fromtiers in

CELLULAR NEUROSCIENCE

PERSPECTIVE ARTICLE
published: 15 January 2015
doi: 10.3389/fncel.2014.00467

=

The role of ion channels in the hypoxia-induced
aggressiveness of glioblastoma

Luigi Sforna’, Marta Cenciarini’, Silvia Belia’, Maria Cristina D’Adamo?, Mauro Pessia?,
Fabio Franciolini'* and Luigi Catacuzzeno*

" Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
2 Faculty of Medicine, Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Perugia, Italy

Edited by:
Francesco Moccia, University of
Pavia, Italy

Reviewed by:

Mohamed Trebak, State University
of New York, USA

Alessandra Fioro Pla, University of
Torino, Italy

*Correspondence:

Fabio Franciolini and Luigi
Catacuzzeno, Department of
Chemistry, Biology and
Biotechnology, University of
Perugia, Via Pascoli 1, -06123
Perugia, Italy

The malignancy of glioblastoma multiform (GBM), the most common and aggressive
form of human brain tumors, strongly correlates with the presence of hypoxic areas, but
the mechanisms controlling the hypoxia-induced aggressiveness are still unclear. GBM
cells express a number of ion channels whose activity supports cell volume changes
and increases in the cytosolic Ca2* concentration, ultimately leading to cell proliferation,
migration or death. In several cell types it has previously been shown that low oxygen
levels regulate the expression and activity of these channels, and more recent data indicate
that this also occurs in GBM cells. Based on these findings, it may be hypothesized that
the modulation of ion channel activity or expression by the hypoxic environment may
participate in the acquisition of the aggressive phenotype observed in GBM cells residing
in a hypoxic environment. If this hypothesis will be confirmed, the use of available ion
channels modulators may be considered for implementing novel therapeutic strategies
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INTRODUCTION

Glioma is a major tumor involving glial cells in the central
nervous system, and accounting for 35-50% of intracranial
tumors in adults. Among them grade IV glioblastoma mul-
tiform (GBM) has the highest incidence and shortest patient
survival, with approximately three cases per 100,000 person-
years and median survival of only approximately 10 months. The
longest survival is achieved in patients who undergo resection
followed by radiotherapy and chemotherapy, yet the median
survival with this combined treatment is still only 20 months
(Holland, 2001). Increasing malignancy of gliomas strongly cor-
relates with insufficient blood supply, hypoxic areas and necrotic
formations. Many hypoxic regions are found in GBM, includ-
ing a central large necrotic core and multiple thrombotic foci
surrounded by pseudopalisading cells migrating away towards
more oxygenated areas (Rong et al., 2006; Amberger-Murphy,
2009). Hypoxia represents a major driving force for the devel-
opment of tumor aggressiveness through increased invasion,
resistance to apoptosis, chemo and radioresistance, and tumori-
genic cancer stem cells development (Yang et al., 2012). While
few of these effects are mediated acutely and “directly” by the
hypoxic condition, in most cases hypoxia acts by gene expression
changes promoted by hypoxia-induced factors (HIFs; Yang et al.,
2012).

GBM cells express a number of ion channels, membrane
proteins that allow the selective and controlled passage of ions
along their electrochemical gradient. Most of them have a dereg-
ulated expression in GBM as compared to normal glial cells,

and the resulting alteration in membrane ion flux has important
consequences in the acquisition of the features typical of the trans-
formed cell. For example, the coordinated activity of the upreg-
ulated K* and Cl~ channels generates transmembrane fluxes
of the respective ions supporting membrane potential changes
as well as cell volume changes promoted by the osmotically
driven water flux. Volume changes are in turn strongly required
for a number of basic cell functions, such as cell division and
growth, migration and death (Akita and Okada, 2014). Likewise,
Ca”*-selective ion channels, important modulators of the Ca®*-
dependent enzymes, are also often upregulated in GBM, where
they promote a number of important cell functions (Santoni
et al., 2012). Thus, ion channels may control most of the cell
functions also regulated by a hypoxic environment and may play
important roles in the mechanisms leading to hypoxia-modulated
GBM aggressiveness.

In several tissues, low oxygen levels regulate the expression
or activity of many ion channels, including those controlling the
aggressiveness of GBM (Shimoda and Polak, 2011). Since the ini-
tial description of a hypoxia-regulated ion channel (L6pez-Barneo
et al., 1988), numerous studies have been carried out indicating
that a variety of ion channels are sensitive to oxygen, exhibiting
changes in channel activity with acute hypoxia and alterations
in channel expression with prolonged hypoxic challenge (chronic
hypoxia).

Based on these observations we carried out a literature survey
aimed at addressing the following two questions: (i) Are there
GBM ion channels involved in the control of certain aspects of
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cell aggressiveness that are also regulated by hypoxia? (ii) For
these specific channels, do experiments performed in GBM
or in other preparations have highlighted a hypoxic-mediated
modulation of their expression or activity? This undertaking
has been made bearing in mind the rational that ion chan-
nels would be involved in the hypoxia-induced aggressiveness of
GBM.

CHEMORESISTANCE

Among the chemotherapics most used in the treatment
of GBM there are temozolomide (TMZ), carmustine (bis-
chloroethylnitrosourea; BCNU) and doxorubicin (DOXO), all
DNA alkylating agents causing DNA damage and cell death.
Although the use of chemotherapics plays an important role in
the combined treatment of GBM, it remains a challenge because
of tumor chemoresistance (Haar et al., 2012). Among the many
factors contributing to GBM chemoresistance is hypoxia, both
with direct and indirect mechanisms. An obvious reason for
this resistance is that hypoxic areas are often relatively far from
blood vessels, preventing the chemotherapic agent from reach-
ing its target (Vaupel et al., 2001). Another protective factor is
the non proliferative nature of hypoxic cells, that makes them
intrinsically resistant to the anticancer agents acting preferentially
on cycling cells (Oliver et al., 2009). More detailed molecular
research also suggests that among the targets of HIF-1 is MDRI,
the gene encoding for P-glycoprotein, the drug transporter that
strongly contributes to chemoresistance by a drug efflux activity
(Comerford et al., 2002).

GAP JUNCTIONS

Several studies show an involvement in GBM chemoresistance for
gap junctions, intercellular ion channels that allow the passage
of small ions and molecules between neighboring cells (Simon
and Goodenough, 1998; Goldberg et al., 1999; Fry et al., 2001).
In astrocytes and astrocytoma cells gap junctions are formed by
the connexin 43 (Cx43) subunits. It has been recently shown
that increasing the level of Cx43 in human LN18 and LN229
glioma cells enhances resistance to TMZ, while knockdown of
Cx43 sensitizes them to TMZ, demonstrating a fundamental
role of gap junctions in the responsiveness to chemotherapics
(Gielen et al., 2013). In these cells Cx43 alters mitochondrial
apoptotic pathways by regulating the level of Bax2 and Bcl-2,
as well as Cyt C release from the mitochondria following TMZ
treatment (Gielen et al., 2013). In addition to its recognized
role as channel protein, Cx43 has a “non-channel” mechanism
of action involved in intercellular signaling (Goodenough and
Paul, 2003; Naus and Laird, 2010), and this mode of action
is thought to reverse the oncogenicity of human GBM cells
(Huang et al., 1998). Interestingly, the Cx43-dependent TMZ
resistance was found to depend on both its channel-dependent
and -independent mechanisms, as demonstrated by using Cx43
channel-defective mutants (Gielen et al., 2013). Although the
effects of hypoxia on GBM gap junctions have not been inves-
tigated, several studies in other preparations point to a possible
modulatory role. In cardiac tissue and MDCK epithelial cells
expressing Cx43, hypoxia rapidly activates Akt, which leads to
Cx43 phosphorylation and to larger gap junctions (Dunn and

Lampe, 2014). Also in human mesenchymal stem cells Cx43
expression is increased by hypoxia (Grayson et al., 2007). Con-
versely in rat HOC2 and HL-1 cardiomyocytes hypoxia promotes
Cx43 degradation (Severino et al., 2012; Wu et al.,, 2013). In
cultured astrocytes Cx43 underwent dephosphorylation 30 min
after hypoxia, and this was preceded by a strong reduction
in gap junctional intercellular communication (Li and Nagy,
2000). Based on this evidence, it may be hypothesized that Cx43
participate in the hypoxia-induced chemoresistance observed
in GBM.

Cl~ CHANNELS

A number of different CI~ channels have been reported to
be expressed in GBM cells and to be implicated in several
cell functions, including chemoresistance (Sontheimer, 2004;
Catacuzzeno et al., 2011, 2014; Cuddapah and Sontheimer, 2011).
It was found that a BCNU-resistant subpopulation of GBM
cells upregulated the CIC-1 intracellular CI~ channel, whereas
the unspecific CI~ channel inhibitor DIDS synergistically aug-
mented the apoptotic efficacy of BCNU (Kang and Kang, 2008).
In addition, specific inhibition of CIC-3 expression by siRNA-
mediated knockdown sensitized U251 cells to cisplatin-mediated
cell death, through the downregulation of phosphorylated Akt
(Su et al., 2013). Again, although no evidence is present in
GBM cells for a hypoxia-induced modulation of CI~ channels,
in other preparations this modulation was found. For exam-
ple, chronic hypoxia upregulates Ca?*-activated Cl~ channels
in vascular smooth muscle cells (Sun et al., 2012), while acute
hypoxia inhibited the swelling-activated Cl~ current (Icyswen)
in cerebellar granule neurons (Patel et al., 1998). These data
suggest a possible hypoxia-mediated modulation of CI~ chan-
nels also in GBM, that can have a role in the hypoxia-induced
chemoresistance.

MIGRATION/INVASION

GBM cells often invade adjacent normal brain tissue, and this
infiltrative behavior makes complete surgical resection impos-
sible, and tumor recurrences most frequent (Claes et al., 2007;
Lefranc et al., 2009). Several studies have shown that hypoxia
is a major promoter of GBM invasion. Under hypoxic condi-
tions GBM cells increase both their bi-dimensional migratory
ability, as tested by wound-healing assay, and their invasiveness
on matrigel-coated transwell (Shen et al., 2013; Zhang et al.,
2013). Both these types of hypoxia-induced migratory abilities
were mediated by HIF-1, as demonstrated through knock-down
experiments (Méndez et al., 2010; Esencay et al., 2013; Fujimura
etal., 2013).

Cl~ CHANNELS

Several studies show that GBM cells over-express the Cl~ chan-
nels CIC-3 and the Ca’"-activated K™ channels KCal.l and
KCa3.1, and their coordinated activity, promoting K™ and CI~
transmembrane fluxes, supports cell volume and membrane
potential changes necessary for GBM cell migration and inva-
sion (Catacuzzeno et al., 2012; Turner and Sontheimer, 2014).
CIC-3 channels have been shown to play an important role in
cell migration and invasion (Olsen et al., 2003; Ernest et al.,
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2005; McFerrin and Sontheimer, 2006), and found to be local-
ized in invadopodia where they form protein complexes with
other important modulators of cell invasion, such as matrix
metalloprotease-2 and aquaporin-4 (Deshane et al., 2003). Given
the previously mentioned evidence for a hypoxia-induced mod-
ulation of CI~ channels, it may be hypothesized that a change in
Cl™ channel expression or activity may have a role in the hypoxia-
induced GBM invasiveness.

Ca?*-ACTIVATED K+ CHANNELS

KCal.l and KCa3.1 channels have also been shown to be
required by several pro-migratory signals (Sontheimer, 2008;
Sciaccaluga et al., 2010; Catacuzzeno et al, 2011). KCal.l
channels are expressed as a particular splicing isoform in
GBM cells (the glioma BK, gBK; Liu et al, 2002), and
are implicated in GBM invasion (Bordey et al., 2000; Won-
dergem and Bartley, 2009; Cuddapah and Sontheimer, 2011;
Steinle et al.,, 2011). KCa3.1 channels are most important in
GBM as they are virtually not expressed in normal, differ-
entiated glial cells. Their presence could thus be exploited as
an important diagnostic tool, and their pharmacological tar-
geting could well represent a potential therapeutic strategy
for this tumor (Catacuzzeno et al., 2012). It has been found
that several recognized pro-migratory signals, such as fetal calf
serum and SDF-1, activate KCa3.1 channels, leading to GBM
cell migration (Sciaccaluga et al., 2010; Catacuzzeno et al.,
2011).

Several studies show that KCal.l and KCa3.1 channels can
be modulated by chronic hypoxia. In human pulmonary smooth
muscle cells hypoxia increases the expression of both the KCal.l
a and the B1 subunits through a HIF-1a-mediated mechanism
(Resnik et al., 2006; Ahn et al., 2012). Conversely in human
podocytes hypoxia causes a significant reduction in KCal.1 chan-
nel currents, by an increase of the KCal.1 p4 subunit, that causes
a shift of the channel activation range toward more depolarized
voltages (Zhang et al., 2012a). In alveolar epithelial A549 cells and
rat carotid body type I cells KCal.l channels appear also sensitive
to acute hypoxia (Riesco-Fagundo et al., 2001; Jovanovi¢ et al.,
2003). In addition hemoxygenase-2 (HO-2) has been found to
be part of the KCal.l channel complex, and modulate channel
activity depending on the oxygen levels (Williams et al., 2004).
Hypoxia can also directly inhibit specific KCal.1 channel splicing
isoforms containing a cysteine-serin (CS) motif in its C-terminal
segment (McCartney et al., 2005), a feature also displayed by the
gBK isoform (Liu et al., 2002). However, a recent study performed
in GBM cells has shown that acute hypoxia activates KCal.1 chan-
nels residing in the mitochondrial membrane, while no effect was
observed on plasmamembrane KCal.l channels (Gu et al., 2014).
The effects of chronic hypoxia on the expression or properties of
GBM KCal.l channels, and whether this modulation has a role
in the hypoxia-induced invasive phenotype, remain to be tested.
Finally, in intestinal epithelial cells chemical hypoxia modulates
the basolateral KCa3.1 activity (Loganathan et al., 2011).

TRPC6 CHANNELS
One of the few cases where a role of ion channels in the
hypoxia-induced aggressiveness has been clearly demonstrated is

represented by the Ca?*-permeable transient receptor potential
6 (TRPC6). In GBM cells hypoxia increases Notchl acti-
vation, which induces the expression of TRPC6, result-
ing in an increased basal intracellular Ca’™ concentration
and activation of the calcineurin-nuclear factor of acti-
vated T-cell (NFAT) pathway (Chigurupati et al, 2010).
The hypoxia-induced TRPC6 upregulation is required for the
development of the aggressive phenotype as TRPC6 knock-
down inhibited glioma growth, invasion, and angiogenesis.
Finally, expression of TRPC6 was elevated also in GBM spec-
imens in comparison with normal tissues (Chigurupati et al.,
2010).

T-TYPE Ca?* CHANNELS

U87 GBM cells express all three a subunits of T-type Ca?* chan-
nels, a class of Ca** permeable low-voltage activated channels
that open in response to small depolarization of the membrane,
and whose activity increases the transwell migratory ability of
these cells (Zhang et al., 2012b). Notably, hypoxia modulates
T-type Ca?t channels in many different cell types. In PCI12
cells and adult chromaffin cells, the a1 subunit mRNA expres-
sion and the number of functional T-type Ca*" channels are
upregulated by hypoxia (Del Toro et al., 2003; Carabelli et al.,
2007). It may thus be possible that a hypoxia-induced upreg-
ulation of T-type Ca?T channels in GBM cells participates in
enhancing the invasive potential of these cells under hypoxic
conditions.

STORE-OPERATED Ca?* CHANNELS

A role in GBM cell migration has also been found for the
store-operated Ca?* channels, Ca’* permeable channels whose
activity is controlled by the filling level of the intracellular
Ca?t stores. In two different primary cultures from GBM
biopsies knock-down of the STIM1/ORAI proteins encoding
for the store-operated Ca?' channels strongly reduced the
serum-induced chemotactic migration through transwell mem-
branes (Motiani et al., 2013). Interestingly, in pulmonary artery
smooth muscle cells, acute hypoxia activates the store-operated
Ca’* entry (Peng et al., 2013), and in the distal intrapul-
monary arteries chronic hypoxia upregulates the expression of
STIM1 (Hou et al.,, 2013). In addition Wilms tumor suppres-
sor 1, a recognized inhibitor of STIMI1 expression (Ritchie
et al.,, 2010), has been identified as a target of HIF-1 (Scholz
and Kirschner, 2011). All these data point to the sugges-
tion that a hypoxia-induced modulation of the store-operated
Ca’* entry may contribute in promoting the invasion of GBM
cells.

RADIORESISTANCE

Radiation therapy impairs the growth and survival of tumor cells
mainly by causing double strand breaks in the DNA backbone. It
is included, as adjuvant therapy, in the surgical and chemothera-
pic treatments of GBM. However, outcomes are poor, and GBM
remains an incurable disease with the majority of recurrences
and progression within the radiation treatment field (Alexander
et al., 2013). Tumor hypoxia represents a severe problem for
radiation therapy, as radiosensitivity rapidly decreases when the
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O partial pressure is less than 25-30 mmHg. Since in low oxygen
the DNA damage speeds up, the radiotherapic dose required
to achieve the same biologic effect is markedly higher under
hypoxia (Gray et al., 1953). Several lines of evidence indicate
that hypoxia is involved in the transcriptional modulation of
genes that control cell growth and resistance to apoptotic cell
death, and the selection of more resistant cell clones, and all
these actions may have a major impact on radioresistance (Vaupel
etal., 2001; Vaupel, 2004; Amberger-Murphy, 2009; Jensen, 2009).
Despite a full course of radiotherapy, up to 90% of GBM relapse
in proximity of areas with high HIF-1 expression (Brat and
Van Meir, 2004; Rong et al., 2006). In addition the intensity
of hypoxia in GBM before radiotherapy is strongly associated
with enhanced tumor progression and decreased patient survival
(Spence et al., 2008). Recent studies, both in cultured GBM
cells and in xerograph models, show that cycling (intermit-
tent) hypoxia induces HIF-1 upregulation, nox4-mediated ROS
production and increased radioresistance (Hsieh et al., 2010,
2012).

KCa1.1 CHANNEL

A well-known form of radioresistance is the promotion of tumor
cell invasiveness by irradiation (Camphausen et al., 2001; Wild-
Bode et al., 2001; Qian et al., 2002; Cordes et al., 2003; Park
et al., 2006). Interestingly, it has been found that irradiation
of GBM cells raises the intracellular Ca®* concentration and
stimulates KCal.l channel activity, which result in the activation
of CaMKII and enhanced cell migration (Steinle et al., 2011).
Notably, both CaMKII activation and the enhanced migration
were abolished by the KCal.1 channel inhibitor paxilline (Steinle
et al., 2011). As several studies have shown that in GBM cells
and in other tissues KCal.l channels are modulated by hypoxia,
these results suggest that the hypoxia-mediated modulation of
KCal.l channels may participate to the hypoxia-induced GBM
radioresistance.

RESISTANCE TO APOPTOSIS

It has long been known that hypoxia increases the anti-apoptotic
potential of tumor cells by modulating the expression and activity
of the molecules involved in the apoptotic pathways (Harris,
2002). In GBM cells held under hypoxia BNIP3, a pro-apoptotic
member of the Bcl-2 family, becomes unable to translocate to the
cytoplasm and mediate hypoxia-induced cell death, thus favoring
cell survival through the loss of apoptotic potential (Burton et al.,
2006). Moreover, in GBM cells chronic hypoxia induces Bad
phosphorylation and prevents its binding to Bcl-XL, promoting
survival of GBM cells (Merighi et al., 2007).

CI~ AND Ca?*-ACTIVATED K* CHANNELS

Several ion channels expressed in GBM cells are required for
the apoptotic process. An early hallmark in apoptosis is the
cellular condensation, termed apoptotic volume decrease (AVD).
K" and Cl~ effluxes have an essential role in this mecha-
nism as they establish the driving force for cytoplasmic water
efflux from the cell. It has been shown that AVD in D54-
MG glioma cells is dependent on a DIDS-sensitive chloride
conductance (Ernest et al., 2008), and a KT efflux mediated

by Ca?*-activated K* channels, KCa3.1 and KCal.l (McFerrin
et al,, 2012). These channels play differential roles in apop-
tosis: KCa3.1 mediates AVD in response to the activation of
the intrinsic pathway, consisting in the mitochondrial disrup-
tion by various stressors, whereas KCal.l is engaged by the
extrinsic pathway, involving the stimulation by extracellular
ligands. The involvement of these two channels in different
apoptotic pathways is explained by the different temporal Ca**
profiles during induction of apoptosis (McFerrin et al., 2012).
We have already mentioned on the evidence of the hypoxia-
induced modulation of KCal.l, KCa3.1, and CI~ channels. If
these findings will be confirmed in GBM cells, a role of ion
channels in the hypoxia-induced resistance to cell death becomes
likely.

TRPV1 AND T-TYPE Ca?* CHANNELS

In U373 glioma cell line, capsaicin stimulation of TRPV1 channels
induced a rapid Ca?* influx, DNA fragmentation, externalization
of phosphatidilserine, mitochondrial transmembrane potential
dissipation, and activation of caspase 3 and p38 MAPK (Amantini
et al., 2007). In addition in GBM cell lines T-type Ca?t channels
are over-expressed and their activity is correlated with tumor
proliferation and progression. Valerie et al. (2013) showed that
in glioma cell lines the pharmacological inhibition or siRNA-
mediated knock-down of T-type Ca** channel leads to apoptotic
cell death by inhibiting mTOR/Akt pro-survival signaling path-
ways. We have already discussed the ability of hypoxia to modulate
T-type Ca’* channels. As for TRPV1 channel, in pulmonary
artery smooth muscle cells, the TRPV1 gene and protein are
upregulated by chronic hypoxia (Wang et al., 2008). Both TRPV1
and T-type Ca®* channels may thus potentially be involved in the
hypoxia-induced resistance to apoptosis in GBM cells.

CONCLUSIONS

In this perspective we have taken several examples of GBM
aggressiveness and showed how they strictly relate to hypoxia
and ion channels. Namely, we provided evidence that hypoxia
promotes GBM aggressive phenotypes, that several types of ion
channel are deeply involved in driving GBM aggressiveness, and
that hypoxia heavily modulates these very channels promoting
GBM aggressiveness. These lines of evidence are in our view
more than a circumstantial coincidence. On the contrary they
appear strong indications to put forward the working hypothesis
that hypoxia promotes the various forms of GBM aggressiveness
through mechanisms involving also ion channels as relevant play-
ers. This working hypothesis could be taken as a basis to direct
future research.
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