

September 2014 | Volume 8 | Article 307 | 1


http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/editorialboard
http://www.frontiersin.org/Cellular_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fncel.2014.00307/abstract
http://www.frontiersin.org/Journal/10.3389/fncel.2014.00307/abstract
http://community.frontiersin.org/people/u/153296
mailto:decurtis.ivan@hsr.it
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

de Curtis

Rac GTPases regulate interneuron development

(1) Exit from
the cell cycle

(2) tangential
migration

Ganglionic A
eminences : )
\ interneuron
Oﬁ 1 interneuron
cell @ < cortex, : () idal cell
cycle J-----—- P COHBX = =imimimims > hippocampus '® ~°° -»> FASICEES
v ey

(3) radial migration (4) maturation

Rac, PAK3,

Rac1 Rac1, Rac3 Rac1, Rac3 Kalirin-7, DOCK7
migration, neurite growth

protrusion

cytoskeleton
remodeling

ErbB4

O PIP3
F-actin

FIGURE 1 | (A) Scheme of distinct developmental phases of postmitotic
interneuron maturation: after exiting the cell cycle, the GABAergic precursors
leave the GE by migrating tangentially; once they have reached their final
destination (cortex and hippocampus), they will switch to radial migration to
position properly. GABAergic cells will then continue to mature by developing

@—@

axon and dendrites, and by forming inhibitory synapses with pyramidal cells
and with other interneurons (not shown). Some of the proteins relevant to
these processes and described in this review are indicated. (B) Model for the
activation of Rac GTPases by extracellular signals important for interneuron
migration and maturation. See text for details.

the Rac GTPases. There are three genes in vertebrates encoding
the Racl, Rac2 and Rac3 proteins that share high sequence
identity (88-92%), and a fourth gene encoding the Rac-related
RhoG protein (about 70% identity with Racl). While Rac2 is
specifically expressed in hematopoietic cells (Didsbury et al.,
1989), Racl, Rac3 (initially identified as RaclB in chicken),
and RhoG are expressed in neurons (Moll et al., 1991; Vincent
et al., 1992; Corbetta et al., 2005). Rac3 expression is often,
but not always overlapping with that of Racl (Corbetta et al.,
2005).

Most studies on neurons have considered Racl. On the
other hand, over the past years we have proposed that both
Racl and Rac3 need to be considered to fully understand
the role of Rac in neuronal development and function (de
Curtis, 2008). While Racl is widely expressed from early
embryonic development, Rac3 is mainly, if not exclusively
expressed in developing neurons. Our findings have shown
that the two GTPases cooperate to build up a functional
brain (Corbetta et al.,, 2009). In this direction, a number of
recent studies have emphasized the importance of analyzing
both Racl and Rac3 during the development of GABAergic
interneurons.

Rac GTPases IN EARLY DEVELOPMENT AND INTERNEURON
MIGRATION

The first two studies on the role of Rac proteins in the develop-
ment of cortical interneurons suggested that Rac is not directly
implicated in the development of postmitotic migratory interneu-
rons. The earlier conditional knockout of Racl in the pre-
migratory neural progenitors of the ventricular zone (VZ) of
the telencephalon causes several defects, including a failure of
the tangential migration of interneurons from the GEs (Chen
et al.,, 2007; Figure 1A). In apparent contrast, the same study
shows that later deletion of Racl in postmitotic migratory cells
exiting the VZ and into the SVZ of the ventral telencephalon does
not affect tangential migration. Previous findings have shown
that neurons have to reach a proper differentiation state to
use the machinery needed for migration (Kuhar et al., 1993;
Hatten, 1999). Based on this assumption, the authors explain
their apparently contrasting findings by proposing that the defect
in migration observed after early Racl deletion is due to Racl-
dependent GABAergic progenitor-specific functions required to
establish the competency of migration at later stages, and not
to a primary abnormality of cell motility, as indicated by their
other finding that Racl is dispensable for interneuron motility
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during the migratory phase. Similar results were obtained by a
more recent study addressing the role of Racl on interneuron
progenitors from the medial ganglionic eminence (MGE; Vidaki
etal., 2012). In this study, Racl ablation in postmitotic GABAergic
precursors does not affect the number of MGE-derived cor-
tical interneurons, while earlier deletion in proliferating MGE
progenitors causes a reduction in the number of MGE-derived
cortical interneurons. This loss is due to a defect in the exit
of the precursors from the cell cycle (Figure 1A). This study
has highlighted a cell-autonomous, stage-specific requirement of
Racl activity in the proliferating precursors. Altogether, these
studies show that the conditional deletion of Racl impairs the
early phases of interneuron differentiation, while the migration
of cortical interneurons is not affected if Racl is deleted after the
progenitors have left the MGE to migrate into the pallium. To
explain these results, it has to be considered that mammals and
other vertebrates express the neural-specific Rac3/Rac1B GTPase
(Albertinazzi et al., 1998, 2003) during the late development of
peripheral and central nervous system neurons (Corbetta et al.,
2005). Rac3 protein expression is developmentally regulated, with
a peak at time of neurite branching and synaptogenesis (Bolis
et al., 2003). Therefore, Racl deletion in MGE dividing progen-
itors, at a time when Rac3 is not or very poorly expressed, is
sufficient to indirectly affect migration. On the other hand, the
lack of effects on migration after Racl is deleted in postmitotic
migratory precursors may be explained by compensation with
Rac3, which is expressed at these later stages. Since RhoG is also
expressed in the nervous system, RhoG may also compensate for
the lack of Racl GTPase at later stages. So far though no studies
are available supporting a role of RhoG in the development of
interneurons.

The hypothesis that Rac3 may compensate for the lack of Racl
in supporting the tangential migration of GABAergic precursors
is endorsed by recent studies analyzing the effects of the dou-
ble knockout of the two GTPases on interneuron development.
The generation of double mutants obtained by combining the
full deletion of Rac3 (Rac3KO) with the conditional deletion of
Racl in postmitotic neurons by the Synapsin-I-Cre results in
mice that are neurologically impaired, with spontaneous epileptic
seizures (Corbetta et al., 2009). Interestingly the transcript for
Rac3 is detected in PV-positive interneurons, and the double
knockout mice show a strong loss of MGE-derived PV-positive
cells in the cortex and hippocampus (Vaghi et al., 2014). While
apoptosis does not appear to contribute to this loss, the defects
observed in the MGE-derived precursors undergoing tangential
and radial migration indicate that Rac GTPases are important
for the migration of postmitotic interneurons (Figure 1A), and
that the migratory defects may underlie the loss of cortical and
hippocampal interneurons in the postnatal brain of the dou-
ble knockout mice. Loss of postnatal cortical interneurons and
migratory defects of the precursors have been confirmed in a
later study analyzing the contribution of Racl and Rac3 in the
development of GABAergic cells (Tivodar et al., 2014). In this
study, when interneurons depleted of both Rac proteins were
placed in culture, they revealed gross defects in the cytoskele-
tal organization; they showed severe morphological alterations
including an increased number of neurites per neuron, shorter

axons, and abnormal growth cones when compared to either
wildtype of RaclKO cells. On the other hand, our analysis in
vivo indicated a defect in the later maturation of double mutant
interneurons (Vaghi et al., 2014). This defect correlates with
evident alteration of the electrophysiological properties of cortical
and hippocampal circuits in double knockout mice, as shown by
the increased excitability and decreased spontaneous inhibitory
currents in the cortical and hippocampal pyramidal cells of these
animals.

Of note, the milder loss of PV-positive cells in the cortex
and hippocampus of single Racl or Rac3 knockout mice (Vaghi
et al.,, 2014), on the one hand demonstrates the functional
redundancy of the two Rac proteins, on the other hand shows
that during the development of cortical interneurons each Rac
has specific roles that can not be compensated by the other
GTPase.

THE CONTROL OF CORTICAL INTERNEURON MATURATION
BY Rac-DEPENDENT MECHANISMS

While the direct implication of Rac GTPases in the early devel-
opment of cortical and hippocampal interneuron precursors is
well established, the involvement of these proteins in later steps
of interneuron maturation, after the cells have reached their
final destination, is still limited. Analysis of double knockout
mice suggests that Rac depletion also influences the later mat-
uration of interneurons, as detected by the reduction of the
PV-positive signal in the neuropilum of the stratum pyrami-
dale of the hippocampus, and of the inhibitory VGAT/GAD67-
positive GABAergic presynaptic terminals around hippocampal
and cortical pyramidal cells (Vaghi et al., 2014). The decrease
in presynaptic input corresponds to electrophysiological alter-
ations of cortical and hippocampal circuitry in these mice, which
have hyperexcitable pyramidal neurons that also show a signifi-
cant decrease of spontaneous inhibitory post-synaptic currents.
Although these data show that Racl and Rac3 are required for
the development of hippocampal and cortical inhibitory circuits,
the contribution of either Rac remains an interesting topic for
further analysis. To date specific molecular defects linked to the
loss of either Racl or Rac3 GTPases have not been identified.
Still, specific behavioral effects have been described in Rac3KO
mice, which have a generalized hyperactivity that is not linked to
detectable cognitive deficits (Corbetta et al., 2008). This pheno-
type is specific for Rac3, since it is not prevented by the endoge-
nous Racl protein still present in the Rac3KO mice. Whether this
phenotype corresponds to a defect of the inhibitory networks in
the Rac3KO mice remains to be established. If so, this will open
the possibility to explore the molecular machinery linked to Rac
function and underlying the hyperactive/impulsive behavior, phe-
notypes observed in different neurologic and psychiatric disorders
such as ADHD, epilepsy, and autistic disorders (Robinson, 2012;
Pincham, 2014).

A number of studies have demonstrated the involvement
of Rac effectors or regulators in the development of corti-
cal interneurons (Table 1). The p21-activated serine/threonine
kinases PAK1 and PAK3 are members of the PAK family activated
by Rac and Cdc42. PAK1 and PAK3 are highly expressed in
the brain, and their double knockout causes the reduction of
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Table 1 | Proteins functionally associated to Rac GTPases and implicated in the development of cortical/hippocampal GABAergic cells.

Protein Gene name Function related to Rac Link to disease (reference) Role in GABAergic cell
development
DOCK7 DOCK?7 Rac GEF Epileptic encephalopathy (Perrault Development of Chandelier cells
etal., 2014)
JNK3 MAPK10/JNK3 Member of the JNK family kinases Epileptic encephalopathy (Shoichet JNK1/JNK2: guidance during
activated downstream of Rac et al., 2006); intellectual disability interneuron migration into the
(Kunde et al., 2013) cortex
GIT1 GIT1 ArfGAP interacting with PIX family ADHD (Won et al., 2011) Huntingtin Unknown: KO affects inhibitory
Rac GEFs aggregation (Goehler et al., 2004) input and PV+ cells
Kalirin-7 KLRN Rac GEF Schizophrenia (Hill et al., 2006) Dendritic growth; potentiation of
excitatory postsynaptic terminals
PAK3 PAK3 Effector of Rac/Cdc42 X-linked mental retardation (Allen Neuritogenesis, dendritic

etal., 1998)

maturation

dendritic complexity in cultured hippocampal neurons (Huang
et al.,, 2011). Moreover mutations in the gene for PAK3 are asso-
ciated with nonsyndromic mental retardation (Ramakers, 2002).
Downregulation of PAK3 affects the number of mature spines in
hippocampal pyramidal cells (Boda et al., 2004; Thévenot et al.,
2011; Dubos et al., 2012), and mice with knockout of PAK3
show cognitive impairment (Meng et al., 2005). PAK3 is also
implicated in the maturation of cortical GABAergic cells. PAK3
expression is maintained low in cortical migratory precursors by
the homeobox transcription factors DIx1/2, while it is upregulated
in post-migratory MGE- and CGE-derived interneurons. The
double knockout of DIx1/2 causes the premature increase of PAK3
expression in the precursors, leading to untimely development of
axons and dendrites (Cobos et al., 2007). These findings suggest
that repression of PAK3 expression by DIx1/2 is critical to prevent
neuritogenesis and to promote the migration of the interneuron
precursors. This hypothesis is supported by the recent analysis
of the role of DIx1 in vitro. In hippocampal cultures, GAD67-
positive interneurons specifically express DIx1, which is not
expressed in pyramidal neurons (Dai et al., 2014). Knockdown of
DIx1 enhances dendritic growth in GAD67-positive interneurons,
supporting a role of DIx1 in restricting dendritic complexity.
Interestingly, overexpression of PAK3 increases dendritic com-
plexity as observed after DIx1 silencing. Further support that
DIx1 and PAK3 regulate dendritic branching comes from the
observation that exogenous expression of DIx1 in the excitatory
pyramidal cells reduces dendritic complexity, and this reduction
is partially rescued by co-expression of PAK3. Altogether, the
data support a role of PAK3 in the maturation of dendrites and
in the postsynaptic differentiation of excitatory and GABAergic
neurons.

Increasing evidence supports the role of Rac GEFs (guanine
nucleotide exchange factors) in the development of interneurons.
The secreted factor neuregulin-1 (NRG1) interacts with its trans-
membrane tyrosine kinase receptor ErbB4 to promote the growth
of dendrites in mature interneurons. Evidence has been produced
that Kalirin-7, a major dendritic Rac GEF (guanine nucleotide
exchange factor) of the Trio/Kalirin family, mediates the effects of
NRG1/ErbB4 activation on the growth of dendrites in interneu-
rons, and that the phosphorylation of the carboxy-terminus
of kalirin-7 is critical for these effects (Cahill et al., 2012).

Intriguingly, overexpression of kalirin-7 does not only increase
the branching of dendrites of hippocampal CAl interneurons,
but induces also the formation of spine-like structures in these
usually aspiny cells (Ma et al., 2008), indicating a role of this
Rac GEF in potentiating the formation of excitatory postsynaptic
terminals in GABAergic neurons. Interestingly, kalirin-7, NRG1,
and ErbB4 are highly and specifically expressed in GABAergic
interneurons, and have been associated with schizophrenia (Ma
et al., 2001, 2005; Hill et al., 2006; Li et al., 2006; Fazzari et al.,
2010; Del Pino et al., 2013; Kasnauskiene et al., 2013). Since
the dendritic length of interneurons is reduced in schizophrenia
(Kalus et al., 2002), understanding how NRG1/ErbB4 signaling
regulates the dendrites of these cells may help clarifying the
mechanisms underlying the cortical defects in this disorder.

The positive effects of NRG1/ErbB4-induced signaling on the
neurite morphology and synaptic maturation of interneurons are
mediated by the phosphoinositide 3-kinase (PI3-kinase) pathway
that produces phosphatidylinositol 3,4,5-trisphosphate (PIP3) at
the plasma membrane. How the activation of PI3-kinase affects
the migration of the precursors and their later differentiation
into mature inhibitory neurons is unknown. One possibility is
that PIP3 engages the GEFs to activate the Rac’s at the plasma
membrane (Han et al., 1998; Ma et al., 1998), where they will
cause the rearrangement of the actin cytoskeleton that is required
both for the migration of the interneurons and for the matura-
tion of their neurites (Figure 1B). According to this hypothesis,
Rac may mediate also the cytoskeletal reorganization required
for the stimulation of tangential migration towards the cortex
and hippocampus of the MGE-derived GABAergic precursors
induced by the binding of the neurotrophins BDNF and NT4
to the tyrosine kinase receptor TrkB (Polleux et al., 2002). As
for the NRG1/ErbB4-induced signaling described before, the sig-
naling induced by BDNF and NT4 rapidly activates the enzyme
PI3-kinase, as indicated by the strong inhibition of the tan-
gential migration of interneurons by the PI3-kinase inhibitor
LY294002.

Another Rac GEF, DOCK?7 controls the development of chan-
delier cells, a specific class of GABAergic interneurons character-
ized by distinctive axonal terminals that target the axon initial
segment of pyramidal cells by forming typical cartridge struc-
tures. DOCK?7 regulates the development of chandelier cells by
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physically interacting and enhancing the activity of the receptor
tyrosine kinase ErbB4 in a GEF-independent manner (Tai et al,,
2014). The loss of DOCK?7 function in cortical interneurons may
underlie the abnormal development of GABAergic networks that
could lead to the seizures observed in individuals with epileptic
encephalopathies that carry truncating mutations in the gene for
DOCKT7 (Perrault et al., 2014).

The activity of the c-Jun N-terminal kinases (JNK) can be
regulated by Rac GTPases (Coso et al., 1995). Two different
mutations have been identified in a member of this family, JNK3,
which cause either mild intellectual disability (Kunde et al., 2013)
or severe developmental epileptic encephalopathy (Shoichet et al.,
2006). Recently, JNK signaling has been shown to be important
to guide the migration of interneurons into the mouse cerebral
cortex (Myers et al., 2014). Pharmacological inhibition of JNK
signaling on brain sections disrupts the migration of interneu-
rons into the embryonic cortex. Analysis by time lapse showed
that cells incubated with JNK inhibitors moved along aberrant
trajectories. The involvement of JNK1 and JNK2 was confirmed
by similar defects observed in sections from single JNK1 or double
JNK1/JNK2 knockout mice. Since no effects of the knockouts
were observed on interneuron migration in vitro, the authors
suggest that JNK signaling is regulating guidance rather than
motility in these cells.

Another protein indirectly linked to Rac signaling is G protein—
coupled receptor kinase—interacting protein-1 (GIT1), which
together with GIT2 is part of a family of scaffold proteins with
Arf GTPase activating protein (GAP) activity. GIT proteins form
stable complexes with the Rac/Cdc42 GEFs of the PIX fam-
ily, aPIX, and PPIX (Totaro et al., 2007, 2012). GIT/PIX/PAK
complexes can be isolated from neural tissues by binding to
activated Rac GTPases (Di Cesare et al., 2000; Albertinazzi et al.,
2003). The GIT1 complex plays a central role in the formation
of dendritic spines at excitatory synapses: proper localization
of the GIT1/BPIX complex at postsynaptic sites by the central
synaptic localization domain of GIT1 is fundamental to recruit
Rac and PAK activity to stabilize the actin network in dendritic
spines (Zhang et al.,, 2003, 2005). Moreover, the knockout of
GIT1 negatively affects the length of dendrites and the density of
cortical and hippocampal spines, causing defects in fear response
and learning (Schmalzigaug et al., 2009a; Menon et al., 2010).
Also oPIX, which like PAK3 is mutated in patients with mental
retardation (Ramakers, 2002), contributes to synapse formation
(Nodé-Langlois et al., 2006; Ramakers et al., 2012). The hypoth-
esis that the GIT1/PIX/PAK complexes may also contribute to
the formation of inhibitory synapses is supported by the finding
that GIT1 colocalizes with the inhibitory synaptic marker GAD67
(Zhang et al., 2003).

Less is known about the role in neuronal development of the
widely expressed GIT2 protein. GIT2 knockout mice have no
evident brain defects, but show anxiety-like behavior as a major
neurological symptom (Schmalzigaug et al., 2009b). GIT/PIX
complexes are regulating neurite branching in cultured hip-
pocampal neurons, with specific effects of GIT2 and aPIX (Totaro
etal., 2012).

Interestingly, it has been recently shown that knockout of GIT1
causes a strong and specific reduction in the inhibitory input and

in the number of PV-positive interneurons in the hippocampal
CAL1 region, where the GIT1 protein is normally expressed (Won
etal., 2011). The decrease in Rac/PAK/PIX/GIT signaling detected
in the GIT1 knockout brain suggests a functional link between
GIT1 and Rac GTPases during the development of inhibitory
hippocampal networks. This defect correlates with the appearance
of neurological traits associated with human ADHD (Attention
deficit hyperactivity disorder). Accordingly, the authors have
identified an intronic polymorphism in the human gene for
GIT1 that is associated with increased ADHD susceptibility, and
that may cause reduced GIT1 expression. Interestingly, this study
shows that GIT1-knockout mice show ADHD-like phenotypes,
with traits including hyperactivity, enhanced electroencephalo-
gram theta rhythms, and impaired learning and memory. Hyper-
activity in GIT1 knockout mice is reversed by amphetamine
and methylphenidate, psychostimulants commonly used to treat
ADHD.

CONCLUSIONS

The role of Racl and Rac3 in the development of cortical and hip-
pocampal GABAergic interneurons has been confirmed by recent
studies. Still, substantial work remains to characterize the distinct
effects of the two Rac proteins in different developmental steps
required for the formation of mature interneurons. Moreover, a
number of players has been identified that may regulate or medi-
ate the action of the Rac GTPases in these cells. The wide variety of
GABAergic cell types required for normal brain function suggests
that specific combinations of regulators and effectors for these
GTPases are expected to take part in the maturation and function
of distinct types of interneurons. Most of the work on developing
interneurons has been performed using mice models, but the
fewer studies in vitro highlight the importance of flanking the
studies in vivo with reductionistic approaches entailing explants
or primary cultures of interneurons from the GEs, to address the
machinery required for their development in simplified experi-
mental systems. The identification of the molecular sets involved
in the different phases of interneuron development is expected to
give an important contribution to the understanding of different
neurological and psychiatric disorders where defects in cortical
GABAergic cell development appears to importantly contribute
to the pathogenesis.
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