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Clozapine displays stronger systemic metabolic side effects than haloperidol and it has
been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these
drugs are related. Considering that cerebral disconnectivity through oligodendrocyte
dysfunction has been implicated in schizophrenia, it is important to determine the effect
of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects
of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and
compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by
measurement of extra- and intracellular glucose and lactate levels. Next, the expression
of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6
and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids,
and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered
oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the
glucose uptake, production and release of lactate, without altering GLUT and MCT. In
contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate,
suggesting reduced glycolysis. Antipsychotics did not alter significantly the number
of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative
phosphorylation and expression of galactocerebroside. Our findings support the superior
impact of clozapine on white matter integrity in schizophrenia as previously observed,
suggesting that this drug improves the energy supply and myelin lipid synthesis in
oligodendrocytes. Characterizing the underlying signal transduction pathways may pave
the way for novel oligodendrocyte-directed schizophrenia therapies.
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Abbreviations: HT1A, 5HT2A, serotonin receptors ACC1, acetyl-CoA
carboxylase; ANOVA, analysis of variance; ATP, adenosine triphosphate;
cDNA, complemetary deoxyribonucleic acid; CNP, 2′,3′-cyclic nucleotide
3′-phosphohydrolase; CO2, carbon dioxide; D2, D3, D4, dopamine
receptors; DMEM, Dulbecco’s modified Eagle’s medium; DNA, deoxyri-
bonucleic acid; EDTA, ethylenediaminetetraacetic acid; fc, fold change;
FCCP, p-trifluoromethoxyphenylhydrazone; FFA, free fatty acids; GAPDH,
glyceraldehyde-3-phosphate dehydrogenase; GLUT, glucose transporter; HC,
high clozapine vs. control; HH, high haloperidol vs. control; LC, low clozapine
vs. control; LH, low haloperidol vs. control; M4, acetylcholine receptor; MAG,

myelin-associated glycoprotein; MCT, monocarboxylate transporter; MOG,
myelin oligodendrocyte glycoprotein; NADPH, nicotinamide adenine dinucleotide
phosphate; NG2, a transmembrane chondrotin sulfate proteoglycan expressed
on immature glial progenitor cells; n.s., not significant; oli, oligomycin; Olig1,
Olig2, oligodendroglial transcription factors; OLN-93, an oligodendrocytic cell
line from rat; PBS, phosphate buffered saline; PLP, proteolipid protein; RNA,
ribonucleic acid; RPMI, Roswell Park Memorial Institute medium; RT-PCR,
reverse transcriptase polymerase chain reaction; SCAP, sterol cleavage activation
protein; s.e.m., standard error of mean; SREBP, sterol regulatory element-binding
protein; TBS-T, mixture of Tris-Buffered Saline and Tween 20; TREAT, effect of
treatment
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INTRODUCTION
Schizophrenia is a devastating mental disorder affecting about
1% of the population worldwide (Saha et al., 2005). The current
pharmacological treatment is only partially effective and induces
numerous side-effects, leading to non-compliance or long-term
health consequences (Newcomer, 2007). The relative lack of
progress in developing better drugs to treat the disease is partly
due to incomplete understanding of disease pathophysiology and
the mechanisms of drug action.

Fundamental neuroscience research demonstrates that the
brain is one of the most energy demanding tissues in the
body and is exquisitely sensitive to perturbations of energy
metabolism (Magistretti and Allaman, 2013). Therefore, abso-
lute or relative energy insufficiency due to abnormal glucose
metabolism can lead to abnormal behavior and cognition. The
link between schizophrenia and abnormal glucose metabolism
was first reported well-before the introduction of antipsychotics
by Maudsley in the late 19th century who showed that diabetes
occurred more frequently in families with history of “insanity”
(Mukherjee et al., 1989). Furthermore, when applying insulin
therapy in patients with psychiatric disorders, psychotic patients
required higher doses of insulin compared to non-psychotic sub-
jects, indicating some degree of insulin resistance (Sakel, 1938).
Several recent studies show elevated rates of either diabetes or
impaired glucose tolerance (insulin) resistance in first-episode,
drug-naive subjects and in non-psychotic relatives of patients,
suggesting that altered glucose metabolism might be related to
schizophrenia itself, rather than only to treatment, or lifestyle
factors related to it (Kirkpatrick et al., 2012; Van Welie et al.,
2013).

Elevated glucose levels and reduced lactate levels were identi-
fied in the cerebrospinal fluid of first onset drug-naïve schizophre-
nia patients (Holmes et al., 2006). Interestingly, short-term
treatment with atypical antipsychotic drugs (prototype drug:
clozapine) resulted in a normalization of the cerebrospinal fluid
metabolite profile in approximately 50% of patients, whereas typ-
ical antipsychotics (prototype drug: haloperidol) did not show
such an effect (Holmes et al., 2006). In post-mortem brain
studies, decreased expression of glycolytic and glycogen synthe-
sis enzymes and increased expression of glycogenolytic enzymes
were found (Prabakaran et al., 2004). More recently, increased
circulating levels of insulin and insulin-related peptides have
been identified in independent cohorts of first-onset, drug-naïve
schizophrenics even though blood glucose levels were relatively
normal, suggesting insulin resistance as a disease-inherent factor
(Guest et al., 2010). Furthermore, reduced glucose utilization has
been found in different brain regions of schizophrenics by neu-
roimaging studies (Buchsbaum and Hazlett, 1998; Buchsbaum
et al., 2007). In addition, genetic studies have identified linkages
between genes involved in glucose metabolism with an elevated
risk for schizophrenia (Stone et al., 2004).

Oligodendrocytes are involved in maintaining myelin integrity,
rapid saltatory conduction, and functional connectivity between
distant brain areas, and it has been postulated that they are cru-
cial for maintaining axonal energy supply and myelin integrity
(Bernstein et al., 2009; Schmitt et al., 2009). Recent stud-
ies showed that oligodendrocytes can import glucose from the

extracellular space and from astrocytes to drive glycolysis and the
tricarboxylic acid cycle (Fünfschilling et al., 2012; Lee et al., 2012).
The end products of glycolysis are lactate or pyruvate which
can be directly transferred from oligodendrocytes to myelinated
axons via monocarboxylate transporters (MCT 1/2) (Figure 1,
Fünfschilling et al., 2012; Lee et al., 2012). Additionally, glucose
and lactate foster the synthesis of free fatty acids and myelin lipids.

Oligodendrocyte loss or dysfunction and abnormal metabolic
activity have been identified in schizophrenia (Tkachev et al.,
2003; Uranova et al., 2004; Haroutunian et al., 2007; Schmitt et al.,
2009; Martins-De-Souza et al., 2011a; Bernstein et al., 2014).
In addition, levels of the myelin-forming phospholipids phos-
phatidylcholine, sphingomyelin, and galactocerebroside were
decreased in the thalamus of schizophrenia patients treated with
typical antipsychotics, such as haloperidol (Schmitt et al., 2004).
We have shown that haloperidol and clozapine attenuate glucose-
deprivation induced necrotic cell death in oligodendrocyte cul-
ture, suggesting that antipsychotic drugs may exert a protective
effect on oligoendrocytes during a glucose/energy deprived state
(Steiner et al., 2011).

Clozapine has stronger systemic metabolic side effects than
haloperidol. We hypothesized that the therapeutic antipsychotic
and adverse metabolic effects might be related. Considering that
cerebral disconnectivity through oligodendrocyte dysfunction
has been implicated in schizophrenia, it is important to determine
the effect of atypical/typical prototype drugs on oligodendrocyte
energy metabolism and myelin lipid production. To test this, we
have used OLN-93 oligodendrocyte cells which express a num-
ber of oligodendrocyte markers/neurotransmitter receptors (e.g.,
NG2, CNP, MAG, MOG, Olig1, Olig2, PLP, 5HT1A, 5HT2A, D2,
D3, D4, M4) and assessed the metabolic responses after expo-
sure to either clozapine or haloperidol which is known to cause
fewer peripheral metabolic side effects. Glucose and lactate home-
ostasis were measured by determining intra- and extracellular
glucose and lactate levels as well as the expression levels of glucose
(GLUT) and monocarboxylate (MCT) transporters (Bell et al.,
1990; Pierre et al., 2007; Merezhinskaya and Fishbein, 2009). For
assessing the effects of these drugs on myelin synthesis, we mea-
sured acetyl-CoA carboxylase (ACC1), free fatty acids (FFA), and
galactocerebroside1.

METHODS AND MATERIALS
OLN-93 CELL CULTURE
Oligodendroglial OLN-93 cultures were kept as previously
described (Steiner et al., 2010, 2011; Mosebach et al., 2013).
After 6 or 24 h, media and cell homogenates were collected and
stored at −80◦C until further analysis (Steiner et al., 2010, 2011;
Mosebach et al., 2013).

AVAILABILITY OF LACTATE AND GLUCOSE
The levels of haloperidol and clozapine in the brain tissue are
10- to 30-fold higher than the therapeutic plasma concentrations

1ACC1 is the rate limiting key enzyme for FFA synthesis (catalytic formation
of malonyl-CoA, a precursor for long chain fatty acyl-CoA, from acetyl-
CoA). Myelin mainly consists of lipids (70–85%) and even though there
are no absolutely “myelin-specific” lipids, galactocerebroside, also known as
galactosylceramide, is the most typical one (Morell and Quarles, 1999).
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FIGURE 1 | The scheme is showing previously described mechanisms

how glycolytic oligodendrocytes maintain myelin and axonal integrity

[adapted from Fünfschilling et al. (2012) and Lee et al. (2012) by permission

of Macmillian Publishers Ltd]. Note that myelinated axons are separated by a
thin periaxonal space (extracellular) from the oligodendroglial cytoplasm filling
the inner loops of myelin (cytosolic channel/intracellular). The table below

summarizes our present study results on the differential regulation of
oligodendrocytic glucose and lactate homeostasis (black text and symbols), as
well as myelin lipid synthesis (green text and symbols) by haloperidol and
clozapine. Abbreviations: ATP, adenosine triphosphate; free fatty acids FFA, free
fatty acids; GLUT, glucose transporter; MCT, monocarboxylate transporter;
NAD+/NADH, nicotine amide-adenine-dinucleotide.

(haloperidol: 5–20 ng/mL; clozapine: 100–600 ng/mL) (Zhang
et al., 2007). Therefore, the effects of antipsychotic medication
on the energy metabolism of OLN-93 cells were analyzed by
adding a vehicle (0.01% HCl, same dissolving solution used

to solubilize the antipsychotics), 0.1 or 1 µg/ml of haloperidol
and 1 or 10 µg/ml of clozapine (Sigma-Aldrich, Taufkirchen,
Germany) to the cell culture for 6 or 24 h (Steiner et al.,
2011).
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Intra- and extracellular lactate and glucose concentrations (Figure
1①–②)
Glucose and lactate concentrations were determined in cell
homogenates and media by commercial assays (Modular
Analytics System™, Roche Diagnostics, Mannheim, Germany).
Three of the 15 dishes per experimental setting were pooled for
these analyses.

Membrane transporters for lactate and glucose (Figure 1③–④)
The expression of MCT1-4 and GLUT1-4 was tested in OLN-93
cells by reverse transcriptase polymerase chain reaction (RT-
PCR). Five of the 15 dishes per experimental setting were pooled
for these analyses.

Total ribonucleic acid (RNA) was isolated from OLN-93 cell
cultures using guanidinium isothiocyanate/phenol/chloroform
(peqGOLD TriFast™, peqlab, Erlangen, Germany). For remov-
ing deoxyribonucleic acid (DNA) contamination, 5 µg of the
total cell RNA was treated with Turbo DNA-free (Ambion,
Austin, TX, USA) according to the manufacturer’s instruc-
tions. RNA (4.5 µl; 2.25 µg input RNA) was reverse transcribed
using the RevertAid™ H Minus First strand cDNA Synthesis
Kit primed with Oligo(dT)18 primers (Fermentas, St. Leon-Rot,
Germany; primers listed in the Table 1). cDNA (2 µL) was then
PCR-amplified with Taq-DNA-polymerase (peqlab, Erlangen,
Germany).

One-tenth of each reaction product was electrophoresed on
a 1% agarose gel. The PCR product bands were quantified
by densitometric analysis using a Biometra BioDocAnalyzer.

Table 1 | Primer sequences for reverse transcriptase polymerase chain

reaction (RT-PCR) analyses.

Gene Sequence (5′ → 3′) GenBank Product

accession size,

number bp

rMCT1_f AGAAGTCAGCCTTCCTCCTTT (21) D63834 394

CCACAAGCCCAGTATGTGTAT (21)

rMCT2_f GGCCTTCGGTAGGATTAATAG (21) X97445 367

ATGCCTGATGATAACACGACT (21)

rMCT3_f GCTCTGAAGAACTATGAAATCA (22) AF059258 427

GTGAACAGGGTCTAACATATTG (22)

rMCT4_f TGCGGCCCTACTCTGTCTAC (20) U87627 369

TCTTCCCGATGCAGAAGAAG (20)

rGLUT1_f GCCTGAGACCAGTTGAAAGCAC (22) S68135 292

CTGCTTAGGTAAAGTTACAGGAG (23)

rGLUT2_f TTGGCTTTCACTGTCTTCACT (21) J03145 811

CTTCCTTTTCTTTCCTCATCTC (22)

rGLUT3_f AACAGAAAGGAGGAAGACCA (20) U17978 630

CGCAGCCGAGGGGAAGAACA (20)

rGLUT4_f AGTGCCTGAGTCTTCTTT (18) J04524 486

TGATGTTAGCCCTGAGTAG (19)

GAPDH_f TTAGCACCCCTGGCCAAGG (19) XM228411 531

CTTACTCCTTGGAGGCCATG (20)

Annotation: Annealing temperature for all primers: 55◦C; cycle number (within

linear range) for all MCTs and GLUTs: 34, for GAPDH: 24.

Using glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a
housekeeping gene for data normalization (GAPDH showed no
medication-induced changes in expression), the ratio of MCT
and GLUT expression to GAPDH expression was calculated.

MITOCHONDRIAL RESPIRATION (FIGURE 1⑤)
Oxygen consumption was assessed in OLN-93 cell suspensions
with a Clark-type electrode in a temperature regulated incuba-
tion chamber (high-resolution oxygraph™, Paar Physica, Vienna,
Austria) at 6 and 24 h after the addition of PBS, 1 µg/ml of
haloperidol or 10 µg/ml of clozapine. Three of the 15 dishes per
experimental setting were pooled for these analyses. The oxy-
gen content of the air-saturated medium was 435 ng atoms O/ml
at 30◦C (Steiner et al., 2010). To analyze mitochondrial energy
metabolism in OLN-93 oligodendrocytes, cells were scraped from
dishes and put with 2 ml of growth medium into the incuba-
tion chamber of the oxygraph. Basal respiration was assessed
to characterize the actual activity of oxidative phosphoryla-
tion. Then, mitochondrial ATP synthesis was blocked by adding
5 µM oligomycin (oli, Sigma-Aldrich, Taufkirchen, Germany).
The remaining oxygen consumption reflects the proton leak of
the mitochondrial membrane system. Finally, maximal respi-
ration was stimulated by the addition of 5 µM of the uncou-
pler p-trifluoromethoxyphenylhydrazone (FCCP, Sigma-Aldrich,
Taufkirchen, Germany). This oxygen consumption reflects the
capacity of the respiratory chain, while the FCCP/protein ratio
reflects the cellular content of functionally intact mitochondria.
The FCCP/oli ratio was calculated as an estimate of the capacity
of the respiratory chain to support oxidative phosphorylation.

MYELIN LIPID SYNTHESIS
Acetyl-CoA carboxylase (ACC1) (Figure 1⑥)
For Western blotting, proteins were extracted as described pre-
viously (Martins-De-Souza et al., 2011b). Five of the 15 dishes
per experimental setting were pooled for these analyses. Fifty µg
of total protein from each control and haloperidol- and cloza-
pine treated samples were run on a 12% SDS minigel (BioRad,
Hercules, CA, USA). Proteins were transferred to Immobilon
PVDF membranes (Millipore, Bedford, MA, USA) at 100 V for
1 h using a cooling system. Membranes were treated with 5%
carnation instant nonfat dry milk in Tris-Buffered Saline con-
taining 0.1% Tween 20 (TBS-T) for 4 h and rinsed in TBS-T
three times for 20 min. Next, the membranes were incubated
with rabbit ACC1 antibody (Abcam, Cambridge, UK) at a 1:1000
dilution in TBS-T overnight at 4◦C. After the incubation, mem-
branes were washed 3 times with TBS-T for 15 min per wash and
incubated with anti-rabbit IgG horseradish peroxidase conjugate
(GEHealthcare, Uppsala, Sweden) for 40 min at room tempera-
ture. The membranes were subjected to a final wash with water
and TBS-T, incubated with ECL mixture (GE Healthcare) for
1 min and scanned in a ChemiDoc™ System (BioRad). Band
signals (optical densities) were assessed using Quantity One™
software (BioRad).

Free fatty acids (Figure 1⑦)
FFA levels were measured in the homogenates using the Free fatty
acid quantification kit™ (BioVision, Mountain View, CA, USA),
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following the manufacturer’s instructions. Five of the 15 dishes
per experimental setting were pooled for these analyses.

Galactocerebroside (Figure 1⑧)
Galactocerebroside levels were measured in order to assess the
extent of myelination (6 and 24 h after the addition of phosphate-
buffered saline (PBS) (pH 7.4), 1 µg/ml haloperidol or 10 µg/ml
clozapine). Six dishes were used per experimental setting.

For the immunostaining, cell cultures were washed twice with,
fixed for 30 min in 4% PBS-buffered paraformaldehyde, and incu-
bated at room temperature for 3 h with a 1:1000 dilution of the
monoclonal mouse anti-galactocerebroside antibody (MAB342;
Chemicon, Temecula, CA, USA) (Steiner et al., 2010, 2011). Cells
were washed three times for 5 min with PBS and incubated with
the respective secondary antibody (Molecular Probes, Göttingen,
Germany) at a 1:500 dilution: Alexa Fluor 488 (A11055; goat
anti-mouse-IgG; green fluorescence).

Three randomly chosen fields of vision from each of the
six dishes per experimental setting were scanned using an
AxioImager (Zeiss, Jena, Germany) with a Plan-Neofluar objec-
tive (x 40/0.75). The overall galactocerebroside immunostaining
intensity of each image was measured in a standard evaluation
window (500 × 300 pixels) using the ImageJ software (http://
rsbweb.nih.gov/ij/). The mean of each dish was calculated.

STATISTICAL ANALYSIS
Cell culture data were normally distributed, as indicated by
Kolmogorov–Smirnov tests. Thus, analyses of variance (ANOVA)
were applied in order to compare the influence of treatment
conditions on the concentrations of glucose or lactate in cell
homogenates or supernatants. Dunnett’s test was applied for post-
hoc comparisons. Significance was defined as P < 0.05, while a
probability level of 0.05 ≤ P < 0.10 was considered as a statistical
trend.

RESULTS
AVAILABILITY OF LACTATE AND GLUCOSE
Intra- and extracellular lactate and glucose concentrations (Figure
1①–②)
Addition of clozapine and haloperidol to OLN-93 cells had dif-
ferent effects on lactate and glucose levels. In clozapine treated
cells, lactate levels were increased, while the opposite effect was
observed in cells exposed to haloperidol (Figures 2A,B). For both
drugs, this effect was evident after 6 h in the extracellular medium
[main effect (TREAT) F(4, 18) = 46.25, P < 0.001, low clozap-
ine (LC) n.s., high clozapine (HC) P < 0.01, low haloperidol
(LH) P < 0.001, high haloperidol (HH) P < 0.001] and within
cells [TREAT F(4, 18) = 11.30, P < 0.001, LC n.s., HC P < 0.01,
LH n.s., HH n.s.]. This effect persisted after 24 h of incubation
in the extracellular medium [TREAT F(4, 20) = 7.21, P < 0.01,
LC P < 0.05, HC, LH, and HH n.s.] and in cells [TREAT
F(4, 20) = 42.07, P < 0.001, LC P < 0.001, HC P < 0.001, LH
P < 0.01, HH P < 0.01]. The effect of clozapine did not appear
to be sensitive to concentration (Three-Way ANOVA with factors
concentration, compartment, time; main effect of concentra-
tion: F(1,3) = 0.32, n.s.] while a concentration effect was evident
for haloperidol [F(1,4) = 10.72, P < 0.05]. Also, the effect of

haloperidol changed across time [F(1,4) = 720, 01, P < 0.001] for
the extra- and intracellular compartments [compartment × time
interaction, F(1,4) = 324, 84, P < 0.001], reflecting the return
of lactate to normal levels after 24 h and suppression inside
the cells.

The glucose concentrations showed an inverse pattern of drug
effects (Figures 2C,D). Haloperidol treatment led to increased
glucose concentrations in the extracellular medium after 6 h of
incubation [TREAT F(4,18) = 20.99, P < 0.001, LC and HC n.s.,
LH P < 0.001, HH P < 0.001] which was also evident within cells
but this was not statistically significant [TREAT F(4, 18) = 2.66,
P = 0.067, LH P = 0.051, HC, LC, and HH n.s.]. After 24 h this
effect was observed at the extracellular level [TREAT F(4, 20) =
360.66, P < 0.001, LC n.s., HC P < 0.001, LH P < 0.001, HH
P < 0.001]. At the same time, haloperidol also increased glucose
levels but, in contrast, 10 µg/mL of clozapine led to a decrease in
glucose levels in the medium, possibly reflecting increased glucose
turnover.

Membrane transporters for glucose and lactate (Figure 1③–④)
RT-PCR analyses revealed the expression of MCT1, GLUT1,
and GLUT3 but not the expression of MCT2, MCT3, MCT4,
or GLUT4 in OLN-93 cells (Figure 3). Neither incubation with
haloperidol (1 µg/ml) or clozapine (10 µg/ml) had an effect on
the expression of these transporters in comparison to the basal
condition.

MITOCHONDRIAL RESPIRATION (FIGURE 1⑤)
No significant differences were observed between the
FCCP/protein ratio in PBS-treated cells and either haloperidol-
or clozapine-treated cells after 6 or 24 h (Table 2). These data
indicate that the cellular content of functionally intact mito-
chondria was not significantly affected by the administration of
haloperidol or clozapine to OLN93 cultures. However, clozapine
treatment led to a significant increase in the ratio between FCCP
stimulated respiration and the respiration in the presence of the
ATP-synthase inhibitor oligomycin. Thus, clozapine apparently
lowers oxygen consumption coupled to passive proton leakage
through the mitochondrial membrane system and thereby
increases the capacity of the respiratory chain for ATP synthesis.

MYELIN LIPID SYNTHESIS
Acetyl-CoA carboxylase (ACC1) (Figure 1⑥)
The expression of ACC1 in OLN-93 cells after 24 h differed sig-
nificantly between clozapine and haloperidol treatment as well
as the control condition [Figure 4A; TREAT F(2,6) = 68.17, P <

0.001]. Treatment with clozapine was associated with an increased
expression of ACC1 (clozapine vs. control condition: P < 0.001;
clozapine vs. haloperidol: P < 0.001).

Free fatty acids (Figure 1⑦)
The cellular concentration of FFA after 24 h differed significantly
between treatments [Figure 4B; TREAT F(2,6) = 8.42, P < 0.05].
Again, this significant difference was due to a clozapine effect
which led to a reduced cellular concentration of FFA (clozap-
ine vs. control condition: P < 0.05; clozapine vs. haloperidol:
P = 0.069).
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FIGURE 2 | (see Figure 1 ①–②): Lactate and glucose

concentrations in OLN-93 cell homogenates (A,C) and media

(B,D) are shown after 6 and 24 h of treatment. Annotation:

Data are given as mean ± s.e.m. ∗∗P < 0.01, ∗∗∗P < 0.001, n.s.
not significant; three of the 15 dishes per experimental setting
were pooled for these analyses.

Galactocerebroside (Figure 1⑧)
Quantitative evaluation (Figure 5) revealed a dependency of
galactocerebroside expression on the treatment condition [6 h:
TREAT F(2, 15) = 4.41, P < 0.05; 24 h: TREAT F(2, 15) = 35.11,
P < 0.001]. This was caused by a higher level of this characteristic
myelin lipid in clozapine-treated OLN-93 oligodendrocytes after
6 h (clozapine vs. control: P < 0.05, clozapine vs. haloperidol:
P < 0.05) and 24 h (clozapine vs. control: P < 0.001, clozapine
vs. haloperidol: P < 0.001). Clozapine treatment led to a signif-
icant increase in galactocerebroside expression during the time
course from 6 to 24 h [F(1, 10) = 24.63, P < 0.01], while this
effect was absent in haloperidol treated cultures [F(1, 10) = 0.09,
P = 0.77].

DISCUSSION
This study is the first to present a comparative analysis of the
effects of clozapine and haloperidol on metabolism in oligo-
dendrocytes that are known to be crucial in maintaining brain
connectivity. Consistent with the hypothesis that these two pro-
totypical first and second generation antipsychotic drugs might
exert their well-known differential therapeutic effects due to dif-
ferential modulation of oligodendrocyte metabolism, this study
experimentally elaborates on their respective impact. The results
yield clear cut differences between clozapine and haloperidol.
Clozapine promotes glucose utilization by oligodendrocytes as
reflected by decreased glucose and increased lactate which is
crucial for neuronal energy supply. Moreover, clozapine fosters
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mitochondrial respiration, thereby promoting cellular energy
production and lipid synthesis supporting myelination and
thus neuronal connectivity. In contrast, haloperidol appeared to
inhibit glucose utilization by the oligodendrocytes and led to
increased consumption of lactate as reflected by decreased lactate
abundance after incubation.

FIGURE 3 | (see Figure 1 ③–④): RT-PCR analysis of MCT1-, GLUT1- and

GLUT3-expression in relation to the housekeeping gene GAPDH in

OLN-93 cells. Compared to the control condition, 1 µg/ml of haloperidol
and 10 µg/ml of clozapine had no significant effect on the expression of
these transporters. MCT2, MCT3, MCT4, and GLUT4 were not expressed in
OLN-93 cells. Annotation: Results from three tests per treatment condition
are presented (five of the 15 dishes per experimental setting were pooled
for the RT-PCR analyses). Abbreviations: fc, fold change, ratio describing
how much the expression of respective membrane transporters (compared
to GAPDH expression) changes from the control condition to haloperidol or
clozapine treatment; GAPDH, glyceraldehyde-3-phosphate dehydrogenase,
one of the most commonly used housekeeping genes used in comparisons
of gene expression data; GLUT, glucose transporter, MCT, monocarboxylate
transporter. Annealing temperature for all primers: 55◦C; cycle number
(within linear range) for all MCTs and GLUTs: 34, for GAPDH: 24.

AVAILABILITY OF GLUCOSE AND LACTATE (FIGURES 1 ①–④, 2)
Haloperidol treatment decreased glycolysis in OLN-93 oligoden-
drocytes, as shown by increased intracellular and extracellular
glucose levels, and lactate levels were reduced. Increased lev-
els of glucose in the media suggest that the haloperidol-treated
OLN93 cells consumed glucose at a lower rate than untreated
cells. Conversely, clozapine treatment led to decreased extracel-
lular glucose levels and increased intra- and extracellular lactate
levels within 24 h, indicating increased glycolysis compared to
untreated cells. The finding that lactate is released from clozapine-
treated OLN-93 cells suggests that oligodendrocytes treated with
clozapine in vivo also provide increased amounts of lactate, which
may result in additional energy for axons (Fünfschilling et al.,
2012; Lee et al., 2012). Axons are known to express MCT2, an
important transport protein for the uptake of lactate (Pierre et al.,
2007; Merezhinskaya and Fishbein, 2009).

Surplus glucose has been added to the culture medium. Thus,
it is unlikely that the observed effects were caused by impaired
glucose supply. We interpret the presented results rather as a
consequence of changes in the turnover of glucose because of
an altered demand of glucose. In the case of clozapine, glucose
turnover seems to be increased due to increased lipid production
[increased ACC1 and galactocerebroside expression; see Myelin
Lipid Synthesis (Figures 1 ⑥–⑧, 4, 5)]. An interpretation of the
observed haloperidol effects on glucose and lactate levels is less
clear since the demand of glucose seems to be reduced while we
did not find a significantly reduced lipid synthesis.

Haloperidol and clozapine had no significant influence on
the expression of MCT1, GLUT1, or GLUT3 in OLN-93 cells
(Figure 3). The observed expression pattern of these transporters
in OLN-93 oligodendrocytes is in line with the literature (Pierre
et al., 2007; Merezhinskaya and Fishbein, 2009). GLUT1 is widely
distributed and responsible for basal level glucose uptake; GLUT3
is primarily expressed in neurons, but it is also found in other
human cells, such as oligodendrocytes (Bell et al., 1990).

MITOCHONDRIAL RESPIRATION (FIGURE 1⑤, TABLE 2)
We found no significant differences in the FCCP/protein ratio
between controls (PBS-treated cells) and haloperidol-treated cells
after 6 or 24 h. Thus, our data cannot associate haloperidol action
to mitochondrial respiration in the applied experimental set-
ting. Notably, these measures in an incubation chamber may not

Table 2 | (see Figure 1): Mitochondrial respiration in terms of oxygen consumption was assessed with a Clark-type electrode in a temperature

regulated incubation chamber (Reynafarje et al., 1985).

Time (h) Parameter PBS Haloperidol Clozapine P-value P-value

haloperidol vs. PBS clozapine vs. PBS

6 FCCP/protein (ng atom O/min/mg) 63.16 ± 13.57 77.78 ± 26.10 71.51 ± 13.05 0.373 0.701

6 FCCP/oli 9.20 ± 1.10 13.98 ± 3.40 13.77 ± 1.94 0.193 0.116

24 FCCP/protein (ng atom O/min/mg) 69.95 ± 19.84 66.82 ± 6.79 79.34 ± 10.96 0.892 0.479

24 FCCP/oli 4.70±1.66 8.37 ± 3.99 10.77±3.68 0.224 0.039*

Annotations: FCCP, cellular respiration after the addition of p-trifluoromethoxyphenylhydrazone, a protonophore and uncoupler of mitochondrial oxidative phosphory-

lation; the FCCP/protein ratio is an estimate of the cellular content of functionally intact mitochondria in the analyzed OLN-93 cells; oli, cellular respiration after the

addition of oligomycin, an inhibitor of mitochondrial adenosine triphosphatase; the FCCP/oli ratio is an estimate of the efficacy of mitochondrial respiration. Data are

given as mean ± SD from n = 5 cultures per experimental setting; *P < 0.05.
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FIGURE 4 | (see Figure 1 ⑥–⑦): (A) Western blot analysis of acetyl-CoA
carboxylase (ACC1)-expression in OLN-93 cells. Antipsychotic treatment with
clozapine led to a significant increase in the expression of this rate limiting
enzyme for fatty acid synthesis compared to the control condition or

haloperidol treatment. (B) The cellular concentration of free fatty acids was
dependent on the treatment condition. Clozapine led to a significant decrease
in the free fatty acid content of OLN-93 cells. Annotation: Data are given as
mean ± s.e.m. ∗P < 0.05, ∗∗∗P < 0.001.

perfectly mirror haloperidol’s effects on endogenous cell respira-
tion in the culture dish. This is important, because an inhibition
of mitochondrial respiration and free radical induction have been
suggested as a mechanism of haloperidol neurotoxicity in the past
(Arnaiz et al., 1999).

The clozapine-dependent decrease in extracellular glucose
concentration may be due to stimulation of glycolysis. Elevated
lactate concentrations measured after clozapine treatment sug-
gest an increase in anaerobic glycolysis, which would lead to
reduced ATP synthesis. However, the data of the current mito-
chondrial respiration analysis did not suggest a clozapine-induced
decrease in the amount of mitochondria and the capacity of
the respiratory chain for ATP synthesis (FCCP/protein ratio).
Moreover, increased levels of the FCCP/oli ratio in the pres-
ence of clozapine indicated a lower degree of consumed oxygen
molecules that were not coupled to ATP synthesis. In addition,
the increase of the FCCP/oli ratio supports the possibility of
clozapine-induced changes in the lipid composition of the mito-
chondrial membrane system. In fact, changes in lipid metabolism
were evident at the level of FFA and galactocerebroside synthesis
(see below). Taken together, these data suggest that the enhance-
ment of glucose turnover ameliorates ATP synthesis via mito-
chondrial oxidative phosphorylation as well as anaerobic lactate
formation.

With regard to lipid synthesis such an increased lactate gen-
eration results in elevated nicotinamide adenine dinucleotide

phosphate (NADPH) levels that in turn support the synthesis of
FFA and lipids. Additionally, changes in the permeability of the
mitochondrial membrane system (leak respiration) may be linked
to decreased thermogenesis. Such a lowered energy demand,
mediated by the activity of the mitochondrial citric acid cycle,
might again contribute to higher NADPH levels, thus supporting
lipid synthesis.

MYELIN LIPID SYNTHESIS (FIGURES 1 ⑥–⑧, 4, 5)
Enhanced glycolysis and high lactate levels induced by clozapine
are likely to trigger lipogenesis and myelin synthesis, since these
processes require the availability of lactate in oligodendrocytes
(Sanchez-Abarca et al., 2001).

Indeed, the present data suggest an increased expression
of ACC1, the rate limiting key enzyme for FFA synthesis.
Furthermore, clozapine but not haloperidol treatment was
associated with an increased expression of galactocerebroside.
Accordingly, the turnover of FFA in OLN-93 oligodendrocytes
was increased by clozapine, leading to a decrease of their intra-
cellular concentration. These data hint at a metabolic scenario
which might explain why the administration of clozapine, by
improving myelination and maintaining connectivity in the cen-
tral nervous system, is associated with a superior longtime effect
on psychotic symptoms. Studies in rodents have not yet system-
atically examined the influence of antipsychotic drugs on myelin
lipid synthesis. However, previous results suggest that clozapine
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FIGURE 5 | (see Figure 1): (A–F) Photographs display examples of the
galactocerebroside immunostaining in control cultures and after treatment
with haloperidol (+halo) or clozapine (+cloz) for 6 and 24 h. (G) Quantitative
evaluation of the galactocerebroside immunostaining intensity revealed a
higher expression of this characteristic myelin lipid in clozapine-treated
OLN-93 oligodendrocytes. Notably, clozapine-treated cells showed also a
more mature cytomorphology. Annotation: Data are given as mean ±
s.e.m. from n = 6 cultures per experimental setting; ∗P < 0.05, ∗∗P < 0.01,
∗∗∗P < 0.001. The scale bar in Figure 5B is representative for all
photographs in Figure 5.

and quetiapine show superior effects regarding remyelination and
oligodendrocyte maturation (in C57BL/6 mice suffering from
cuprizone-induced white matter damage; Xiao et al., 2008; Xu
et al., 2010; Zhang et al., 2012). Xu et al. observed less social inter-
action in mice given the myelin-toxic agent cuprizone for 28 days
(Xu et al., 2010). Supporting the finding of a superior effect of
clozapine on oligodendrocytes and myelin integrity, these behav-
ioral changes were ameliorated by clozapine or quetiapine, but
not by haloperidol (Xu et al., 2010).

LIMITATIONS AND POTENTIAL QUESTIONS
While cell culture studies do not necessarily reflect the in vivo
pathophysiology and drug effects within the diseased brain, the

present results indicate distinctly different actions of haloperidol
and clozapine on of the energy metabolism and maturation of
oligodendrocytic OLN-93 cells.

Our acute model nicely shows how these drugs act fast over
the cellular proteome and metabolism. Antipsychotics’ metabolic
side-effects typically take a considerable amount of time to mani-
fest in humans. Then it is natural to think that cellular effects are
also delayed. Our results suggest earlier mechanisms. We defend
that the delay in observing weight gain for example is due to the
fact that there must be a systemic glycolytic dysfunction, which
starts in the brain, but will only reach the hepatic cells after a
while, if the antipsychotic treatment is continuous.

SUMMARY
Our results suggest that clozapine and haloperidol modulate
differently oligodendrocytic glucose and lactate homeostasis,
as well as myelin lipid synthesis. On the basis of clinical
observations that antipsychotic drugs with the greatest clin-
ical efficacy have the greatest metabolic effects, such as in
the case of clozapine, it has been suggested that therapeu-
tic and adverse effects of antipsychotic drugs (in particular
clozapine) are related through influencing energy metabolism
(Girgis et al., 2008). Our novel insights indicate that clozap-
ine treatment might improve the energy supply and maturation
of oligodendrocytes. Moreover, clozapine is apparently supe-
rior compared to haloperidol in maintaining the integrity of
myelinated fibers. These findings support the concept that, in
addition to rebalancing neurotransmission, certain antipsychotics
may act as oligodendrocyte-modulators, improving neuronal
connectivity.

The presented data suggest glycolysis as a central biochemical
pathway underlying the effects of both antipsychotics on glucose
and lactate availability in oligodendrocytes. While haloperidol
treatment led to higher extracellular levels of glucose and lower
intracellular levels of lactate, suggesting reduced glycolysis, cloza-
pine improved glucose uptake as well as production and release of
lactate.

Future studies should try to get a better understanding of
these processes, e.g., by applying co-cultures with astrocytes and
neurons or by using animal experiments.

Understanding the action of antipsychotic drugs in oligoden-
drocytes may help to develop novel cellular- or myelin-directed
therapies for patients suffering from schizophrenia.
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