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ION CHANNELS AS SIGNALING NEXUSES
Ion channels are complex hetero-oligomeric structures character-
ized by large, dynamic interaction networks, or “interactomes.”
In addition to directing channel localization, density and ion
fluxes, these complexes facilitate downstream signaling events.
Moreover, pathological modulation of these networks contributes
to neurological dysfunction. Our contributors to this Research
Topic, “The truth in complexes: why unraveling ion channel multi-
protein signaling nexuses is critical for understanding the function
of the nervous system” have considered interactomes from the per-
spective of the ion channel, from that of its intracellular protein
modulators, and even from the point of view of lipid modulators.
Together these diverse perspectives spin an intricate web of ion
channel regulation in the nervous system.

MAJOR HUB: THE N-methyl-D-ASPARTATE RECEPTOR
(NMDAR)
Described by Fan et al. (2014) as a “multifunctional machine,” the
NMDAR interacts with a staggering number of proteins to shape
synaptic plasticity, psychiatric disorders and ischemic neuronal
damage. Notably, the authors outline arguably the most exciting
example of interactome-based basic science leading to improved
health outcomes: Tat-NR2B9c (also called NA-1). This cell-
permeable peptide targets a specific NMDAR interaction, reduc-
ing ischemic brain damage in rodents, primates and humans
(Sun et al., 2008; Cook et al., 2012; Hill et al., 2012). Li et al.
(2014) similarly highlights interactions between several ligand-
gated channels, including the NMDAR with other receptors and
intracellular proteins, again focusing on these interactions as
potential therapeutic targets for neuroprotection.

NOVEL NODES
Several other contributions shed light on the new insights into
the function and composition of interactomes of various voltage-
gated channels, regulated leak channels, and so called large pore
channels.

VOLTAGE-GATED CHANNELS
Traditionally viewed as auxiliary subunits, K+ channel regula-
tory proteins are growing in complexity in terms of function

and type. Known to regulate activation and trafficking of mus-
carinic receptor-activated Kir3 channels, Zylbergold et al. (2014)
provide evidence for an additional role of Gβγ subunits in
Kir3 channel stability. Nagi and Pineyro (2014) focus specifically
on opioid receptor signaling in the regulation of these chan-
nels. Jerng and Pfaffinger (2014) describe regulation of another
K+ current, sub-threshold A-type (Kv4), by the so-called aux-
iliary subunits, dipeptidyl peptidase-like proteins (DPLPs) and
Kv4 channel interacting proteins (KChIPs). While these were
amongst the first identified interactors (e.g., for KChiP An et al.,
2000), subsequent studies have significantly expanded the net-
work. With respect to DPLPs and KChIPs, further study has also
shed new light on their molecular diversity via alternative splic-
ing as well as their roles in regulating several other channel types,
such as voltage-gated Ca2+ channels and NMDARs. Connecting
K+ channels with voltage-gated Ca2+ channels, Engbers et al.
(2013) review how channel-channel interactions between inter-
mediate conductance Ca2+-activated K+ channels (IKCa) and
low voltage-activated Ca2+ channels (Cav3) functionally inter-
act with other conductances to regulate signal processing in the
cerebellum.

Na+ LEAK CHANNEL, NALCN
Elusive until recently, understanding of this regulated leak chan-
nel whose loss in mice is lethal (Lu et al., 2007), has greatly
expanded by virtue of key insights into its interactome. Cochet-
Bissuel et al. (2014) detail its ever-expanding list of interacting
proteins, such as the M3 muscarinic receptor (Swayne et al.,
2009). The authors highlight the involvement of the NALCN
interactome in a number of disorders in the nervous system rang-
ing from autism spectrum disorder (ASD) and schizophrenia to
epilepsy and Alzheimer’s disease.

PANNEXIN 1 (PANX1)
Permeable to ions and small metabolites like ATP, Panx1 chan-
nels gained early notoriety as “death pores” in ischemic stroke
and seizure (Thompson et al., 2006, 2008; Weilinger et al.,
2012). Highly expressed in neonatal brain (Ray et al., 2005;
Vogt et al., 2005), Panx1 also positively regulates proliferation
and differentiation, and negatively regulates neurite outgrowth in
developing neurons (Wicki-Stordeur et al., 2012; Wicki-Stordeur
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and Swayne, 2013). Wicki-Stordeur and Swayne (2014) reviewed
the growing Panx1 interactome to shed clues on the signaling
pathways in which Panx1 might be involved, highlighting roles
in cytoskeletal remodeling and inflammation.

MULTI-TASKING INTRACELLULAR MODULATORS
A number of contributions underscore the capacity of “promis-
cuous” intracellular proteins to modulate a variety of ion chan-
nels and receptors through physical interaction. Reviewed by
Donnelier and Braun (2014), cysteine string protein (CSP) is a
resident pre-synaptic vesicle molecular chaperone targeting ion
channels and vesicle-trafficking proteins. Not surprisingly, loss of,
or mutation in CSP leads to synaptic dysfunction and neurode-
generation in a variety of systems (e.g., Zinsmaier et al., 1994;
Fernandez-Chacon et al., 2004; Noskova et al., 2011). The sigma-1
receptor, reviewed by Pabba (2013), is an intracellular transmem-
brane protein that also acts in a chaperone-like way, modulating
plasma membrane localized voltage- and ligand-gated channels
with diverse neurophysiological and neuropathological implica-
tions. Harraz and Altier (2014) further link intracellular pro-
teins to the regulation of plasma membrane channels, reviewing
Stromal Interaction Molecule 1 (STIM1) in store-operated Ca2+
entry. They describe foundational work implicating STIM1 as the
Ca2+ sensor in this process critical for maintaining neurotrans-
mission. Further they outline key physical interactions between
STIM1 with Ca2+-release activated channels and voltage-gated
Ca2+ channels that coordinate the activation and inhibition
of these types of channels, respectively. Finally, two papers by
Wilson et al. (2014a,b) focus on another intracellular multi-
functional/multi-interactome protein, collapsin response media-
tor protein 2 (Crmp2). Best known as a microtubule stabilizer,
Crmp2 is regulated in a context specific way by multiple kinases,
and in turn, positively regulates both ligand- and voltage-gated
Ca2+ channels.

NEW FRONTIERS: TOWARD MORE COMPREHENSIVE
MACROMOLECULAR NETWORKS
Adding further complexity to ion channel networks is consider-
ation of lipid membrane composition and lipid second messen-
gers. In the sole lipidome-oriented contribution, Raboune et al.
(2014) identify novel N-acyl amides regulating transient receptor
potential vanilloid (TRPV) channels in the context of inflamma-
tory pain. The future understanding of ion channel interactomes
will undoubtedly include both proteome and lipidome compo-
nents as technological advances in lipidomic research (Bou Khalil
et al., 2010) become mainstream.

FINAL PERSPECTIVES: INTERACTOMES TO BEDSIDE
While daunting, elucidating these macromolecular intricacies has
a translational silver lining: while difficult to identify and unravel,
the myriad interaction loci revealed by studying these interac-
tions present unique opportunities for discrete, and potentially
safer therapeutic intervention. For example, selective blockade at
key interaction loci with cell-permeable peptides now provides an
infinite number of ways in which interactomes can be discretely
modulated to improve health outcomes.
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