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Traumatic brain injury (TBI) results in immediate brain damage that is caused by
the mechanical impact and is non-reversible. This initiates a cascade of delayed
processes which cause additional—secondary—brain damage. Among these secondary
mechanisms, the inflammatory response is believed to play an important role, mediating
actions that can have both protective and detrimental effects on the progression of
secondary brain damage. Histological data generated extensive information; however,
this is only a snapshot of processes that are, in fact, very dynamic. In contrast, in vivo
microscopy provides detailed insight into the temporal and spatial patterns of cellular
dynamics. In this review, we aim to summarize data which was generated by in vivo
microscopy, specifically investigating the immune response following brain trauma, and
its potential effects on secondary brain damage.

Keywords: brain trauma, secondary brain damage, inflammation, leukocytes, microglia, innate immune answer,
in vivo imaging, intravital microscopy

TRAUMATIC BRAIN INJURY
Traumatic brain injury (TBI) remains one of the major causes
of death and severe disability in industrialized countries (Bruns
and Hauser, 2003; Tagliaferri et al., 2006). It results in immediate
primary damage that is caused by the mechanical impact and
is non-reversible. This primary contusion initiates a cascade of
secondary processes on a cellular, subcellular, and molecular
level which cause additional—secondary—brain damage (Kontos
et al., 1981; Baethmann et al., 1988; Allan and Rothwell, 2001;
Sahuquillo et al., 2001; Bramlett and Dietrich, 2004; Nortje and
Menon, 2004; Werner and Engelhard, 2007; Harhangi et al.,
2008; Maas et al., 2008; Greve and Zink, 2009; Shlosberg et al.,
2010): Both vasogenic and cytotoxic brain edema, generated by
a disruption of the blood brain barrier (BBB) or swelling of
astrocytes, respectively, lead to a raise in intracranial pressure
(ICP; Unterberg et al., 2004). This results in reduced cerebral
blood flow (CBF) and finally ischemia (Bouma et al., 1992;
Golding et al., 1999). CBF is also impaired by alterations in
the cerebral microcirculation, e.g., microthrombus formation,
the generation of leukocyte/platelet aggregates, and the inter-
action of leukocytes with the cerebral endothelium (Schwarz-
maier et al., 2010, 2013). Inflammatory processes result in
the production of NO and free radicals, and the release of
chemokines and cytokines which worsen BBB disruption and
tissue damage and maintain the inflammatory reaction. Fur-
ther damage is mediated by apoptotic and necrotic processes
in neurons, glia cells, and endothelial cells. While the contu-
sion volume, i.e., the area of irreversible neuronal cell death,

reaches its peak already in the first 24–48 h as demonstrated
in animal models (Kochanek et al., 1995; Zweckberger et al.,
2003, 2006; Engel et al., 2008; Turtzo et al., 2014), ongoing
processes orchestrating both inflammatory and recovery-related
mechanisms may influence functional outcome and recovery
over the following days, weeks and months (Kontos et al.,
1981; Allan and Rothwell, 2001; Sahuquillo et al., 2001; Bram-
lett and Dietrich, 2004; Nortje and Menon, 2004; Unterberg
et al., 2004; Werner and Engelhard, 2007; Harhangi et al.,
2008; Maas et al., 2008; Greve and Zink, 2009; Shlosberg et al.,
2010).

Most data on the pathophysiology of secondary brain damage
has been generated in various animal models of TBI. The two
most frequently used models mimic the two main features of
TBI, i.e., cortical contusion (Controlled Cortical Impact, CCI),
and diffuse axon damage (fluid percussion injury, FPI). However,
so far none of the available models simultaneously mimics all
features of TBI—e.g., additional vessel injury or systemic hypoxia
(Lighthall et al., 1989; Finnie and Blumbergs, 2002; Morales et al.,
2005; Morganti-Kossmann et al., 2010).

INFLAMMATION
TBI causes tissue damage and, consequently, induces an acute
as well as a chronic inflammatory reaction, including the innate
and the adaptive immune system. Both protective and detri-
mental aspects for the progression of secondary brain dam-
age have been associated to different aspects of the immune
response, depending e.g., on the (immune) cell type, the intensity
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of activation, and on the temporal and spatial relation of the
immune response in relation to the initial brain injury (Whalen
et al., 1999a; Allan and Rothwell, 2001; Morganti-Kossmann
et al., 2001, 2002; Konsman et al., 2007; Rivest, 2009; Loane
and Byrnes, 2010; Prinz et al., 2011; de Rivero Vaccari et al.,
2014; Peruzzotti-Jametti et al., 2014). In this review we will
mainly focus on in vivo microscopy studies investigating the
pathophysiology of TBI. To be able to put the findings after TBI
in the right context, we also included some particularly relevant
studies on spinal cord injury (SCI) and cerebral ischemia in our
review.

IN VIVO IMAGING
The main difficulty in determining the effects of inflamma-
tory cells on secondary brain damage following TBI lies in
the nature of the employed methods: histological data provide
extensive information on spatial distribution of immune cells
as well as their state of activation; however, these data will
always remain only a snapshot of processes that are, in fact,
very dynamic. In contrast, in vivo imaging, and more specifically
in vivo microscopy, provides detailed insight into the tempo-
ral and spatial patterns of cellular and sometimes subcellular
dynamics in the living brain. The two main in vivo imaging
techniques used in animal research are epi-fluorescence and mul-
tiphoton microscopy (Denk et al., 1990; Helmchen and Denk,
2005; Shaner et al., 2005; Misgeld and Kerschensteiner, 2006;
Xu et al., 2007; Holtmaat et al., 2013). For epi-fluorescence
microscopy, fluorophores are excited by light and emit a flu-
orescent signal which is detected by a CCD camera at high
speed. Main shortcomings of this technique are phototoxic tissue
damage caused by high excitation energy, and the acquisition of
only superficial fluorescent signals, thereby allowing only imaging
in two dimensions. Multiphoton microscopy overcomes these
problems by an elegant method: two—or more—photons sent
consecutively by a laser arrive in the focal point of the objec-
tive at almost the same time. Their combined energy results in
emission of only one photon with higher energy, i.e., longer
wavelength. This phenomenon—the 2-photon effect—results in
emission of fluorescence only in the focal point of the objective,
and in improved tissue penetration. The consequence is a greatly
improved signal to noise ratio which allows imaging of photons
deriving deep from brain tissue without the necessity to use
high intensity excitation energy which may damage the tissue of
interest.

In contrast to histological techniques, in vivo imaging needs
to (a) stain the cells of interest in the living animal, (b) use
surgical techniques to expose the area of interest; and (c) keep
animals under anesthesia for several hours. These interventions
may interfere with the evolving immune response after TBI.
For example, leukocytes were mostly imaged following in vivo
staining, e.g., with Rhodamine 6G (Villringer et al., 1991),
while microglia were studied in most cases in mice expressing
CX3CR1-GFP (Jung et al., 2000). For superficial imaging, an
open cranial window preparation was employed (Wahl et al.,
1985). In contrast, for multiphoton microscopy either the skull
was thinned (Frostig et al., 1990), or a bone flap and the
underlying dura mater were removed and a cover glass was

implanted (Levasseur et al., 1975; Kienast et al., 2010); a pro-
cedure already activating microglia and influencing dendritic
spine turnover (Xu et al., 2007). The maintenance of sufficient
anesthesia and of physiological parameters like body temperature,
mean arterial blood pressure (MABP), and arteriolar blood gases
(i.e., pH, pO2 and pCO2, electrolytes, etc.) both during surgery
and the time of in vivo imaging is another important aspect.
These parameters can significantly affect (patho-) physiological
processes; consequently, their continuous monitoring and main-
tenance throughout in vivo imaging is important. While the
body temperature is controlled and maintained in most in vivo
imaging experiments discussed in this review, only very few
studies provide information on MABP or blood gases (Härtl
et al., 1997a,b; Utagawa et al., 2008; Schwarzmaier et al., 2010,
2013), or heart rate and oxygen saturation (Masuda et al.,
2011). Since experiments including the preparation of a cra-
nial window and/or imaging can last up to several hours—
and the animal is under anesthesia for an equally long period
of time—it is important that the ventilation of the animals is
sufficient and adjustable to the individual animal. However, only
few studies report that the animals were intubated (Masuda
et al., 2011) or intubated and ventilated (Härtl et al., 1997a,b;
Utagawa et al., 2008; Schwarzmaier et al., 2010, 2013; Herz
et al., 2011). Accordingly, these points need to be critically taken
into consideration when interpreting data obtained by in vivo
imaging.

CEREBRAL INFLAMMATORY RESPONSE—RESIDENT CELLS
Microglia are the resident macrophages in the brain (Stoll and
Jander, 1999; Soulet and Rivest, 2008; Ransohoff and Cardona,
2010; Kettenmann et al., 2011). Under physiological conditions,
they have a ramified shape with small cell bodies and long
processes which continuously scan their environment (Davalos
et al., 2005; Nimmerjahn et al., 2005), monitoring synapses
and responding to their functional state (Wake et al., 2009).
Upon activation, microglia change both functionally and mor-
phologically into their activated forms which are referred to as
“M1” or “M2”. M1 is considered to be the pro-inflammatory
state, associated with actions such as phagocytosis, the pre-
sentation of antigens, and the production of reactive oxygen
species (ROS) and NO. By contrast, microglia with the acti-
vation state M2, which is sometimes subdivided further into
“acquired deactivation” and “alternative activation”, are respon-
sible for effects such as the fine tuning of inflammation, the
recruitment of regulatory T-cells, and for scavenging of debris.
They are also associated with the promotion of tissue remod-
eling or repair, and with angiogenesis (Stoll and Jander, 1999;
Colton, 2009; Loane and Byrnes, 2010; Ransohoff and Car-
dona, 2010; David and Kroner, 2011; Kettenmann et al., 2011).
Accordingly, microglia are believed to play both a beneficial
and a detrimental role after brain injury, depending—among
other factors such as age—both on the injury type, and the
time investigated, i.e., the acute or the chronic inflammatory
response (Block et al., 2007; Glezer et al., 2007; Rivest, 2009;
Loane and Byrnes, 2010; Kettenmann et al., 2011; Nayak et al.,
2012; Hernandez-Ontiveros et al., 2013; Peruzzotti-Jametti et al.,
2014).
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FIGURE 1 | Scheme of pathophysiological reactions of leukocytes
and microglia after traumatic brain injury as demonstrated by in vivo
experiments. Under physiological conditions (green background),
leukocytes pass the cerebral microcirculation in undisturbed blood flow,
while some of them occasionally role on the endothelium. Microglia have
a ramified shape and continuously scan the brain parenchyma with their

processes. Following TBI (red background), the intravascular leukocytes
start rolling and adhering to the endothelium, mediated by selectins and
integrins respectively. Finally, they migrate into the damaged tissue.
Microglia become activated by brain trauma, extend their processes
towards the site of injury, and finally migrate towards the injury, taking up
an amoeboid shape.

Following brain injury, microglia extend their processes
towards the damaged area as shown in vivo after laser or micro-
electrode injury (Davalos et al., 2005), or ex vivo on organotropic
hippocampal slice cultures following MCAo (Neumann et al.,
2008; Figure 1). Microglia morphologically become more amoe-
boid and finally migrate towards the site of injury (Kim and
Dustin, 2006). These changes in morphology and/or migration
resulted in encapsulation of the damaged area (Davalos et al.,
2005; Kim and Dustin, 2006), or in engulfment of invading
neutrophils (Neumann et al., 2008). The laser injury was per-
formed by high laser power delivered to a dedicated area of
interest for a certain time, and the microelectrode injury was
induced with a glass electrode which was inserted into the cortex
by a micromanipulator (Davalos et al., 2005). Both laser injury
and microelectrode injury result in a very small, focal brain
damage. Consequently, these techniques provide excellent models
for studying very subtle alterations of cells or even subcellular
processes in a well-defined area. While these studies generate valu-
able information on microglia and their functions, they do not
mimic clinical brain injury. The dynamics of a TBI, however, can
cause a much stronger and more complex damage—depending
on injury severity and mechanism—which might affect or activate
the resident immune cells quite differently.

Considering that TBI may also lead to cerebral ischemia, the
reaction of microglia to ischemic events in vivo might also be

helpful for a better understanding of the function of microglia
after brain trauma. Severely decreased CBF initiated microglial
de-ramification—i.e., activation—in different models of cerebral
ischemia, while a moderate decrease or an increase in CBF had
no visible effect on microglia and their processes (Masuda et al.,
2011). Following ischemia, microglia seem to influence the fate
of synapses in ischemic areas (Wake et al., 2009). The authors
conclude that microglia detect the functional state of synapses
and play a role in remodeling neuronal circuits. In both studies
several different models of cerebral ischemia were investigated,
such as photo-thrombotic stroke and global ischemia. CBF in
the region of interest was assessed and directly compared and
matched with alterations observed in microglia. Another study on
cortical microhemorrhages induced by laser injury showed a local,
inflammatory response including activated microglia, however
this was limited to an area in close proximity around the lesion
(Rosidi et al., 2011).

In contrast to their acute response, the chronic activation
of microglia seems to mediate mainly detrimental effects, e.g.,
via (inadequate) release of cytotoxic chemokines, neurotoxic
effects of receptor activation/upregulation (e.g., Toll-like recep-
tors (TLRs)), or ROS production, as reviewed in detail by others
(Stoll and Jander, 1999; Block et al., 2007; Rivest, 2009; Loane and
Byrnes, 2010; Kettenmann et al., 2011; Giunta et al., 2012; Mannix
and Whalen, 2012; Hernandez-Ontiveros et al., 2013).
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In data obtained from histological sections ex vivo, different
properties of acute and chronic activation post trauma were
revealed. Microglia displayed mostly a classical activation (M1)
or acquired deactivation at seven and up to 28 days after FPI, but
no alternative activation (Cao et al., 2012). In line with that, M2
induced by CCI peaked already at day 3–5 post injury (Turtzo
et al., 2014). Inhibition of microglia activation 1 month after
CCI in mice resulted in less lesion progression at 3 months post
injury as assessed by MRI (Byrnes et al., 2012). Unfortunately,
so far, little information is available on the chronic activation of
microglia following TBI in vivo.

SYSTEMIC INFLAMMATORY RESPONSE—BLOOD BORNE
LEUKOCYTES
The contributions of the systemic inflammatory response to
secondary brain damage following TBI have been investigated
intensively (Kochanek and Hallenbeck, 1992; Rothlein, 1997;
Ransohoff and Tani, 1998; Johnson-Léger et al., 2000; Ransohoff
et al., 2003; Callahan and Ransohoff, 2004; Imhof and Aurrand-
Lions, 2004; van Buul and Hordijk, 2004; David and Kroner,
2011). Within the first hours following TBI, leukocytes and
leukocyte-platelet aggregates begin to roll on and adhere to the
cerebrovascular endothelium (Härtl et al., 1997b; Schwarzmaier
et al., 2010, 2013; Figure 1). These studies were performed using
clinically relevant trauma models such as FPI and CCI, which
mimic not all, but the main features induced by TBI (Lighthall
et al., 1989; Finnie and Blumbergs, 2002; Morales et al., 2005;
Morganti-Kossmann et al., 2010). Similar leukocyte-endothelium
interactions (LEI) have been demonstrated in models of cere-
bral ischemia (Kataoka et al., 2004) and SAH (Ishikawa et al.,
2009). In a model of liver inflammation, LEI was shown to acti-
vate cerebral microglia and alter neuronal excitability (D’Mello
et al., 2013). For the development of secondary brain dam-
age after TBI, however, rolling and adherence of leukocytes to
the cerebral endothelium may have a limited pathophysiolog-
ical relevance. In vivo data showed that BBB breakdown was
not associated to LEI following FPI (Härtl et al., 1997a,b),
which was confirmed by ex vivo data (Whalen et al., 1998,
1999b). Inhibition of leukocyte adherence to the endothelium
did not have any effect on secondary lesion progression after
CCI (Schwarzmaier et al., 2013). Following laser injury, leuko-
cytes were not recruited into the injury focus but to perivas-
cular spaces in close proximity to the injury as shown in vivo;
however, this happened not before day one after injury (Kim
and Dustin, 2006). There is, however, one study reporting a
correlation between leukocyte adherence and vascular leakage
36 h following CCI in vivo (Pascual et al., 2013). In this study,
however, the craniotomy for the CCI was not resealed, a pro-
cedure well known to prevent secondary brain injury after TBI
(Zweckberger et al., 2003, 2006). In this setup, post trauma
edema formation will not increase ICP and microcirculatory
alterations are likely to differ significantly compared to a trauma
model where the bone flap is resealed and intracranial hyper-
tension is allowed to build up. These differences of pathophys-
iological processes with and without intracranial hypertension
might well explain the differences in the observed effects of
LEI.

While leukocyte rolling and adherence can be monitored
by IVM, studying the migration into the affected tissue is
technically demanding and has therefore been studied mostly
ex vivo. Neutrophil depletion has been demonstrated to reduce
secondary brain damage, but the effect only became significant
at 2 weeks after CCI (Kenne et al., 2012). Another study investi-
gating the effect of an antibody directed against a subunit of the
CD11d/CD18 integrin on leukocytes reports a positive effect on
lesion volume already 3 days after FPI (Utagawa et al., 2008). In a
study conducted by our own laboratory, leukocytes were shown
to migrate into the tissue only after secondary brain damage
had already occurred (Schwarzmaier et al., 2013), findings in
accordance with histological data published by others (Mathew
et al., 1994; Holmin et al., 1995; Soares et al., 1995; Holmin and
Mathiesen, 1999).

More conclusive in vivo data on the role of microglia vs.
peripheral immune cells after SCI were presented by Evans
et al. (2014). In this study, different chimeras of transgenic mice
were generated in order to image either resident microglia or
blood borne monocytes/macrophages and their respective con-
tribution to the progression of the injury in vivo. The authors
show that it is in fact blood-derived macrophages which facili-
tate secondary axon dieback, and not resident microglia. Inva-
sion of blood borne monocytes/macrophages into the CNS was
dependent on microglial TLR4 (Zhou et al., 2006). Accord-
ingly, microglia do not only directly influence secondary brain
damage, but also indirectly by recruiting blood borne immune
cells.

ADAPTIVE IMMUNE RESPONSE
To date, the adaptive immune response to TBI and its contri-
butions to secondary brain damage has not been investigated
intensively. There are, however, reports indicating both a neu-
roprotective and a detrimental role of the adaptive immune
system in the pathophysiology following SCI or in chronic neu-
ronal diseases, which have been reviewed in detail by others
(Ankeny and Popovich, 2009; Schwartz et al., 2013; Rodrigues
et al., 2014; Walsh et al., 2014). Histological data suggest
that adaptive immune cells migrate into the damaged tis-
sue only after secondary brain damage has occurred (Holmin
et al., 1995, 1998; Soares et al., 1995; Schwarzmaier et al.,
2013).

One study investigating the behavior of T-cells in health and
autoimmunity in vivo showed that naïve T-cells did not migrate
into the healthy CNS, while they partly migrated into inflamed
brain tissue after Experimental Autoimmune Encephalomyelitis
(EAE) in vivo. In their paper, the authors show that the migra-
tory capacity of T-cells depends more on the activation status
rather than the phenotype or antigen specificity (Herz et al.,
2011).

SUMMARY/OUTLOOK
TBI induces an inflammatory reaction which includes both the
innate and the adaptive immune system. This inflammatory
response can be roughly divided into an acute phase lasting
hours to days, and a chronic phase lasting for weeks to months
or even years. Upon TBI, microglia shift to different forms of
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activation, which have both detrimental and beneficial effects
on secondary brain damage. By and large, the acute phase of
microglia activation seems to provide various protective and
beneficial mechanisms, reaching from phagocytosis to recovery
and repair, while a chronic response is mainly associated with
negative effects on the CNS. Following focal brain injury, data
obtained in vivo demonstrate that microglia extend their pro-
cesses towards the damaged area, change morphologically into
a more amoeboid shape, and finally migrate towards the site of
injury. This can result in the encapsulation of the damaged area
or in the engulfment of invading leukocytes. While these obser-
vations were reported following laser injury or microelectrode
injury, in vivo experiments on microglia activation in a clinically
more relevant TBI model such as CCI or FPI are still missing.
Additionally, no in vivo data is available on chronic microglia
activation.

The systemic part of the inflammatory response following TBI
has been studied intensively. It includes blood borne leukocytes
which interact with the cerebrovascular endothelium and finally
migrate into the damaged tissue. While this might influence
outcome in other diseases, such as the early stage after a stroke,
it does not seem to be of great importance for the mechanisms
involved in secondary contusion expansion following TBI. How-
ever, a chronic response could worsen functional outcome and
recovery.

Therapeutic alterations of the innate immune system might
be promising not only in models of chronic inflammation, but
also in TBI, specifically in view of the different forms of microglia
activation after acute brain injury. Further studies are needed in
order to investigate therapeutic options targeting inflammation,
and to fully elucidate microglia activation in vivo following clini-
cally relevant models of TBI.
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