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INTRODUCTION

Atoh1 (Math1) was the first gene discovered in ear development that showed no hair cell
(HC) differentiation when absent and could induce HC differentiation when misexpressed.
These data implied that Atoh7 was both necessary and sufficient for hair cell development.
However, other gene mutations also result in loss of initially forming HCs, notably null
mutants for Pou4f3, Barhl1, and Gfi1. HC development and maintenance also depend on
the expression of other genes (Sox2, Eyal, Gata3, Pax2) and several genes have been
identified that can induce HCs when misexpressed (Jag7) or knocked out (Lmo4). In the
ear Atoh1 is not only expressed in HCs but also in some supporting cells and neurons
that do not differentiate into HCs. Simple removal of one gene, Neurod1, can de-repress
Atoh1 and turns those neurons into HCs suggesting that Neurod1 blocks Atoh1 function in
neurons. Atoh1 expression in inner pillar cells may also be blocked by too many Hes/Hey
factors but conversion into HCs has only partially been achieved through Hes/Hey removal.
Detailed analysis of cell cycle exit confirmed an apex to base cell cycle exit progression of
HCs of the organ of Corti. In contrast, Atoh1 expression progresses from the base toward
the apex with a variable delay relative to the cell cycle exit. Most HCs exit the cell cycle and
are thus defined as precursors before Atoh7 is expressed. Atoh1 is a potent differentiation
factor but can differentiate and maintain HCs only in the ear and when other factors
are co-expressed. Upstream factors are essential to regulate Atoh1 level of expression
duration while downstream, co-activated by other factors, will define the context of Atoh1
action. We suggest that these insights need to be taken into consideration and approaches
beyond the simple Atoh1 expression need to be designed able to generate the radial and
longitudinal variations in hair cell types for normal function of the organ of Corti.
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for HCs, like Gfil and Barhll (Li et al., 2002; Hertzano et al,,

The idea that single genes might be responsible for hair cell
(HC) development and thus could be used to regenerate HCs and
restore hearing was born in the late 1990s: Mice with a deletion of
the Pou domain gene Pou4f3 (aka Brn3c, Brn3.1) were completely
deaf, “owing to a failure of HCs to appear in the inner ear, with
subsequent loss of cochlear and vestibular ganglia” (Erkman et al.,
1996). This mouse mutant derived conclusion was soon followed
by data on human mutations showing that a truncating mutation
of the human POU4f3 gene is the basis of DFNA15, resulting in
progressive hearing loss (Vahava et al., 1998). Subsequent work
showed that HCs initially form and develop normal in Pou4f3
mutants, but eventually die in a base to apex progression (Xiang
et al., 2003; Hertzano et al., 2004). While the initial work claimed
loss of all sensory neurons, later work showed that some neurons
remain for 6 months in a dedifferentiated organ of Corti (OC)
that shows Atohl-lacZ and Myo7a positive cells (Pauley et al.,
2008). The original claim of “failure of HCs to appear” was thus
transformed into a rather normal initial development followed
by HC death. Pou4f3 is now recognized as a maintenance factor

2004) that is expressed in adult HCs through complex regulation,
including possibly the bHLH gene Atohl (Ahmed et al., 2012;
Masuda et al., 2012).

Why is this background information on Pou4f3 relevant for
the discussion of the role of Atohl (aka Mathl) for HC dif-
ferentiation and maintenance? In the following we will explore
that Atohl has much in common with Pou4f3 in terms of claims
raised as a gene that is “necessary and sufficient” for HC differ-
entiation (Chen et al., 2002; Giraldez and Fritzsch, 2007; Groves
et al., 2013). In contrast to this claim, the millions of neu-
rons outside the ear expressing Atohl (Mulvaney and Dabdoub,
2012) never turn into HCs, suggesting that Atohl is not suffi-
cient to induce HCs everywhere where Atohl is expressed. Only
the molecularly unclear context of certain cells of the ear allows
Atohl to drive HC differentiation and maintenance. Even in the
ear, Atohl is expressed in many cells (Matei et al., 2005) that
require additional manipulations to turn into HCs (Jahan et al,,
2010), indicating that expression of Atohl in the ear does not
guarantee differentiation of all cells into HCs. As with Pou4f3,
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it appears that Atohl absence is compatible with some cellular
differentiation, indicating that Atohl is not defining HCs but is
differentiating them (Jahan et al., 2012). The delayed and pro-
found loss of HCs in a “self-terminating” Atohl system (Pan
et al., 2012) and hypomorphic Atohl mutant (Sheykholeslami
et al., 2013) suggests an essential role in maintenance, possi-
bly including adult expression of Poudf3 (Masuda et al., 2012).
Consistent with Atohl being an essential differentiation and
maintenance factor for HC is the fact that overexpression can
rescue HCs (Yang et al,, 2012). Like Pou4f3, Atohl is neces-
sary to differentiate and maintain HCs. It remains to be shown
whether forced expression of Atohl (Kelly et al., 2012) can dif-
ferentiate HCs when certain factors are absent (Zou et al., 2004;
Kiernan et al., 2005; Bouchard et al., 2010; Ahmed et al., 2012;
Duncan and Fritzsch, 2013; Schimmang, 2013) that define the
context for Atohl action in the ear thus providing the com-
petency to respond to Atohl protein. Below we explore some
issues related to Atohl function that remain underexplored in
many contemporary reviews and propose novel strategies to
maintain HCs.

EXPRESSION OF Atoh1 OUTSIDE THE EAR DOES NOT LEAD
TO HC DIFFERENTIATION

Atohl was isolated from cerebellar granule cells, the largest pop-
ulation of neurons in the human brain, amounting to over 60
billion neurons (Ben-Arie et al., 1997; Herculano-Houzel, 2009).
Atohl is expressed in the proliferative precursor population of
the external granule cell layer where it is needed to generate
the billions of granule cells (Pan et al.,, 2009). Atohl is also
essential for medulloblastoma progression and Atohl removal
reduces the progression of this childhood tumor (Flora et al,
2009). In contrast to this expression of Atohl in proliferating
precursors in the CNS, the expression of Afohl in the mouse
cochlea is predominantly in post-mitotic HCs, with a possi-
ble overlap of Atohl expression and cell cycle exit in the basal
turn HCs (Ruben, 1967; Matei et al., 2005; Lee et al., 2006).
A pulse-chase experiment using BrdU or EdU labeling followed
by in situ hybridization for Atohl around E14 is needed to ver-
ify this suggestion of possible Afohl expression in proliferating
HC precursors. In the apex there is no expression of Atohl
prior to cell cycle exit, indicating that HC precursor specifica-
tion and cell cycle exit is independent of Atohl (Jahan et al,
2013; Kopecky et al., 2013). Both premature expression of Atohl
in Neurodl null mutants (Jahan et al., 2010) or delayed expres-
sion of Atohl in LmxIla null mice (Nichols et al., 2008) results
in aberrant development of HCs, implying that onset and level
of expression of Atohl is tightly regulated to ensure normal
differentiation of the right HC type at the right place (Jahan
et al.,, 2013). Importantly, forced expression of Atohl can in
postnatal mice induce supporting cell conversion (Liu et al,
2014a) and induces proliferation (Kelly et al., 2012), showing
that under these forced conditions Atoh1 exerts functions beyond
its tightly regulated function in the embryonic ear. In summary,
one of the conditions in which Atohl expression in the ear dif-
fers from other systems is its expression presumably exclusively
in post-mitotic undifferentiated HC precursors whereas in other
developing systems Atohl is primarily expressed in proliferating
precursors.

UPSTREAM AND DOWNSTREAM INTERACTIONS OF Atoh1
Before Atohl can differentiate post-mitotic HC precursors into
HCs, the HC precursors have to be specified in the right place and
have to receive a signal to exit the cell cycle. Numerous TFs have
been identified that are expressed prior to Atohl and affect HC
differentiation. For example, Sox2 hypomorphic mice (Kiernan
et al., 2005), Pax2 null mice (Bouchard et al., 2010), Eyal null
mice (Zou et al., 2004), and Gata3 conditional null mice (Duncan
and Fritzsch, 2013) all show no differentiation of HCs in the
cochlea duct but may show variable development of some vestibu-
lar HCs, suggesting a unique combinatorial requirement of these
genes for cochlear HC development. Misexpression of Jagl (Pan
et al., 2010) or Sox2 (Pan et al., 2013) as well as loss of Lmo4
(Deng et al., 2014) can induce ectopic formation of HCs. In par-
ticular work on Eyal/Six1 showed that Atohl is but an essential
link in a succession of decision making steps (Ahmed et al., 2012)
toward HC differentiation (Figure 1) with unknown regulatory
complexity.

Atohl regulates the expression of hundreds of downstream
genes (Klisch et al., 2011). Some of these genes are TFs that in
turn regulate expression of several hundred downstream genes.
One of the TFs that are regulated by Atohl, is NeurodI. Atohl
is in a positive autoregulatory loop whereby Atohl stimulates
its own expression through an enhancer sequence (Figure 1).
Such loops are typically counterbalanced by negative feedback
to ensure upper limits of expression. Neurodl is part of this
negative feedback loop and controls the level of Atohl expres-
sion in developing systems such as the cerebellum (Pan et al,,
2009), the intestine (Itkin-Ansari et al., 2005), and the ear (Jahan
etal., 2010, 2013). Absence of Neurod1 causes prolonged expres-
sion of Atohl in precursor cells (external granule cell layer) of
the cerebellum that are unable to migrate and differentiate and
eventually die (Pan et al., 2009). In the ear, absence of Neurod]l
causes transformation of sensory neurons into HCs through dis-
inhibition of a transient Atohl in neurons (Jahan et al., 2010)
and disruption of the patterning of the OC by altering the HC
and supporting cell types (Jahan et al., 2013). Some regulation
of Atohl is also reported in mutants of Hesl/5 (Zine et al,
2001, 2014) and Hey1/2 (Benito-Gonzalez and Doetzlhofer, 2014)
but results only in additional formation of HCs outside the OC
with limited effects on the patterning of HCs and supporting
cells in the OC. Atohl is not only regulating the expression of
downstream genes but also suppresses upstream genes such as
Sox2 (Figure1). In fact, downregulation of Sox2 appears to be
a crucial step for the transition from HC precursors to differ-
entiated HCs (Dabdoub et al., 2008) in agreement with many
other differentiating neurosensory system (Reiprich and Wegner,
2014).

Combined, these data show that the early implications of
Atohl as the “sole” factor necessary and sufficient to make HCs
have to be adjusted to accommodate the emerging concept of
Atohl integration into a gene network that allows a coordinated
transition from the placodal stage to the fully differentiated HC
(Ahmed et al., 2012). Arguably, Atohl is enabling a very essen-
tial step in this progression toward a HC, but is apparently not
needed for precursors to exit the cell cycle and to initiate HC dif-
ferentiation (Jahan et al., 2012). However, Atohl is a key to HC
differentiation (Kelly et al., 2012) and its continued expression
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FIGURE 1 | The interactions of Sox and bHLH genes in HC
differentiation in mice. Experimental data indicate a complex interaction
of Sox and bHLH genes in the progression of HC fate commitment and
differentiation. (A) Sox2 and Myc genes act downstream of Eya1/Six1 and
are essential for proliferation of HC precursor cells to ensure self-renewal of
precursors but also commitment to the HC lineage. These precursor genes
are turned off in the neurosensory lineage and bHLH genes are activated
that antagonizes Sox2. (B) bHLH TFs can form complex interactions in a
given cell that can undergo periodic changes in expression levels and their
signal can undergo context dependent variation between gene expression
and suppression. Data in mice and flies suggest that all proneural TFs
compete for the E-proteins (Tcf3,4,12) to form heterodimers for proper
binding. Thus, the level of all proneuronal bHLH TFs (here Atoh1 and
Neurod1) and available E-proteins as well as their binding preference will
determine how much signaling of heterodimers will occur. Importantly,
E-proteins can also interact with Hes/Hey factors and the inhibitors of DNA
binding (Ids), limiting availability of E-proteins for heterodimerization of
proneuronal protein, proportionally to the affinity and concentration of all
these interactive partners. In essence, the binding properties and
frequency of the binding partners will determine whether a cell is
differentiating as a neuron/HC, a supporting/glial cell, or is continuing
proliferation as a prosensory precursor. HC, hair cell; SC, supporting cell.
Modified after (Fritzsch et al., 2015a).

may be essential to maintain differentiated HCs through expres-
sion of other genes such as Gfil, Poudf3, and Barhll (Masuda
etal., 2012).

CELL CYCLE EXIT AND Atoh1 EXPRESSION

Proliferating neurosensory precursor cells are characterized by
the expression of multiple transcription factors (TFs) (Ono
et al., 2014) and manipulating cell cycle regulation can result in
increased (Mantela et al., 2005; Schimmang and Pirvola, 2013) or
decreased HCs (Kopecky et al., 2011, 2013). Together these factors
ensure that proliferating HC precursors retain a neurosensory
determination but continue proliferation to generate more neu-
rosensory cells, under certain conditions and in certain species as

stem cells throughout life, like in the olfactory system (Gokoffski
et al., 2011). Nearly ubiquitous in these stem cells is the expres-
sion of Sry-box gene Sox2 (Reiprich and Wegner, 2014) and
several Helix-loop-Helix (HLH) genes (Figure 1), in particular
Hes, N-Myc and ID genes, but also some proneural basic Helix-
Loop-Helix (bHLH genes) such as Ascll, Neurogl and, rarely,
Atohl (Ma et al., 1996, 1998; Imayoshi and Kageyama, 2014).
Sox genes and bHLH genes are each engaged in a complicated
interaction with members of their own class of genes within a
given precursor (Fritzsch et al., 2006; Imayoshi and Kageyama,
2014; Reiprich and Wegner, 2014) but also show cell-cell interac-
tions through Delta-Notch mediated regulation of bHLH genes
between cells (Benito-Gonzalez and Doetzlhofer, 2014). In par-
ticular, the intracellular interactions established through intrinsic
and extrinsic signal mediated fluctuation of expression levels is
the basis for a coordinated transition between precursors and
differentiated cells (Figure 1). How HC precursors are specified
in the right topology of the OC, how the cell cycle exit of HC
precursors is regulated and exactly when precursors are commit-
ted to HC differentiation by which molecular means remains an
open question despite recent insights into the regulation (Ahmed
et al., 2012; Masuda et al., 2012). Among bHLH genes, Myc
genes are playing a major role in regulating the numbers of HCs
(Dominguez-Frutos et al., 2011; Kopecky et al., 2011) but are later
also expressed in adult HCs where they play no discernable func-
tion (Kopecky et al., 2012). We will here explore only the role of
proneural bHLH genes in this process, also other TFs undoubt-
edly play a role in HC specification and proliferation (Kiernan
et al., 2005; Dabdoub et al., 2008; Rocha-Sanchez et al., 2011;
Ahmed et al., 2012; Schimmang and Pirvola, 2013).

LOSING Atoh1 AT DIFFERENT STAGES RESULTS IN
DIFFERENT EFFECTS

In the original paper describing absence of HC differentiation
in Atohl null mutant mice, some supporting cells stain for the
LacZ used to replace Atohl (Bermingham et al., 1999). A follow
up study using an Atohl enhancer element to drive fluorescent
GFP (Chen et al., 2002) showed that Atohl is only expressed
in post-mitotic cells to drive their differentiation. In addition,
degenerative cells were found in the OC of Atoh1 null mice, sug-
gesting that the primordial HCs form independently of Atoh1 but
degenerate without Atohl. Both papers indicated one major dif-
ference: Atohl-LacZ expression in supporting cells of Atohl null
mutants whereas no such misexpression was reported using GFP.
A subsequent paper using the LacZ insertion (Woods et al., 2004)
claimed an initial widespread expression at E13.5. This paper did
not correlate the apparent absence of Atoh1 expression in the apex
with the HC cycle exit known to start in the apex (Ruben, 1967;
Fritzsch and Nichols, 1993).

Using the same LacZ knockin model as previous papers
(Bermingham et al., 1999; Woods et al., 2004), a follow up paper
on homozygotic Atohl-LacZ mice showed continued presence
of a single row of undifferentiated LacZ positive cells (Fritzsch
et al., 2005) which were spared by the otherwise prevalent apop-
tosis of most HC precursors (Chen et al., 2002). Subsequent work
demonstrated that fluorescent GFP marker (Chen et al., 2002)
appeared in nearly every inner pillar cell (Matei et al., 2005;
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Fritzsch et al., 2015b). Furthermore, a novel mouse line using the
same enhancer element to drive Cre showed similar expression
of Atohl in many inner pillar cells (Matei et al., 2005). These
data implied, but did not proof beyond doubt that Atohl was
expressed in inner pillar cells and inferred that the remaining
Atoh1-LacZ positive cells in mutants were indeed supporting cells
(possibly inner pillar cells) as originally claimed (Bermingham
et al., 1999). Further work using a conditional approach to elim-
inate Atohl resulted in nearly identical data, implying that the
surviving cells in the absence of Atohl might indeed be inner
pillar cells in the OC (Pan et al., 2011). Additional work has mean-
while confirmed with different techniques that Atohl is indeed
prominently expressed in inner pillar cells (Driver et al., 2013).
Atohl expression in inner pillar cells may be counterbalanced
by Hes and Hey factors (Doetzlhofer et al., 2009) and a subse-
quent paper showed occasional conversion of inner pillar cells to
HCs (Benito-Gonzalez and Doetzlhofer, 2014). Atohl expression
has also been reported in delaminating sensory neurons (Matei
etal., 2005) and elimination of Neurodl suffices to turn some neu-
rons into HCs expressing Atohl and Myo7a (Jahan et al., 2010).
Combined, these data suggest that Atohl expression alone does
not suffice to turn just any cell in the ear into a HC as co-expressed
factors may inhibit this. At least inner pillar cells may be able to
survive without Atoh1 protein while maintaining LacZ expression
of the Atohl locus (Matei et al., 2005; Driver et al., 2013) and are
not transformed to HCs even under forced ubiquitous expression
of Atoh1 (Kelly et al., 2012).

More recent data provide yet a more complicated picture of
lack of Atohl expression on HC and OC differentiation. Using
an Atohl enhancer to drive Cre that activates the Cre only upon
presence of Atoh1 protein combined with floxed AtohI generates a
“self-terminating” system that results in loss of Atohl after a tran-
sient presence of Atohl protein (Pan et al., 2012). The level of
Atoh1 protein depends on the speed with which the Cre can excise
the floxed Atohl and how long residual Atohl protein remains
in the cell. Thus, while all cells will see recombination of the
LoxP flanked Atohl, this varies between HCs and thus results
in different delay lines of HC precursor apoptosis (Pan et al.,
2012). While many HC precursors die rapidly, others survive for
several days. Moreover, stretches of the first row of outer HCs
survive adjacent to well differentiated inner pillar cells indicating
an unusual difference in susceptibility between inner and outer
HCs as well as within HC rows in a base to apical gradient. This
conclusion is also supported by transgenic knockin mouse where
Atoh1 is replaced by Neurogl (Jahan et al., 2012) which shows that
some HC precursors can survive without ever expressing Atohl.
A recently available hypomorph mutant of Atohl shows a some-
what similar picture of longitudinal and a less clear radial HC loss
(Sheykholeslami et al., 2013) indicating that Atohl needs to be
present at a critical level to assure long term HC viability.

Data using inducible Cre expression have complicated this pic-
ture even further by showing a rapid and complete loss of all HCs
when Cre is induced at different stages of late development (Cai
et al., 2013; Chonko et al., 2013). Some claims about abortive
transdifferentiation of supporting cells into HCs (Cai et al., 2013)
need to be considered in the context of Atohl expression in one
specific type of supporting cell, the inner pillar cell (Matei et al.,

2005; Driver et al., 2013; Fritzsch et al., 2015b). Despite these
minor discrepancies, all papers confirm earlier work and demon-
strate that Atohl expression is needed to mature and maintain
HCs.

In summary, Atohl is, much like Pou4f3, a critical factor for
HC differentiation and long term maintenance. Atoh1 is involved
in regulating Pou4f3 whereas and its long term expression may
be dependent on Atohl expression. Further work combining
the recently reported hypomorphic allele (Sheykholeslami et al.,
2013) with conditional deletion of a floxed Atoh1 allele (Pan et al.,
2012) could detail how level of Atohl expression and duration
combine for normal HC maturation and maintenance.

SUMMARY AND OUTLOOK

Why is it important to go beyond the idea of “necessary and suf-
ficient” for Atohl function in the ear? First, while unregulated
expression of Atohl can convert most ear cells into hair cells
(Kelly et al., 2012), nobody has been able to regenerate the two
types of HCs that are essential for normal OC function in the right
proportion and the right distribution to ensure function (Beurg
et al., 2014). In fact, our limited insights into the molecular basis
of this crucial aspect of HC differentiation (Jahan et al., 2013)
are not profound enough to regenerate the right type of HC (Liu
et al., 2014b) to ensure normal function. Defining the molecular
context needed for HC type specific differentiation in conjunc-
tion with defined levels of Atohl expression (Jahan et al., 2013)
and controlled changes of Atohl expression over time (Ahmed
et al., 2012) will be needed to move forward.

Second, most HCs generated with Atohl treatment alone have
limited long term viability. In part this may relate to the pro-
gressive loss of Atohl in these experiments that may needed to
maintain long term Pou4f3 expression (Masuda et al., 2012), but
in part it may also relate to an unstable transformation into HC
that requires recapitulating the specification sequence of HCs
precursors and their differentiation. Such critical steps might
include expression of additional factors prior to and in addition
to Atohl or the prolonged expression of critical levels of Atohl.
Human hearing loss may show partial dedifferentiation of the OC
with profound local differences comparable to experimental ani-
mals (Taylor et al., 2012). A “one size fits all” approach to such
heterogeneity may result in incomplete restoration.

Finally, while the single gene approach to HC regeneration
has been extremely influential to catapult much research forward,
it is now time to reflect why this approach has not lived up to
its promise. We therefore suggest more complex procedures that
recapitulate steps in development of the OC in addition to Atohl.
For example, expressing Eyal, Pax2, Sox2, Jagl, Foxgl, Neurodl,
Neurogl, and Gata3 prior to Atohl expression may “prime”
remaining cells of the OC to respond to Atohl. Alternatively,
combining Atoh1 with downstream essential genes for HC main-
tenance that are only partially regulated by Atohl (Ahmed et al,,
2012), such as Pou4f3, could define the context for HC differenti-
ation. Moreover, using transient expression of Atohl in already
differentiated HCs might prolong their viability (Yang et al.,
2012), possibly long enough to sidestep the need for OC regenera-
tion in elderly people suffering from early stages of neurosensory
hearing loss. Given the projected massive occurrence of hearing
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loss in the next 25 years, ideas revolving around maintenance of
HCs using Atohl alone might provide more-short term benefit
compared to currently impossible reconstitution of the OC after
long term HC loss. Given the ability of Atohl to transdifferen-
tiate supporting cells in certain conditions (Liu et al., 2014a), it
might be necessary to replace Atohl by other bHLH genes that
can accomplish long term maintenance of HCs without risk of
transforming supporting cells into HCs. We are currently work-
ing on such approaches using novel mouse models to differentiate
HCs in the absence or at most transient presence of Atohl.
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