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Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization bursts in
the cerebellar Purkinje cell (PC), showing several high frequency spikelet components
(±600 Hz). Since its early observations, the CS is known to vary in shape. In this study
we describe CS waveforms, extracellularly recorded in awake primates (Macaca mulatta)
performing saccades. Every PC analyzed showed a range of CS shapes with profoundly
different duration and number of spikelets. The initial part of the CS was rather constant
but the later part differed greatly, with a pronounced jitter of the last spikelets causing a
large variation in total CS duration. Waveforms did not effect the following pause duration
in the simple spike (SS) train, nor were SS firing rates predictive of the waveform shapes
or vice versa. The waveforms did not differ between experimental conditions nor was
there a preferred sequential order of CS shapes throughout the recordings. Instead,
part of their variability, the timing jitter of the CS’s last spikelets, strongly correlated with
interval length to the preceding CS: shorter CS intervals resulted in later appearance of
the last spikelets in the CS burst, and vice versa. A similar phenomenon was observed
in rat PCs recorded in vitro upon repeated extracellular stimulation of CFs at different
frequencies in slice experiments. All together these results strongly suggest that the
variability in the timing of the last spikelet is due to CS frequency dependent changes in
PC excitability.

Keywords: Purkinje neuron, complex spike, monkey, waveform, saccades

Introduction

The Purkinje cell (PC) is the main point of converging pathways and the sole output neuron of
the cerebellar cortex. Two strikingly different input pathways provide its excitatory input: (i) the
massive convergence of granule cell axons onto a single PC’s distal dendrites; and (ii) the very strong
connection by the climbing fiber (CF), originating in the Inferior Olive (IO) and branching over the
PC dendrite proximal part. The granule cell input modulates simple spike (SS) firing, ranging up
to 200 Hz. CF input triggers complex spikes (CS) at a remarkably low frequency (1 Hz). CSs show
amassive calcium influx, during whichmultiple somatic Na+ spikes are fired. Following CSs the PC
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shows ±20 ms long pauses in the SS train (Bell and
Grimm, 1969; Latham and Paul, 1971; McDevitt et al.,
1982). These are attributed to both a depolarization related
refractory period, resulting from Ca2+ activated-K+-
hyperpolarizing currents (Edgerton and Reinhart, 2003),
and to CF collateral triggered molecular layer interneuron
inhibition (Szapiro and Barbour, 2007; Mathews et al.,
2012). Interestingly, those pauses may be involved in the
transfer of information downstream, which through concerted
disinhibition of the cerebellar nuclei could trigger rebound bursts
(De Schutter and Steuber, 2009; Maiz et al., 2012). CSs can
induce long-term depression at parallel fiber synapses on
PCs, which may be involved in cerebellar learning (Ito,
2001; Steuber et al., 2007). Despite decades of study and
its essential roles in most cerebellar theories, evidence
of their functional significance remains unclear. It has
been suggested to represent an error signal in cerebellar
learning (Ito, 2001; Kawato et al., 2011), to act as a
stabilizing factor in motor learning (Catz et al., 2005), and
to operate as a timing signal for temporal coordination
(Llinás, 2009; Lefler et al., 2013). These conflicting roles
ask for a closer look into the properties of CSs in behaving
animals.

Early observations on CS waveforms reported shape
variability (Eccles et al., 1966; Latham and Paul, 1971), but
did not describe this variability systematically. It is known that
the shape of a CS correlates with the intensity of intracellular
current injections in vitro (Davie et al., 2008) and that the
number of spikelets within a CS can be modulated by the
number of spikes in a CF burst (Mathy et al., 2009). In
rat cerebellar slices the pre-synaptic terminal of the CF-PC
connection displays paired-pulse depression at physiological
CS interval length ranges, resulting in a decreased number
of spikelets in the second complex spike (Hashimoto and
Kano, 1998). Furthermore the CF signal is modulated by
the IO subthreshold oscillation amplitude (Bazzigaluppi
et al., 2012) and could therefore act as a read out signal
on the IO’s state and/or have a differentially instructive
signal. In fact, a recent study reports that the CS duration
and spikelet number correlate with the amount of learning
in monkey PCs (Yang and Lisberger, 2014). Furthermore
it has been shown that through the closed loop between
PC, cerebellar nuclei and the IO, SS firing controls IO
activity in parts that have efferents to the PCs were the SS
originated. Control of the recurrent IO afferent input by SS
activity was shown in both classical eye blink conditioning
experiments (Rasmussen et al., 2014) and by optogenetic
stimulation of the PC (Chaumont et al., 2013). This raises
three questions: what is the variability of the CS shape
in awake behaving animals? Is this variability mainly in
spikelet numbers, or does it also occur in other features?
Finally, is CS variability correlated with other features of the
spike train that could provide insights into the mechanisms
underlying CS variability? These questions are addressed in this
paper by a systematic analysis of CS waveforms, observed in
macaques during resting state and while performing a saccade
fixation task.

Material and Methods

All experimental procedures were performed in agreement with
institutional, federal and European ethical guidelines and laws for
animal experimentation.

All animal preparations and procedures fully complied with
the National Institutes of Health Guide for the Care and Use
of Laboratory Animals and were approved by the local animal
care committee (Regierungspräsidium Tübingen, FG Tierschutz;
Germany).

During the saccade task the monkeys were motivated to work
by receiving a liquid reward (juice or water), while the intake
of water was monitored according to the guidelines of the DPZ
(Deutsches Primatenzentrum, Göttingen, Germany), as well as
with the institutional guidelines of the Department of Biomedical
Sciences of the University of Antwerp.

Electrophysiological Recordings in
Primates

Extracellular recordings from the oculomotor vermis in the
cerebellum of non-human primates (Macaca mulatta), were
performed as described earlier (Prsa et al., 2009), in three male
animals of different ages, over a time span of more than a year
for the purpose of other research projects. During the recordings
monkeys were painlessly head fixed and the eye position was
continuously monitored by scleral search coils. In four of the
recordings analyzed, the monkey was instructed to actively make
visually guided saccades prompted by a jumping target on a
CRT monitor at 35–40 cm distance, centered in front of the
monkey. In this visually guided saccade paradigm a white target
dot (diameter 0.2 degrees) was presented on the monitor at
the beginning of each trial. After a successful fixation period
within an invisible rectangular window of ±1 degrees from the
center of the dot for 500–1000 ms, the dot shifted to one of
the 8 possible locations (horizontal, vertical and oblique) at a
radial eccentricity of 10 degrees prompting a visually guided
saccade. Each correct trial was rewarded with a unit of liquid
(juice or water). Six additional recordings were obtained while
the monkey was sitting in the dark without instruction or reward
and executed spontaneous saccades.

Glass-coated tungsten microelectrodes (Alpha–Omega
Engineering, Nazareth, Israel) with an impedance of 0.8–2 MΩ

were employed to record extracellular raw voltage signals.
The low impedance and fine tip of these electrodes provides
low noise and excellent single cell discrimination, which was
essential for this work. Signals sampled at 25 kHz and amplified
3000 times were both band-pass filtered between 300 and
3000 Hz and low pass filtered (<250 HZ). These filtering
settings allowed separating spiking activity from local field
potentials. Furthermore a notch filter was applied to filter out
any 50 Hz noise induced by the power-line. PC activity was
identified by the simultaneous occurrence of SSs and CSs and the
above-mentioned characteristic pause in the SS train after a CS.
Only traces showing clear CS waveforms were used for further
analysis, performed off-line by custom MATLAB scripts (The
Mathworks, Natick, USA).
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Complex Spikes Detection and
Categorization

We only analyzed recordings with stable SSs and CSs amplitudes
to ensure the stability of the experimental conditions over time,
possibly affected by electrode position drifts. Traces showing
periods with distinct stable amplitudes were instead split into
separate segments, for further spike recognition.

From each 300–3000 Hz band-pass filtered extracellular
voltage signal, the first 20 CSs were manually selected in order
to sample their shape variety. Subsequent CS selection was
based on semi-automated detection, using multiple methods
based on combining both high band-pass and low-pass filtered
extracellular signals. The main method for CS detection is
based on voltage-threshold crossing on high band-pass filtered
signals, which could only be used if the CS’s first spikelet peak
amplitude substantially differed from SS amplitudes (Figure 1A).
The second method was based on the imprint of the CS on the
low-pass filtered signal, causing an upward voltage deflection
(Figures 1A,B). Due to the spontaneous slow waves in the local-
field potentials, however, the threshold level for this detection
method was determined with a moving average, whose length
was manually chosen for each recording (12–40 ms). The third
method was based on a combination of parameters describing
common features of the CSs, as observed in the high band-pass
filtered signal: e.g., an amplitude threshold for the first spikelet
and a time window, combined with an amplitude threshold for
the second or third spikelet (Figure 1C). For this last method the
event was only detected as a potential CS if all mentioned criteria
were met. This performed well because of the homogeneity in
the initial parts of the CS waveforms, as it can be seen in the
overlays of Figures 4A, 5A. The parameters of each method used
were chosen in such a way that all manually selected 20 CSs were
easily detected by the method. Subsequently a second by second
screening of the trace was performed to verify that our automated
methods did not miss CSs.

Then, the voltage samples corresponding to each of the events
detected by thesemethods were stored in a repository of potential
CSs. Each one was afterwards checked, comparing its shape on
the CS characteristics, such as amplitude of the signal, number
of spikelets and the similarity to the average CS waveform.
In principle, two closely following SSs might be erroneously
interpreted as a CS. However, such ‘‘false’’ CSs could easily be
discarded because of the longer duration of an individual SS
compared to a CS spikelet and the lack of a following SS pause.

To give an overview of the amount of variability in CS shapes,
the validated repository of waveforms was further categorized
into waveform groups. To this end, each CS was aligned at the
point of its highest voltage increase, i.e., its largest upstroke
velocity. The aligned overlay of the CSs shows a high degree of
uniformity of the initial parts of the CSs (Figures 4A, 5A—black
traces). Conversely, the late parts show increasing variation, both
in amplitude, spikelet count and spikelet timing. An immediate
striking observation, among the CSs, is the different numbers
of spikelets. Moreover, we noticed that among CSs with equal
number of spikelets the timing of spikelets varied. Despite the
large waveform variability it was obvious that CSs from the

FIGURE 1 | Examples of automated complex spikes (CS) recognition.
Gray boxes were drawn around each recognized CS among the SSs, in high
band-pass filtered (blue trace) and low-pass filtered signals (red trace) from
three raw extracellular voltage recordings. In (A) the imprints of the CSs on the
low (red) and band pass filtered (blue) traces are clearly visible and either of
them is sufficient to detect CSs reliably. In (B) the imprint of the CS on the
low-pass filtered trace (red) provides a better means for CS recognition. In (C)
a combined approach was used. Closely following threshold recognition in the
band-pass filtered signal would give a fairly good CS recognition. Parameters
were set to prevent false-negatives. Across the panels, the horizontal gray
lines depict sample thresholds for CS detection in the band-pass filtered
(300–3000 Hz) signals. For the low-pass (<250 Hz) filtered signal, a sliding
window threshold was used instead (not shown).

same recording occur in distinguishable categories with similar
shapes.

Different approaches to automatically divide the waveforms
into separate categories were attempted. We explored the
differentiation of CS duration based on energy levels in frequency
bands (von Tscharner, 2000), and the differentiation based
on the Mahalanobis distance (Mahalanobis, 1936). But neither
of the methods provided a sufficient discrimination level.
Categorizing waveforms based on mean square differences
(MSD) between individual CSs and preselected waveforms did
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help to distinguish the CSs collected, but implied that a pre-
categorization would have had to be made. Because none of the
automated methods was completely reliable, the characterization
of different categories of CS waveforms was done manually,
guided by similarity measures (MSD).

To sort the CSs, clear waveforms showing the most distinct
spikelets were selected to set possible categories a priori.
Subsequently, the CSs were plotted one by one, superimposing
them on previously categorized waveforms. A CS showing good
similarity to an already categorized waveform group would then
be assigned to that category, while a CS not fitting to any of the
previous categories would be recognized as the first instance of
a new category. Differences in the duration of CSs, the spikelet
timing, and the spikelet amplitudes were taken into account.
About 30–40% of all CSs in a recording were not assigned to any
category in this initial round, and were grouped together.

Once all categories were determined, every CS was checked
again. At that stage, CSs could be reassigned to a different
category, if this improved their MSD, andmost of the unassigned
CSs could still be categorized. If an unassigned CS showed
large MSD values to all categories, it was appointed to an
‘‘uncategorized’’ set, which comprised 2–10% of all CSs in a
recording.

A second sorting of the CSs in each recording was made
by grouping CS categories together whose CSs have an equal
number of spikelets, these were named ‘‘classes’’ (Figure 4A).
In a few recordings, CSs categories with an equal numbers
of spikelets, but showing strong systematic divergence of
waveforms, were grouped in different classes.

To illustrate the consistency of CS waveforms within a
category, and to justify the assignment to different categories, two
approaches were used. An approach based on visual inspection;
comparing overlays of single CSs within a category and
comparing overlays of mean waveforms of different categories.
In Figures 4A, 5A, the 95% confidence interval of the CSs in
each category around its mean waveform shows the waveform
consistency per category, the overlay of the mean waveforms of
all categories show the variability in shapes observed in a single
neuron. The second approach is feature based, landmark points
of single CSs were compared, such as onset times of spikelets
(Figures 4B/C, 5B/C).

Spikelet Identification, Timing and
Amplitude

The identification of the spikelets is somewhat challenging, due
to the heterogeneities of the maximum and minimal voltage
levels in their extracellular recordings. Moreover, the spikelet
voltage range changes slightly over the duration of the CS
waveform. In fact, towards the end of most CSs the spikelets
decline in amplitude, though some CSs show an initial decline in
amplitude followed by an increasing voltage amplitude at the very
end of the CS. Extracellular voltage deflections are considered
spikelets only if they have maximum andminimum voltage levels
relatively close to their preceding and following voltage deflection
(i.e., spikelet). For instance, the waveforms of category A from
recording 2 (Figure 4A) have two recognized spikelets. The small

bump in between these two is not defined as a spikelet, because
its maximum voltage is not in line with the spikelets around it.
Spikelet times were finally determined as the time-points of their
lowest voltage value (trough). Histograms of the trough time-
points were fitted with a normal distribution, using MATLAB’s
function. The distributions of the spikelet times were compared
for consistency of difference between waveforms of different
categories. A measurement of separation between categories was
provided by signal-to-noise (S/N) ratios (Dayan and Willshaw,
1991; Graham, 2001), computed as

S/Nm =
2
(
< SpklAm > − < SpklBm >

)2
σ
(
SpklAm

)2
+ σ

(
SpklBm

)2 (1)

where

SpklAm : Times of the trough in spikelet numberm of categoryA;

SpklBm : Times of the trough in spikelet numberm of categoryB.

In the nominator we use the mean spikelet times (<. . .>) for two
categories, in the denominator we use standard deviations (σ) of
spikelet times for two categories.

Complex Spikes Waveform Order

To test whether or not the waveform groups occurred
randomly throughout the recording, we looked at waveforms
of neighboring CSs. The counts of neighboring pairs of both
categories and classes were checked with a bootstrap method.
Histograms of neighboring pairs coming from 10000 randomized
CS waveform sequences gave the upper and lower accuracy
limits, rejecting a random order determined by p < 0.05 and
p> 0.95 significance values.

Inter Complex Spike Interval Lengths vs.
Spikelet Jitter

Although CSs with equal number of spikelets showed strong
uniformity in their waveforms, the last one or two spikelets often
showed a deviation in their timing. The time distributions of the
last spikelets of different CS categories (with equal number of
spikelets) were compared using the S/N tests, showing significant
differences in timing of spikelets at the end of the CSs. The time
delay of spikelets per CS category was defined as the mean time
between the spikelet of interest and its corresponding spikelet in
the shortest duration CS category (Figures 6A, 7A).

Subsequently we tested the correlation between CS groups
ordered on CS duration and the preceding CS interval. First
linear fits were obtained by linear regression, using MATLAB’s
polyfit function, on the interval lengths vs. CS duration groups,
as seen in Figures 6C, 7C. The significance of the slope was
then tested with a bootstrap method, by comparing it to the
distribution of slopes found by shuffling the CS durations over
the groups. Shuffling was done 10000 times and the significance
was set at p< 0.05.

We further tested the correlation between the average jitter
per category and preceding CS interval, seen in Figures 6D, 7D.
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Lastly we analyzed the duration of CSs, time between first and
last spikelet, vs. preceding CS interval (Figures 6E, 7E). Data was
fitted to a power function. Significance of correlation between the
fitted line and data was tested using a cross correlation test.

Saccade Detection and Related CS Time
Window

Saccades were detected offline using custom written MATLAB
scripts. Eye velocity was filtered using a Gaussian filter and
thresholded to find saccade onsets and offsets. The threshold was
based on the mean velocity of the eyes during the recording and
a scaling factor times the standard deviation of the velocity. All
CSs within a window of 100 ms before and 175 ms after saccade-
offset (Catz et al., 2005; Soetedjo et al., 2008) were considered to
be potentially saccade related.

Complex Spikes—Simple Spikes Pause
Lengths

CSs triggered prominent pauses in the SS trains. We looked
whether different CS classes in a PC trigger SS pauses of different
durations, reported with ± standard error of the mean (SEM).
These durations were obtained by evaluating the time from the
onset of the CS to the first following SS, which were detected
by threshold crossing. We took the CS onset rather than its end,
because of its higher signal-to-noise ratio.

Complex Spikes Triggered Simple Spike
Frequency Change
CSs can trigger plasticity mechanisms in the PC and thus have a
potential role in modulating the spiking activity of the PC. We
obtained SS activity in time windows ranging from 150 ms to 500
ms, both before and after each CS. The window before the CS
is directly preceding the onset of the CSs. The window used for
the post CS SS activity starts at a time point where 90% of all CS
triggered SS pause lengths ended. For multiple time windows per
PC we looked at CS waveforms and their SS firing rates either
before or after the CSs. As the optimal time window in which SS
firing rates change is unknown we analyzed each time window
comparison individually.

In Vitro Electrophysiological Recordings in Brain
Slices
We performed in vitro recordings from PCs on cerebellar slices,
in total 18 neurons were recorded from acute cerebellar tissue
obtained from 12 animals.Wistar rats (P18–26) of either sex were
anesthetized with 4% isoflurane and decapitated, sagittal slices
(300 µm) of the cerebellar vermis were prepared by standard
methods. Briefly, slices were cut in an ice-cold low calcium and
high magnesium solution, containing (in mM) 125 NaCl, 25
NaHCO3, 25 Glu, 2.5 KCl, 1.25 NaH2PO4, 1 CaCl2, 4 MgCl2,
using a vibratome tissue slicer (VT 1000 S, Leica Microsystems,
Germany). Slices were incubated at 32◦C in a standard artificial
cerebrospinal fluid (ACSF), containing (in mM) 125 NaCl, 25
NaHCO3, 25 Glu, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, 1 MgCl2, for
30–45 min and then somatic whole cell patch-clamp recordings

were performed at 34 ± 1◦C using 3–6 MΩ borosilicate glass
pipettes, filled with a solution containing (in mM) 130 KMeSO4,
7 KCl, 10 HEPES, 0.05 EGTA, 2 Na2ATP, 2MgATP, 0.5 Na2GTP
(adjusted to a pH of 7.3).

Current-clamp recordings were obtained using a Multiclamp
700B amplifier (Molecular Devices, California, USA), low-pass
filtering voltage traces at 10 kHz, and sampling at 30 kHz, with
the LCG software (Linaro et al., 2014). Pipette capacitance and
resistance were carefully compensated during the experiment by
the amplifiers circuitry. All recordings were performed in the
presence of SR95531 (GABAA receptors blocker, Sigma-Aldrich,
Belgium).

A theta glass pipette, filled with ACSF, was used to deliver
bipolar, monophasic cathodic electrical extracellular stimuli
(0.2 ms, 150–500 mV) to the granule cell layer. Care was taken
to isolate the CF responses and to employ minimal stimulation
amplitudes. In some cases, pulses separated by 2–3 ms, were
employed, aimed at mimicking IO bursts (as in Mathy et al.,
2009). Two different stimulation protocols were used. The first
consisted of blocks with constant intervals of 0.2, 0.4, 1.0, 2.0 or
5.0 s. This protocol was used for 11 neurons from 8 different
animals. In the second protocol, used in 7 neurons from 4
different animals, the intervals were randomly drawn from the
normal distribution. Complex spike waveforms were identified
in intracellular voltage recordings, and spikelet detection and
further analysis performed by customMATLAB scripts.

The CF stimulation protocols mostly triggered CS with equal
spikelet numbers; the few CSs with more or less spikelets were
discarded for the purpose of a fair comparison of CS duration.
To test the correlation between CS duration and the preceding
CF stimulation interval in the in vitro data we analyzed the
linear fit, using MATLAB’s polyfit routine, of the data seen in
Figures 8B,C, 9B. The significance of the slopes was tested using
a bootstrapping method, as for the in vivo data. The CS durations
and the preceding CF stimulation interval pairs of a recording
session were shuffled and a linear fit value was found. This was
done 10000 times giving a distribution of linear fits from shuffled
trials. Significance was reached when the empirical found slope
was in the 5% border values of the shuffled linear fit distribution
(p< 0.05).

Results

The ten PC recordings from awake behaving primates analyzed
had mean durations of ∼6 min each (see Table 1 for detailed
overview). A total of 2789 CSs were detected, occurring at an
average frequency of 0.8 ± 0.8 Hz (SEM), the corresponding
inter complex spike intervals (ICSI) were on average 1254 ±
910ms, similar to previously reported CS firing rates (Armstrong
and Rawson, 1979). Their high variability stands out even
though cumulative distributions of ICSIs were similar for all PCs
(Figure 2), suggesting that all recordings were obtained under
comparable conditions.

Waveform Variability
Complex spikes variability has been reported in single cells
in vitro (Khaliq and Raman, 2005; Tal et al., 2008), here we
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TABLE 1 | An overview of 10 cells of which the CSs were categorized spanning over 1 h of data.

Recording Recording length (s) Mean ICSI (ms) SEM (ms) # of spikelets Length time (ms) # of CSs # of categories Condition

1 322 1231 ±940 2–5 4–9 263 12 target sac
2 386 1220 ±900 2–5 4–10 316 10 target sac
3 651 1390 ±975 2–4 7–9 469 15 target sac
4 133 1101 ±798 4–6 7–10 121 13 dark
5 321 1353 ±994 3–6 6–11 237 17 dark
6 268 1260 ±1031 6–10 7–10 213 16 dark
7 331 1108 ±905 6–10 7–10 300 20 dark
8 465 1259 ±938 2–6 3–10 386 16 target sac
9 225 1322 ±829 4–7 6–9 169 9 dark

10 408 1299 ±791 4–7 4–8 315 26 dark
Mean all Recordings 351 1254 910 3.4–6.5 5–10 279 15

SEM 138 135 143 97 5
Total >1 h 2789

Recordings on average were 351 s long. In total 2789 CSs were detected and categorized, the frequency of occurrence on average is 0.8 Hz. A noticeable feature is that

where the average frequency over all the recordings is very consistent, 0.8 ± 0.08 Hz (SEM) the intervals between CSs in single recordings show very large fluctuations

resulting in large SEM values for each recording. The number of spikelets gives a general impression of the variation of CS waveforms found. CSs durations are based

on the time between the onset of the first and end of the last recognized spikelet. The “# of categories” column indicates the number of CS categories found in each

recording. The last column indicates the experimental condition during which the recording was obtained, which is either the monkey being instructed through targets

appearing on a screen to make visually guided saccades (target sac) or is sitting in the dark without any saccade instructions (dark).

FIGURE 2 | The cumulative probability of inter complex spike interval
(ICSI) lengths. The ICSI distributions of the ten different recordings across
different monkeys on different days show remarkable similarity.

describe the CS variability in vivo in a systematic manner. For
each recording, CSs were classified into categories, based on the
similarity of their waveforms (see Section Methods). Figure 3
compares single traces from three representative CS categories
within a single recording to highlight the differences. The initial
parts of the waveforms over the three CS categories (∼2 ms)
show high similarity, but the overall CS duration and the number
of spikelets differed greatly (Figure 3A). Figure 3B shows the
variability within each CS category: the CS duration and spikelet
number are identical but individual CS traces are noisy and do
not overlap perfectly.

The examples shown in Figure 3 are only a subset of a
much larger variety of categories observed in this neuron.
On average, 15 ± 5 different categories were observed in
each PC recording (Table 1). Complete overviews of all

categories from recordings of two different neurons are shown
in Figures 4A, 5A. The different categories found in a single
PC were sorted by increasing duration, and for convenience
labeled by a letter. The number of CSs in a category varied
from 1 to 30% of all CSs in the recording and each category
occurred throughout the entire duration of each recording. The
differences of CS waveforms between recordings from different
PCs were, in general, larger than the differences within a single
recording. As exemplified in Figures 4, 5 this was mainly due
to large differences in the total duration of the CS between
different PCs.

Figures 4A, 5A show the consistency of waveforms within
each category: the mean waveform, in red, overlays the category
95% confidence interval. The top of the figures shows an overlay
of all mean waveforms, demonstrating that waveform variability
increases towards the end of CSs across categories. From the
confidence interval plots a similar variability can be seen within
categories.

A conspicuous characteristic of the CS categories is their
spikelet count, which defines a secondary grouping, named
‘‘classes’’. e.g., in recording 2, the number of spikelets per CS
ranged from 2 to 5 (Figure 4A). In a few exceptional cases,
CS categories with equal spikelet numbers were recognized as
different classes, because of large differences in amplitude and
spikelet timing. Classes II and III, recording 7, exemplify these
cases (Figure 5A). Some CS categories have a rather unique shape
while others show strong common similarities.

Waveform shape differences among CS categories from
recording 2 (Figure 4) are analyzed in detail in Figures 4B,C
while waveform variability in recording 7 (Figure 5) is shown
in Figures 5B,C. For a third recording, (recording 1) waveforms
from class III are shown in Figure 6. Recognized CS classes
and their characteristics for all 10 recordings are summarized
in Table 2. For the counts of CSs grouped on spikelet number
per neuron, there was a trend that CSs with a spikelet
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FIGURE 3 | Example of complex spike categories. (A) Three single CSs
from recording 7, each CS belongs to a different category, in both the blue
(top) trace and black (bottom) trace a simple spike (SS) precedes the CSs.
Arrows indicate onset of the CS. (B) All the CSs belonging to each of the three

categories, corresponding to the ones in (A), are overlaid for this recording.
The CSs from the three different categories (out of 10 total for this recording)
were selected to exemplify clear differences between categories. (Categ. =
category).

number closer to the neuron’s average, appear more frequently
(Table 2).

Timing of the Last Spikelet is Most Variable
In Figure 4B we compare the mean waveforms of all categories
from recording 2 with three spikelets. The waveform overlay
shows that the first spikelet is identical and the shapes of
the following spikelets are very similar among the three
categories. The main difference is the timing of the third and,
to a lesser degree, the second spikelet. Timing differences are
summarized in Figure 4BII: the time distributions of the last
spikelet are completely separated across the categories, time
distributions of the second spikelet show partial overlap for
categories C and D but are separated for category E. High
S/N ratios (Figure 4BIII) of the last spikelet time distributions
between categories demonstrate the increased spread towards the
CS end.

In Figure 4C, we compare the mean waveform of the
categories with 4 spikelets, categories F, G and H of recording
2. We observe again that the timing of the last spikelet differs
between the categories (Figure 4CII). Although the separation
in this comparison is less defined, the S/N ratios highlight
a clear difference (Figure 4CIII). A more distinct difference
between categories F and G is the amplitude of the last
spikelet (Figure 4CIV): the amplitude of the fourth spikelet is
comparable between category G and H, but is much smaller for
category F.

Additional examples of the consistent variability of CS shapes
are presented for a second recording, cell 7, in Figure 5.
The CSs in this PC last significantly longer than those in
the previous example and comprise 6–10 spikelets. Categories
R, S and T had consistently smaller amplitude spikelets
that made them harder to distinguish. As already observed,
the initial segment of the CS waveform, here comprising the
first 3 spikelets, is similarly shaped in all categories, while
the variety between categories increases toward the CS end.
In Figures 5B,C, two waveform shape comparisons of CSs
with equal number of spikelets show the variability in timing

of the last spikelets among categories. Categories A, B, C and
G in Figure 5B show significant jitter (among each other)
in both the second-to-last and last spikelet. Categories N, O
and P in Figure 5C show instead variability only for the last
spikelet.

A complete overview of the variation of CS waveforms per
recording, with respect to the number of spikelets and the
duration of the CSs is shown in Table 1. Profound differences
were found in the spikelet count range among CSs from
different cells (2–4 vs. 6–10). Between categories with the same
number of spikelets, the timing of the last spikelet was the most
significant difference. Over all 10 cells recorded, this finding
was consistent for 9 cells. In 8 out of these 9 cells, the timing
of the second-to-last spikelet also varied among categories,
although to a lesser extent. The timing of the earlier spikelets
was consistent between categories from a single class. Only
few CS categories showed amplitude differences (Figure 4CIV),
but these were always accompanied by large S/N ratios for the
time shifts.

No Sequence of Occurrence of Different
Complex Spike Shapes
The occurrence of CS waveforms, both classes and categories,
do not show any consistent sequence throughout the recording.
Using bootstrap methods, we tested the significance of pairs
of categories following each other in the same recordings. No
single recording showed a preference in the category order. The
same method also excluded a pair wise order preference for
CS classes.

We compared the range of CS shapes observed during the
two different experimental conditions. Four recordings were
obtained when monkeys were making visually guided saccades
for rewards and six recordings were obtained when the monkey
was sitting in the dark without any instructions. Both conditions
showed comparable ranges of CS shapes with respect to the
number of spikelets and the length of the CS, see Table 1. Also
there were no differences between the conditions in the number
of CS classes (Table 2, p > 0.67 two sided KS test) or number
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FIGURE 4 | (A) From recording 2, the mean waveforms of each CS category
are plotted overlaid in the upper trace in black. A clear observation is the
homogeneity of the first spikelets over all categories and the increasing
waveform variability towards the end of the spike. Thereunder the mean
waveforms of each category are plotted in red, overlying the 95% confidence
interval of the CSs in each category in gray. CS categories are plotted orderly
according to duration of the CS. Each category is indicated with a letter on the
right and the number of single CSs belonging to it is also given. A second
distinction among the CSs categories was made based on the number of
spikelets present: this classification shows 4 different classes, indicated with
roman numbers, and shows an increase of spikelet count going from 2 till 5.
Twelve CSs out of 316 could not be assigned to any category, the twelve
individual CS traces are overlaid in the bottom having no category letter.
(BI) Overlay of three mean waveforms of the comparable but distinguishable CS
categories, C, D and E all having 3 spikelets. The first spikelet is identical in all
three mean waveforms, with the strongest difference being in the timing of the

third spikelet. (BII) The distribution of the spikelet timings over all CSs in
categories C, D and E. While these distributions perfectly overlap for the first
spikelet, they are completely separated for the third one. Normal distribution
profiles were fitted to the second and third spikelet timings for each category.
Notice the large difference in counts, due to unequal category sizes. (BIII) The
signal-to-noise (S/N) ratio’s of the spikelet timing between the different
categories confirm the spread of the spikelet times towards the end of the CSs.
(CI) CS mean waveforms of the categories F, G and H, class III, differ in timing
and amplitudes of last spikelets across categories. (CII) Full length CS mean
waveforms of the three categories being compared, the gray rectangles
correspond to the rectangles in (CI). The upper panels show the blown up parts
of the mean CS waveforms used to determine the timing of each spikelet.
Below are the histograms of the timing of the four spikelets of individual CSs per
category. Normal distributions fitting the time population per category for each
spikelet are superimposed. These show a clear spread of timing for the fourth

(Continued)
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FIGURE 4 | Continued
spikelet, again confirmed by the S/N ratio’s shown in (CIII). (CIV) Maximal
amplitudes of the 1st and 4th spikelet of every single CS for each category.
While these distributions again overlap for the first spikelet, category F shows
clear amplitude differences of its last spikelet compared to G and H. D. The
signal-to-noise ratios of the spikelet time populations of category F, G and H.
(Categ. = category).

of categories (Table 1, p > 0.44). Next we investigated whether
CS related to saccades (occurring in a time window from 100 ms
before to 175 ms after the saccade offset) had different shapes
compared to CSs outside these time windows. In all the 10
recordings the distributions of CS classes, saccade related vs.
saccade unrelated, appeared random.

Complex Spike Shapes Relate to the Duration of
the Preceding Interval
We investigated possible relations between the presence of
specific CS waveform categories and other features of the PC
spike train: SS pauses, SS rate and CS rate.

A well-known feature of the CS is that it induces a pause
in the SS train (Bell and Grimm, 1969; Latham and Paul,
1971; McDevitt et al., 1982). Moreover dendritic Ca2+ spikes
during the CS were found to regulate the afterhyperpolarization
amplitudes and therefore modulate post CS SS-pause lengths
(Davie et al., 2008). The pause duration distributions over the
ten PC recordings showed differences. The average of all the
mean pause durations from the 10 recordings was 26.1 ± 6.6 ms
(SEM). But neither the waveform ranges over the different PCs
seemed to correlate to that cell’s mean pause duration nor did the
CS categories or classes in single neurons correlate to the pause
duration.

Next we investigated possible correlations between the SS
rate, preceding or following a CS and its category. Because of
the highly fluctuating interspike intervals we looked at different
time ranges (i.e., 150–500 ms), before and after the CS. The CS
waveforms did not depend on the preceding SS rate and they did
not induce repeatable changes in SS rate, neither in the relative
nor in the absolute rate change.

Finally we investigated the relation between CS categories
in a single class and the ICSI, both before and after the
CS. The scatter plot in Figure 6C shows the distribution
of ICSIs before CSs of 6 categories belonging to the same
class. The CS waveforms differ only in the jitter of their
last spikelets, as can be seen in Figures 6A,B. The ICSI
lengths per category show a large spread (Figure 6C), but
the median ICSI length before the CSs of different categories
shows a consistent correlation with the last spikelet timing
(Figure 6D). The spread between the first and last spikelet
grows as the ICSI before the CS gets shorter. In total, we
looked at the 28 biggest classes of all ten recordings, from
which 19 consistently showed an inverse correlation between
the timing of the last spikelet and the preceding ICSI, without
exceptions (Figure 6C). This relation was statistically significant
at p < 0.05 in 15 of the 19 data sets, in the other cases
the data sets were too small to reach significance. In six
classes we saw a similar correlation but with a single outlier,

an example is given in Figure 7, and in three classes the
correlation was not found. CS shapes did not correlate to
the directly following ICSI length. These results confirm that
CSs within a class are comparable and differ mostly in the
jitter of the last spikelet(s), which is determined by the
preceding ICSI. To exclude that our observations were a
consequence of the manual categorization of CS waveforms
we repeated this analysis by looking at the dependence of the
duration of the CS, measured as the distance between first and
last spikelets, on preceding ICSI and confirmed the findings
(Figures 6E, 7E).

The consistent ICSI-jitter correlation was found in CS classes
having 2–9 spikelets and covered the full range of the recordings.
The three classes not consistent with the finding were also
randomly distributed over the observed spikelet number range.

Complex Spike Shape Changes in Vitro Confirm
in Vivo Findings
We hypothesized that the effect of the ICSI length on timing of
the last CS spikelet could arise from ICSI dependent changes in
PC excitability. If this were true, similar findings would occur for
CSs evoked by CF stimulation in an in vitro slice preparation,
without influence of the IO. We therefore carried out patch-
clamp recordings of PCs in rat cerebellar slices, and evoked
CSs by extracellular electrical stimulation of the CF (see Section
Methods). This allowed us to artificially modify the ICSI in a
consistent manner, by changing the frequency of CF stimulation.
We could sometimes evoke long CSs waveforms with many
spikelets, however since these were non-reproducible over long
timescales, we restricted the analysis to short CS waveforms
(<15 ms).

In Figure 8 data is shown for CSs evoked with repeated
stimulation at five different preceding ISI durations, i.e., 0.2,
0.4, 1.0, 2.0 and 5.0 s. These CSs had three spikelets and both
the second and third increased their delay with decreasing ICSI,
but the effect was much more pronounced for the last spikelet
(Figure 8A). As shown in Figure 8B, the ICSI predicted the
timing of the last spikelet (here measured as total CS duration) in
a similar manner as observed in the in vivo recordings. Shorter
preceding CF stimuli intervals also resulted in an increased
variability of the timing of the last spikelet.

To test significance we used only complex spike intervals
data below 2.5 s so that we could better compare with the
in vivo experiments. Comparing the trends found between
the CS durations and the fixed CF stimulation interval before
the spike we found a significant increase of CS duration
with shorter intervals in 13 out 15 experiments. In two slice
experiments a neuron was used multiple times so that the 15
experiments were obtained from 11 different cells. The two
nonsignificant results were found in the two multiple used
neurons.

A potential caveat of experiments using a fixed inter-CS
interval is the presence of a built up of the adaptation of CS
duration during the continued stimulation protocol, especially
for the shorter intervals of 0.2 and 0.4 s. This is reflected in
Figure 8 seen in the larger variance after higher stimulation
frequencies. Because the ICSI duration in vivo shows large
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FIGURE 5 | Second example of mean category waveforms and their
variability. (A) An overview of identified waveform categories from cell 7, same
conventions as in Figure 4A. The waveforms of all categories show a uniform
initial phase as shown by the upper waveform overlay in black where after the
number of spikelets, their timing and their amplitudes differ. The CSs in this cell
show 7 classes, ranging from 6 clear spikelets, class I, till 10 spikelets in class
VII, which are harder to distinguish although not impossible. Categories Q, R, S

and T have low amplitude late spikelets and therefore have less characteristic
features. In this recording 36 CSs out of 300 could not be categorized, grouped
together at the bottom having no category letter. (BI) Timing of last spikelet(s)
shows jitter between CS categories. A similar convention as in Figures 4CI–III
is used: The full-length mean waveforms compared are shown in the (B/C–I)
block. Spikelets further analyzed are shown in the gray rectangles in the

(Continued)
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FIGURE 5 | Continued
(B/C–II) blocks corresponding with the ones in the mean waveform panels.
The time histograms in each comparison show the time distributions of the
analyzedare spikelets. The signal-to-noise ratios between the spikelet time
populations shown in the (B/C–III) blocks. The S/N ratios in both
comparisons demonstrate the spread of spikelet timing towards the end of the
CSs. B. Comparison of categories with 6 spikelets. The timings of both the
second-to-last (categories A and B vs. C and G) and last spikelet (all
categories) do not overlap. C. Comparison of categories with 9 spikelets. For
these categories only the last spikelet is well separated. (Categ. = category).

fluctuations such a stimulation protocol may not reflect the in
vivo situation. We therefore repeated the slice experiments with
a second stimulation protocol where the CF stimulus intervals
were randomly drawn from a normal distribution and then
afterwards ordered for analysis. An example of the results is
shown in Figure 9. For the experiments with random interval
stimulation significant correlation between CS duration and
preceding ICSI at p < 0.05 was found in 6 out of 7 experiments
(7 cells), both for the intervals below 2.5 s as for the full range
of intervals (0.2–7 s) tested (Figure 9B). Based on the results
shown in Figures 8, 9 we conclude that the correlation between
CS duration and CF stimulus interval observed in vivo is also
found in vitro.

Discussion

Summary of the Findings
This study shows the extent of CS waveform variability in
extracellular PC recordings from awake behaving non-human
primates. CSs from a single PC differed in amplitude, timing
and number of spikelets. Strong homogeneity was found in
the initial CS shapes (Figures 4, 5). A profound difference
between CSs from different PCs was the spikelet number
range. The lowest CS spikelet number observed in neuron 1
was 2 while it was 6 in neuron 7, spanning 4 and 7 ms
respectively. The maximum spikelet count in these neurons was
5 and 10 respectively, spanning 9 and 10 ms (Table 1). An
important difference between CSs categories in single neurons
was the relative timing of their last spikelets (Figures 4B/C,
5B/C). Waveforms did not correlate to different experimental
conditions during the recording. Furthermore waveforms did

not show an order preference during the recording. Nor was
there a correlation of waveforms with SS pause duration or
with the preceding and following SS rates. The jitter of the
last spikelet(s) correlated strongly with the preceding ICSI
length and a similar effect was observed in in vitro slice
studies.

Limitations of the Study
Extracellular recordings can reveal details of intracellular
spiking activity (Henze et al., 2000). However extracellular
recording method limits the faithfulness and the details of
the detected waveforms and many traces, containing both SSs
and CSs, could not be used for categorization. Because of the
explorative approach of waveform categorization, we relied on
manual methods and this may lead to incorrectly categorized
CSs. However, both the global analysis of waveform shape
(Figures 4A, 5A) and detailed analyses of spikelet properties,
combined with significant statistical tests, argue against any
systematic errors.

The use of MSD guided categorization of waveforms
supported the visual classification and grouped small subsets of
CSs having the strongest resemblance to pre-categorized CSs
(see Section Methods). Fully automated methods failed because
of global waveform differences from cell to cell and insufficient
shape-detail levels. There are no automated CS categorization
methods described in literature at present.

Mechanisms Underlying CS Spikelet Number
The most prominent difference between CSs is their spikelet
number, found in in vitro recordings to relate to the number
of spikes in the CF stimulation that mimics bursts of CF action
potentials (Mathy et al., 2009). In the same study the CF burst size
was found to correlate with the sub-threshold oscillation phase in
the IO. Other authors have proposed instead that the amplitude
of sub-threshold oscillations sets the number of spikes in the CF
burst (Bazzigaluppi et al., 2012) and that this amplitude may be
controlled by the coupling of IO cells (De Gruijl et al., 2012).
Based on the absence of any preferred order of CS classes in
this study, we predict that there is also no preferred order in CF
burst sizes in the IO. This implies that CF burst sizes vary rapidly
in vivo.

TABLE 2 | The classes (Cl) of CSs, based on number of spikelets (spklt) for all recordings.

Recording Cl I # CSs # spklt Cl II # CSs # spklt Cl III # CSs # spklt Cl IV # CSs # spklt Cl V # CSs # spklt Cl VI # CSs # spklt Cl VII #CSs # spklt

1 40 2 95 3 121 4 3 5
2 50 2 106 3 130 4 18 5
3 29 2 54 3 79 3 212 3 94 4
4 46 4 2 5 4 5 5 5 35 5 2 6
5 34 3 30 4 25 5 57 5 63 4 4 5 10 6
6 14 6 29 7 80 8 42 9 4 9 7 10
7 35 6 3 7 41 7 102 8 48 9 21 10 14 10
8 12 2 136 3 88 3 90 4 51 5 4 6
9 10 4 27 5 116 6 12 7

10 10 4 66 5 213 6 13 7 13 7

For each class the number of CSs and the number of spikelets is shown. Notice that CS classes with an intermediate number of spikelets tend to be larger than the

classes with lower or higher spikelet numbers.
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FIGURE 6 | ICSI duration before CS sets timing of last spikelet in CSs.
(A) Waveforms from class III in recording 1 for which delay of last spikelet and
total duration has been measured. (B) Superimposed mean waveforms of
each category. (C) ICSI times preceding all class III CSs (recording 1) are
plotted separated on category. The spread of the ICSI times is large for the
different categories; of each the mean (stippled line) and median (broken line)
time is given. A linear fit of the data, gray line, shows a significant declining
slope on bootstrap testing (p < 0.05). (D) Median ICSI lengths are plotted
against the average delay of the last spikelet per category. The delay is

obtained by taking the average time difference between the last spikelet of
each category and the last spikelet of the shortest CS (category F), as shown
in panel (A). The figure shows the shorter the median time length of the ICSI
before the CS, the longer the mean delay of the last spikelet. (E) Scatterplot of
the time between first and last spikelet vs. ICSI times before CSs in a log-log
plot. Gray line is a power-function fit (power = −0.026) to the data with
R2 = 0.49. Correlation between data and power-function is significant
(p < 0.001). Colors used indicate categories. (ICSI = inter complex spike
interval, Categ. = category).

In between different PCs we observed profound differences
in spikelet number. A possible explanation are the different
physiological properties found over CFs. CFs innervating PCs
in zebrin-II positive zones release more glutamate per action
potential then their counterparts in zebrine negative zones
leading to longer duration CS with a greater number of spikelets
in zebrine positive PCs (Paukert et al., 2010). The oculomotor
vermis (VI and VII lobules) in Macaca Mulatta shows clear
alternating parasagittal zebrin-II expression stripes (Sillitoe et al.,

2004) and it is most likely that the PCs recorded came from both
types of zones.

Mechanisms Underlying CS Spikelet Jitter
A significant part of the CS waveform variation in single cells
in vivo was related to spikelet jitter, mainly observed in the last
spikelet, sometimes in the two last spikelets. This jitter neither
depended on the number of spikelets in the CS nor on the CS
duration. For example, Figure 5 shows comparable spikelet jitter
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FIGURE 7 | ICSI duration before CS sets timing of last spikelet in
CSs. Similar conventions are used as in Figure 6. This is an example
which does not perfectly show the ICSI time vs. spikelet jitter
phenomena as stated in Figure 6 because category I has a longer
ICSI than category H. However category I shows an odd shape of its

fore last spikelet as shown in panel (B) and might belong to a different
class of CSs. (D) Leaving category I out we do find a consistent
relation between ICSI and last spikelet delay. (E) Power function fit had
power of −0.06, R2 = 0.3, p < 0.001 for the correlation between fitted
function and data.

between CS classes having either 6 or 9 spikelets, with delays from
the CS onset of 5.5 ms and 8.5 ms.

The main finding of this study is that this jitter of the last
spikelet consistently depended on the interval with the preceding
CS, with shorter ICSIs resulting in a longer delay of the last
spikelet (Figures 6, 7). One can hypothesize two different
mechanisms causing such an effect of ICSI-length on spikelet
timing. Because the IO sets the ICSI, the last spikelet timing
could reflect the timing of the last spike in a CF burst signal,
which would then be delayed for short ICSIs (Mathy et al.,
2009). Alternatively, the Olive generated ICSI could affect the

excitability of the PC, most likely through the slow decay of
dendritic calcium transients and accompanying differences
in activation of calcium-activated K+ channels (Schmidt et al.,
2003; Anwar et al., 2012, 2013). The central role of PC excitability
in setting the timing of the last spikelets was confirmed by the
slice experiments (Figures 8, 9). This strongly suggests that the
jitter of the last spikelet, observed in most CSs, is due to a form
of refractoriness intrinsic to the PC that underlies its delay,
excluding a CF signal effect.

An additional mechanism could be the plasticity of the CF-
PC synapses, since tetanization of the CF induces long-term
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FIGURE 8 | Climbing fiber (CF) stimulation interval sets delay of the last
spikelet. (A) Patch clamp recordings of CF stimulation triggered CSs in
cerebellar slices with CF stimulus intervals of 0.2, 0.4, 1.0, 2.0 or 5.0 s. (B) Total
duration CS, time between first and last spikelet peak, sorted on preceding CF
trigger interval length. Error bars indicate standard deviation. A linear fit of the
data, gray line, was found to have a significant declining slope (p < 0.05) in

bootstrap testing. (C) Two other recordings showing a decline in total CS
duration with longer preceding CF interval times, similar convention as in panel
(B). Both examples also show a significant declining slope of the linear fits of
the data. Notice that total CS duration doesn’t decrease anymore for an interval
length increasing from 2 to 5 s, the latter interval length is not observed in the in
vivo recordings.

FIGURE 9 | Random CF stimulation intervals resembling in vivo
distributions. (A) Voltage traces of CF stimulation triggered CSs in cerebellar
slices with CF stimulus intervals drawn from a normal distribution. Examples
from 1 s binned intervals. (B) Total duration CS, time between first and last
spikelet peak, sorted on preceding CF trigger interval length (as in Figure 8).
Shown is the linear fit of all data points (black line) with a significant declining
slope in bootstrap testing (p < 0.05), see inset, vertical red bar is the slope of
data and the bootstrap slope distribution is shown in black bars.

depression of the CS (Hansel and Linden, 2000). The reduced
excitatory postsynaptic potentials (EPSPs) can cause changes
in the CS slow wave components in the dendrites, the
depolarization plateau following the first big peak (Weber et al.,
2003).

No Other Effects of CS Shape
While we extensively investigated the relation of other
parameters to CS shape and CS rate, no significant relationships
could be found.

A study by Maruta et al. (2007) showed that longer preceding
ICSIs correlated with a higher number of EPSP components in
the CF triggered compound. Our lack of finding a correlation
between CS class and preceding ICSI duration is in line with
the weak correlation found between CF EPSPs and CS spikelet
number in slice experiments (Davie et al., 2008; Mathy et al.,
2009). Furthermore our results do not reproduce the observed
paired-pulse depression of the pre-synaptic terminal of the CF-
PC connection, which has been reported to results in a decreased
number of spikelets of the second CS for ICSIs below 1000 ms
(Hashimoto and Kano, 1998). Such differences may be due
to differences in animal species or, more likely, extracellular
vs. intracellular recording methods. However our findings also
disagree with extracellular recordings in mice by Servais et al.
(2004) which showed that the amplitude of the secondary
spikelets was inversely correlated with the previous SS frequency.
No influence on CS waveforms was found in our recordings,
neither on the spikelet jitter nor on the number of spikelets.

We did not try to correlate CS waveforms with learning (Yang
and Lisberger, 2014) because of the small number of learning
trials in the analyzed data.

Effects of CS Waveform Differences
The functional downstream relevance of different spikelet
numbers in the CSs is probably limited, due to the poor
propagation of somatic spikelets to the deep cerebellar nuclei
(DCN). On average only 2 spikelets per CS get relayed to
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their downstream targets, likely indistinguishable from 2 closely
following SSs (Khaliq and Raman, 2005; Monsivais et al., 2005).
Moreover PC spikes induce very small inhibitory postsynaptic
potentials in DCNs, suggesting negligible effect from extra
spikelets (Bengtsson et al., 2011).

Waveform differences could however affect plasticity of PF-
PC synapses. Single spikelet CF bursts were reported to induce
long-term potentiation instead of depression (Mathy et al., 2009).
Moreover in a study by Rasmussen et al. (2013) single spikelet CF
bursts resulted in extinction of a learned pause response, while
multiple spikelets restored the response.

CSs induce pauses in the following SS trains (Bell and Grimm,
1969; Latham and Paul, 1971; McDevitt et al., 1982), and its
duration regulates the rebound effect in DCN (Aizenman and
Linden, 1999). The variability in pause duration across 10 PCs
was 26.1 ± 6.2 ms (SEM), falling in the 10–30 ms range
reported by Shin and De Schutter (2006). Davie et al. (2008)
showed the pause length to depend on the calcium spikes
number in the PC dendrites. In our monkey data however, the
SS pause lengths did not change for different CS waveforms,
neither for different durations nor for different spikelet
numbers.

Different waveforms also did not reset PC activity state
differentially, based on the lack of reproducible SS rates following
CS groups. This supports the finding that the presumed PC

bistability triggering capacity of the CS (Loewenstein et al., 2005)
is an artificial phenomena induced by anesthetics (Schonewille
et al., 2006).

Conclusion

CS waveform variability is a shared feature over many species. It
has been described at different levels of detail in cats (Campbell
and Hesslow, 1986) and mice (Servais et al., 2004). This study
shows the surprisingly great extent of that variability in non-
human primates. The ICSI length preceding the CS was found to
strongly influence the CS waveform by changing the jitter of the
CS last spikelets. The consistent effects of CF stimulus intervals
on CS duration in slice experiments confirm that this spikelet
jitter delay depends on PC intrinsic mechanisms.
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