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Synapses act as information filters by different molecular mechanisms including

retrograde messenger that affect neuronal spiking activity. One of the well-known

effects of retrograde messenger in presynaptic neurons is a change of the probability

of neurotransmitter release. Hebbian learning describe a strengthening of a synapse

between a presynaptic input onto a postsynaptic neuron when both pre- and

postsynaptic neurons are coactive. In this work, a theory of homeostatic regulation of

neurotransmitter release by retrograde messenger and Hebbian plasticity in neuronal

encoding is presented. Encoding efficiency was measured for different synaptic

conditions. In order to gain high encoding efficiency, the spiking pattern of a neuron

should be dependent on the intensity of the input and show low levels of noise. In this

work, we represent spiking trains as zeros and ones (corresponding to non-spike or

spike in a time bin, respectively) as words with length equal to three. Then the frequency

of each word (here eight words) is measured using spiking trains. These frequencies are

used to measure neuronal efficiency in different conditions and for different parameter

values. Results show that neurons that have synapses acting as band-pass filters

show the highest efficiency to encode their input when both Hebbian mechanism and

homeostatic regulation of neurotransmitter release exist in synapses. Specifically, the

integration of homeostatic regulation of feedback inhibition with Hebbian mechanism and

homeostatic regulation of neurotransmitter release in the synapses leads to even higher

efficiency when high stimulus intensity is presented to the neurons. However, neurons

with synapses acting as high-pass filters show no remarkable increase in encoding

efficiency for all simulated synaptic plasticity mechanisms. This study demonstrates the

importance of cooperation of Hebbian mechanism with regulation of neurotransmitter

release induced by rapid diffused retrograde messenger in neurons with synapses as

low and band-pass filters to obtain high encoding efficiency in different environmental

and physiological conditions.
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Introduction

Neurons as the computational engines of the brain communicate
with other neurons via synapses as conveyers of information.
Neuronal firing and synaptic transmission between neurons
form the building blocks for coding, processing, and storage
of information in the brain (Salinas and Sejnowski, 2001). The
spiking of a neuron in response to a stimulation by inputs is
expected to be non-random (randommeans spontaneous spiking
or noise) and to be dependent on input intensity. Therefore, the
spiking pattern of a neuron conveys high levels of information
about its inputs (high encoding efficiency) when the noise in the
spiking pattern is minimized while the variation in spiking is
maximized. On the other hand, low encoding efficiency is gained
when a spiking pattern show low variability or high levels of
noise (van Steveninck et al., 1997; Onken et al., 2014). Generally
speaking, neural encoding efficiency is decreased when firing rate
of a neural response is either high or very low which leads to a
low variability in neural response. A low variation in a spiking
pattern causes a low efficiency of encoding of either different
stimuli or different intensity of a given stimulus presented to the
neural system. Moreover, the diversity of neural spiking strongly
depends on the properties of their synapses which remarkably
vary in different types of neurons. This quantity is usually
calculated using “mutual information” between a spike train and
the stimulus as an information theoretic approach (Kumbhani
et al., 2007; Faghihi et al., 2013; Fan, 2014; Jung et al., 2014). As
neural systems should be able to detect a fluctuation in a stimulus
intensity, a new encoding efficiency measure has been recently
introduced which uses the geometric distance between stimulus
and the response of a given neuron (Faghihi andMoustafa, 2015).

The increased complexity of synaptic protein networks was
recently put forward as a potential correlate of mammalian
cognitive abilities (Bayés et al., 2012; Nithianantharajah and
Hannan, 2013). The diversity of synaptic plasticity mechanisms
and their induced operation timescales suggest that synapses
have complicated roles in information processing (Citri and
Malenka, 2008; Lee et al., 2014; Yates, 2014). A long-term
change in a synaptic structure provides a physiological substrate
for learning and memory, whereas short-term changes support
synaptic computations (Ziegler et al., 2015). The effect of an
action potential transmitted from one neuron to another depends
on the history of neural activity at either or both sides of the
synapses such that their effect can last from milliseconds to
months (Tetzlaff et al., 2012).

The release of a neurotransmitter as the main information
transfer between neurons is a highly regulated process (Benfenati,
2007; Davis and Müller, 2014). Recently, neuroscience research
has focused on the mechanisms of neurotransmitter release
and their role in information encoding by neurons and neural
network activity (Hardingham et al., 2013; Lazarevic et al., 2013;
Kaeser and Regehr, 2014). Moreover, neurotransmitter release is
not assured in response to synaptic stimulation, meaning that
the process of neurotransmitter release in response to an action
potential is essentially probabilistic.

Synapses are considered as filters that selectively and
unreliably filter the flow of information between pre-and

postsynaptic sites. Different synapses can show a variation in the
initial probability of neurotransmitter release. Initial probability
implies that the release probability may change over time.
Regarding the concept of filtering, synapses are divided to three
classes. For the majority of synapses in the central nervous
system, the release probability at a defined synaptic contact is
below 0.3, referred to as “reliably unreliable” release mechanism
(Goda and Südhof, 1997). This kind of synapse is called a “high-
pass filter” which is found for example in parallel fiber synapses.
The synapses with high initial probability of neurotransmitter
release, such as climbing fiber synapses, are called “low-pass
filters” (Silver et al., 2003; Foster and Regehr, 2004; Murphy
et al., 2004). Synapses with an intermediate release probability for
example Schaffer collateral synapses are called “band-pass filters”
(Abbott and Regehr, 2004; Rose et al., 2013).

Moreover, release probability is highly a dynamic process; it
incorporates several forms of short-term plasticity mechanisms.
The efficacy of synaptic transmission is dependent on the pattern
of synaptic activation and the overall activity level of single
neurons in a neural network. Activity-dependent changes in
synaptic transmission arise from a large number of mechanisms
known as synaptic plasticity (Abbott and Nelson, 2000; Lewis,
2014; Takeuchi et al., 2014; Welberg, 2014).

Functional synaptic plasticity includes homeostatic feedback
mechanisms which enable neurons to respond to prolonged
alterations in neuronal activity by regulating cellular excitability
(Davis, 2006).

Investigating the complexity of homeostatic regulation of
single neurons and neural circuits is thus fundamental for
understanding brain function. Homeostatic signaling systems are
thought to stabilize neural function through the regulation of
ion channel density, neurotransmitter receptor abundance, and
presynaptic neurotransmitter release (Davis, 2006, 2013; Marder
and Goaillard, 2006; Bergquist et al., 2010; Thalhammer and
Cingolani, 2014).

Homeostatic plasticity mechanisms are employed by neurons
to alter membrane excitability and synaptic strength to adapt to
changes in network activity. A number of cellular and molecular
mechanisms have been identified as regulators of homeostatic
plasticity (Maffei et al., 2012). Intrinsic membrane properties
(intrinsic plasticity) as non-synaptic factors directly affect the
probability that a neuron will spike in response to excitatory
synaptic inputs (Kourrich et al., 2015). Based on the information
of the underlying cellular mechanisms, neuronal homeostasis is
categorized as the homeostatic control of intrinsic excitability
of neurons by a change in ion channel expression (Turrigiano,
2011), synaptic efficacy, presynaptic neurotransmitter release,
and network activity through regulation of inhibitory synapses
(Turrigiano and Nelson, 2000, 2004; Davis, 2013).

Both excitatory and inhibitory synapses are subject to
homeostatic regulation, and the form of plasticity present at
a particular synapse likely depends on its function within
a neuronal circuit. Feed-back inhibition and feed-forward
inhibition as neural mechanism at network level may contribute
to controlling input-output relationships in all parts of the brains
(Tepper et al., 2008; Wang et al., 2013; Brown et al., 2014; Roux
and Buzsáki, 2015) such that an impairment in their functionality
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may be associated with some mental disorders (Phillips and
Uhlhaas, 2015; Ruddock et al., 2015). An important aspect
of homeostatic plasticity is the dynamic interaction between
excitatory and inhibitory inputs during homeostatic adaptation,
as most of the studies to date have focused on either excitatory or
inhibitory synapses individually. Therefore, it is highly important
to study the inhibitory role of neurons in encoding efficiency of
single neurons and neural populations as well.

Hebbian plasticity and homeostatic plasticity are the two
major forms of activity-dependent plasticity that modify
neuronal circuits (Turrigiano, 2008). Hebbian plasticity refers
to plasticity that depends on the correlations between pre- and
postsynaptic activity such that excitatory synapses that effectively
drive a postsynaptic cell grow stronger. This is a positive feedback
process that leads to synaptic instability in the absence of
additional biological constraints (Turrigiano, 2008; Vitureira and
Goda, 2013; Lee et al., 2014). Homeostatic plasticity is a negative
feedback mechanism that typically involves non-specific scaling
of all excitatory or inhibitory synapses onto a cell to oppose
changes in overall activity levels. This is thought to maintain
activity levels within a dynamic range and, more generally, to
stabilize neuronal circuit function despite the positive feedback
of Hebbian plasticity (Turrigiano, 2008). It is believed that
homeostatic plasticity operates as a compensatory, negative
feedback mechanism to maintain network stability (Turrigiano,
2008; Pozo and Goda, 2010). However, it is not fully known
how these two forms of plasticity interact in biological systems
(Shepherd and Huganir, 2007; Turrigiano, 2008, 2011; Vitureira
and Goda, 2013). In models that combine Hebbian plasticity
with homeostatic plasticity, homeostatic plasticity generally
stabilizes a set of unsaturated weights that would be unstable
under Hebbian plasticity alone (Toyoizumi et al., 2013, 2014).
However, such stabilization fails if homeostatic plasticity is too
slow compared to unstable Hebbian plasticity (Zenke et al.,
2013). This is an example of the more general result that
slow negative feedback cannot stabilize a fast, unstable positive
feedback process. Some modeling studies have shown that long-
term changes in synaptic weights are difficult to achieve without
a “normalizing” mechanism to regulate total synaptic strength
or excitability (Pérez-Otaño and Ehlers, 2005; Shepherd and
Huganir, 2007; Newpher and Ehlers, 2008). The role of some
chemicals as retrograde messengers in regulating presynaptic
neurotransmitter release has been previously shown (Yang and
Calakos, 2013; Zachariou et al., 2013; Nadim and Bucher, 2014;
Padamsey and Emptage, 2014).

Diffusible messengers that have been previously implicated in
activity-dependent presynaptic changes are plausible candidates
also for homeostatically adjusting presynaptic release properties
according to dendritic activity (Jakawich et al., 2010; Lindskog
et al., 2010; Ohno-Shosaku et al., 2012).

In particular, endocannabinoids have been shown to function
as retrograde messengers at CNS synapses (Castillo et al., 2012).
The importance of retrograde messengers (e.g., nitric oxide,
arachidonic acid, adenosine and platelet activating factor) in
Hebbian plasticity and so in homeostatic processes has been
proposed (Lily and Goda, 2009; Ohno-Shosaku and Kano, 2014;
Wang et al., 2014). Notably, the neurotrophin BDNF, whose
role in Hebbian plasticity is well established, has also been

shown to play a role in homeostatic synaptic plasticity (Liu
et al., 2014; Lu et al., 2014). There are research interests about
the effect of a change in neurotransmitter release machinery
on homeostatic presynaptic plasticity. The investigation of
how homeostatic mechanisms observed at both single neuron
and circuit level are integrated to regulate brain activity is
a very challenging neuroscience research topic. Answering
this question is potentially important if we aim to gain
a comprehensive understanding on how neural plasticity in
different physiological conditions is regulated to obtain high
efficiency of information processing by both single and neural
populations. Slow homeostatic plasticity cannot stabilize the
instability effect of Hebbian plasticity. Therefore, exploring
multiple regulatory pathways of interaction of these two plasticity
mechanism which operate at different timescales is required
to understand how they help brain to encode information
(Turrigiano, 2012; Toyoizumi et al., 2014). To understand the
cooperation of synaptic and non-synaptic mechanisms which
operate over different timescales a model has been recently
presented in which neuronal information is represented as
probability distributions (Tully et al., 2014).

In this work, the main objective is to study the interaction
of Hebbian plasticity and retrograde signaling which has a fast
rate of diffusion from post to presynaptic sites of neurons,
and influence regulation of neurotransmitter release. For this
purpose, neurons with synapses that act as different information
filters are simulated. The neuron’s efficiency to encode its
input when a different level of stimulation is presented to
the neural system is measured. Hebbian mechanism and
homeostatic regulation of neurotransmitter release by retrograde
messenger are modeled in the synapses of 1000 neurons
fully connected into a neural population where the synaptic
dynamic of a single neuron of the population is studied.
The model uses known basic information about biochemical
interactions underlying the production of fast diffused retrograde
messenger and hypothetical neurotransmitter release inhibitory
machinery which is affected by pre-and postsynaptic activities.
This hypothetical complex in real neurons may be composed
of some protein-protein interactions or the activity of a multi-
subunits protein which is activated by independent or dependent
pathways. The motivation of such complex mechanisms for
inhibiting neurotransmitter release is the increased evidence
that supports the role of different proteins and biochemical
pathways in neuronal activities. The effect of each individual
mechanism and in combination with each other is studied.
Moreover, the effects of integrating the homeostatic regulation of
feedback inhibition by inhibitory neuron with modeled synapses
on encoding efficiency of single neurons are studied. In the next
sections, the details of the dynamic model and the simulations
are presented. The overall importance of the results is addressed
in discussion.

Materials and Methods

Model Architecture
A neuron in biological neural systems receives a large number
of spikes from other neurons via synapses. These spikes are then
integrated and transmitted by generating spike trains to other
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neurons. Such activity should be stable and efficient to transfer
information. In order to simulate such complicated information
processing mechanism by a single neuron, we consider a feed-
forward neural layer composed of 1000 neurons fully connected
to the second neural layer (100 neurons) in which we measure
single neurons’ encoding efficiency. Each neuron in the second
layer is connected via a single synapse to neurons in the second
layer. The neural activity of each of 1000 neurons is modeled as a
probability of generating a spike in each time bin equal to 10ms.
The firing probability of neurons demonstrates the stimulus
intensity detected by the neural system. The intensity of input to
neurons may vary in different environment where the intensity
of a stimulus changes over time. Therefore, it is highly vital to be
able to encode fluctuating environmental stimuli by brains.

TABLE 1 | Parameters of the integrate and fire neuron model used in this

study.

Parameter Value

Vrest resting potential −84mV

Vthresh threshold of spiking −25.8mV

Vrecov recovery threshold −40.2mV

Vspike spike potential 9.5mV

gleak membrane conductance 0.26 nS

k membrane capacitance 4.0pF

The spiking activity of single neurons was modeled using an
integrate and fire model (Equation 1).

k
dV

dt
= −gleak (V − Vrest) +

∑

I(t) (1)

Where
∑

I (t) is the sum of input currents from the presynaptic
neurons into postsynaptic site of a single neuron.

Table 1 shows the electrophysiological parameters used in the
study (Wüstenberg et al., 2004).

Synaptic Modeling
A synapse between neurons is modeled using simplified known
mechanistic events (Figure 1). When an action potential reaches
the presynaptic site it leads to an increase in intercellular
calcium in the presynaptic site which consequently activates
some biochemical pathways by activating proteins and protein-
complexes. An action potential may also lead to neurotransmitter
release which causes current into the postsynaptic site. In this
work, it is assumed that the current into the postsynaptic site
induces the production of retrograde messenger which is diffused
rapidly into the presynaptic site. Moreover, the sum of currents
into the postsynaptic site triggers any single neuron to generate
spikes train according to integrate and fire neuron (Equation 1).
Retrograde messenger can trigger some pathways that interact
with activated proteins in presynaptic neuron to activate a

FIGURE 1 | The schematic of synapse model. Action potential in

each activated synapse (presynaptic site shown by orange) may lead to

neurotransmitter release according to the initial probability of release.

Modified release probability induced by the activity of release inhibitory

complex can change the pattern of neurotransmitter release which

induces current into the postsynaptic site. The current influx is also

affected by synaptic efficacy which is determined directly by presynaptic

spike trace and indirectly by Hebbian mechanism. The retrograde

messenger is produced in the postsynaptic site and is released into the

presynaptic site where it affects release probability complex. The sum of

current influx into the postsynaptic sites triggers a single neuron to

generate a spike train in response to a stimulus presentation to the

neural population (presynaptic neurons). The spiking pattern of pre-and

postsynaptic neurons can modify presynaptic neuron’s activity and

synaptic efficacy between pre-and postsynaptic neurons as well by a

Hebbian mechanism.
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complex that may inhibit neurotransmitter release with different
probabilities.

Hebbian synaptic plasticity is modeled in synapses such that
its effect on a single neuron efficiency in combination with
neurotransmitter regulation or independently is studied.

In each simulation study, a random set of neurons of
1000 neuron population is activated with a firing probability.
The number of activated neurons is extracted according to
Gaussian distribution with mean equal to 500 and variance equal
to 50.

The current influx into the postsynaptic site is modeled as
Equation (2).

I (t) = ω

(

t

τ

)

e
−t
τ

∑

tp
δ
(

t − tp
)

τ = 10ms (2)

Where τ is the decay rate of current and ω is the synaptic weight
between each activated single neuron in the second layer and a
neuron in the first layer.

∑

tp δ
(

t − tp
)

is the Dirac function.
The activity trace of spike in the presynaptic site was modeled

using Equation (3).

Ċ =
−1

τc

(

C +△
∑

tp
δ
(

t − tp
)

)

τc = 100ms (3)

The change of synaptic efficacy is modeled using Equation (4).

ω̇ = Cd (4)

Where d is the dopamine level in each time bin which is
generated by high firing rate of dopaminergic neuron (equal to
0.9) (Equation 5).

ḋ =
−1

τd

(

d +
∑

td
δ (t − td)

)

(5)

τd = 20ms

To model Hebbian synaptic plasticity we used a simple rule
shown in Table 2.

Table 2 shows that when spiking of a neuron in the first layer
is followed by spike in a neuron in the second layer, it may lead
to higher synaptic efficacy between pair of neurons according to
Equations (3) and (4).

Total produced retrograde messenger (RM) at the end of each
time bin is generated according to Equation (6) such that just
high levels of current can generate effective levels of retrograde
messenger.

RM =

(
∑

I
)2

1+
(
∑

I
)2 (6)

TABLE 2 | Hebbian learning rule used in the model.

Presynaptic state 1 1 0 0

Postsynaptic state 1 0 1 0

△ 1 −1 −1 0

It is assumed that at the end of each time bin retrograde
messenger is accumulated in the presynaptic site and its dynamics
is modeled using Equation (7).

˙RMtrace =
−1

τr
(RMtrace) + RM (7)

τr = 400ms

The activity of the complex which may inhibit neurotransmitter
release (Rinh) is modeled as Equation (8).

˙Rinh =
−1

τinh
(Rinh) + RMtraceC (8)

τinh = 200ms

Equation (8) shows that the activity of hypothetical complex
to inhibit neurotransmitter release depends directly on the
concentration of retrograde messenger in the presynaptic site
and spike trace in the presynaptic site. To model probability
of neurotransmitter release inhibition by inhibition-complex
activity, we assume that this probability is changed such that
higher activity can lead to higher probability (Equation 9). We
assume that α should be decreased when the activity is raised
(Equation 10). Hence, the probability of neurotransmitter release
as a function of complex activity is presented as Equation (11)
and is shown in Figure 2.

Pinh = e
−α
Rinh (9)

α = 1− e
−0.1
Rinh (10)

Hence,

Pinh = e

−0.1
(

e
Rinh−1

)

Rinh (11)

Prel = (1− Pinh) .Pinit (12)

Equation (12) shows the relationship between release
probability (Prel) and inhibition probability (Prel) regarding
initial neurotransmitter release probability (Pinit). In order to
investigate the role of different kind of synapses in information
processing by neurons, it is highly important to examine
different initial release probability. Therefore, three initial release
probabilities were considered as 0.25, 0.55, and 0.85 for synapses
as high, band and low pass filters, respectively.

A challenge in modern neuroscience is how to measure the
efficiency of a neural population to encode information that is
received by neurons and is encoded as spiking patterns. For
this purpose, information theory has proposed some measures
including mutual information that can be measured by different
approaches to study the role of structural and physiological
parameters involved in neural systems of different senses (van
Steveninck et al., 1997). Recently, a geometrical approach has
been introduced that aims to measure neural system efficiency
by the calculation of defined words in a given neural response
(Faghihi andMoustafa, 2015). In the current study, this approach
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FIGURE 2 | Modeling homeostatic regulation of neurotransmitter

release. (A) The relationship between the inhibitory complex activity and

release inhibition probability for different parameter values between 0.05 and

1. The plot demonstrates a non-linear relationship between inhibitory

complex activity and release inhibition probability for different model

parameter (α) values. Higher inhibitory complex activity needs a lower α value

while low inhibitory complex activity needs a higher α value. These

observations motivated to define an exponential relationship between

inhibitory complex activity and α value (B) which lead to non-linear

relationship of inhibitory complex activity and release inhibitory probability (C).

is used to measure the role of different parameters including
different synapses in a single neuron’s efficiency to encode
its inputs. For this purpose, words composed of zeros and
ones corresponding to non-spike and spike in each time bin,
respectively, are definedwith length equal to three. The frequency
of each word in the spiking train is calculated such that any
spiking train is represented as an ordered vector with length equal
to eight. The stimulus intensity as firing probability of neurons
in the first layer is changed 5% for probabilities from 0.5 to
0.95. For probability of firing equal to 1, the firing probability is
decreased 5%. The spiking train of a single neuron in the second
layer represented as vectors are used to measure the distance of
neural responses as a measure how the spiking has encoded the
fluctuation in its input.

Results

Stimuli with different intensities were presented to the input layer
as different firing probability of neurons in neural population
(1000 neurons connected fully to second neural layer). The
input layer triggers neurons in the second layer to spike with
different frequency that depends on model’s synaptic or network
parameters. For high initial release probability of synapses
between the first and second neural layer, the efficiency of a
neuron of the second layer to encode stimulus information
was measured for different parameter values and different
assumptions about synaptic mechanisms. To model encoding
efficiency of a single neuron in the second layer as a function of

synaptic mechanisms and neural architectures, the inhibition of
neurotransmitter release plays a critical role in this study.

Figure 2A shows the basic assumption about the relationship
between release inhibitory activity in the presynaptic neuron and
release inhibition probability. α value determines the dependency
of release probability on level of inhibitory activity. In order to
define a homeostatic regulation of release inhibition probability
by inhibitory activity, the model assumes that a decrease in α

value when inhibitory activity is raised. Figure 2B shows the
relationship between α value and inhibitory activity in this study.
Hence, the modeled relationship between inhibitory activity and
release probability (Equation 11) is illustrated in Figure 2C. By
homeostatic change of release probability, in different synaptic
conditions and different assumptions used in the study, encoding
efficiency of a single neuron was measured.

Figure 3 shows the change of the models’ parameter values
of a neuron with synapses as a low pass filter (initial release
probability equal to 0.85) in the presence of Hebbian mechanism
without modeling homeostatic regulation of neurotransmitter
release. In the absence of retrograde messenger production in
the postsynaptic site, no change in neurotransmitter release is
induced in the presynaptic site in the time bin between 50
and 150. In the other time bins, a single neuron spikes in the
absence of both mechanisms. Figure 3A shows a presynaptic
neuron spiking when a high stimulus intensity was presented
to the first neural layer as firing probability equal to 0.85. This
spiking pattern is used in all simulations in order to compare
the parameter values in different conditions. The existence

Frontiers in Cellular Neuroscience | www.frontiersin.org 6 April 2015 | Volume 9 | Article 164

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Faghihi and Moustafa Homeostatic regulation of neurotransmitter release

FIGURE 3 | The dynamics of model’s parameters in the presence

of Hebbian mechanism and absence of homeostatic regulation of

neurotransmitter release. (A) Spike train history of a presynaptic

neuron with firing probability equal to 0.85 in 200 time bins. (B) Current

history into the postsynaptic site triggered by presynaptic neuron’s

spiking. In time bins between 50 and 150 Hebbian rule was applied to

the model while in the postsynaptic site production of retrograde

messenger was blocked. (C) Spike trace history in the presynaptic site

in time bins between 50 and 150. Spike trace activity is affected by

both spiking pattern of presynaptic neuron and Hebbian mechanism.

(D–F) No change in retrograde messenger concentration in the

presynaptic site is observed. This leads to very low activity in inhibitory

complex (equal to zero) and consequently in neurotransmitter release

probability (equal to initial release probability).

of Hebbian mechanism leads to high levels of current into
the postsynaptic neuron (Figure 3B). Hebbian mechanism also
induces changes in spike trace activity in the presynaptic neuron
in time bins between 50 and 150 (Figure 3C). In the absence
of retrograde messenger production in the postsynaptic site,
no changes in release inhibitory activity in presynaptic site are
observed (Figures 3D–F). These activities of neurons in the first
layer result in a spiking train of neurons in the second layer. The
spiking activity of a single neuron in the second layer is presented
in Figure 6B.

Figure 4 shows the change of model’s parameter values of a
neuron with synapses as low pass filter (initial release probability
equal to 0.85) in the presence of homeostatic regulation of
neurotransmitter release and the absence of Hebbian mechanism
in time bins between 50 and 150. Retrograde messenger is
produced by the postsynaptic neuron in response to the
presynaptic current and is diffused into the presynaptic neuron
(Figure 4D) which leads to an increase of inhibitory activity
in the presynaptic neuron (Figure 4E). Consequently, it leads
to changes in neurotransmitter release probability (Figure 4F).
Overall activities of the presynaptic neurons induce changes in:
spiking activity of the presynaptic neuron (Figure 4A), current
influx into the post-synaptic neuron (Figure 4B) and spike trace
induced activity (Figure 4C). The spiking activity of a single
neuron in the second layer is presented in Figure 6C.

Figure 5 shows the change of model’s parameter values of a
neuron with synapses as low pass filter (initial release probability

equal to 0.85) in the presence of both homeostatic regulation of
neurotransmitter release and Hebbian mechanism in the pre-
and postsynaptic neurons. The current influx into postsynaptic
neuron (Figure 5B) is affected by both mechanisms. Spike trace
activity is affected by Hebbian mechanism (Figure 5C). The
retrograde messenger level in the presynaptic neuron, inhibitory
activity and neurotransmitter release probability is presented
in Figures 5D–F, respectively. The spiking activity of a single
neuron in the second layer is presented in Figure 6C.

Figure 6 shows that the spiking frequency of a single neuron
in the second layer which is highly dependent on the synaptic
mechanisms in the simulations. Hebbian mechanism in the
absence of controlling of neurotransmitter release leads to a very
high firing rate in single neurons in the second layer (Figure 6B).
In the presence of inhibition of neurotransmitter release while
the Hebbian mechanism was blocked, a lower firing rate of
a single neuron in the second layer is observed (Figure 6C).
When the model included both Hebbian and neurotransmitter
release mechanisms, simulations show moderate firing rates
in the spiking trains of a single neuron in the second layer
(Figure 6D).

The main aim of this study is to measure efficiency of a single
neuron in the second layer to encode its input. The efficiency
measure used in this study allows the study of efficiency of a
single neuron to encode fluctuation in their input as a vital
capability of the animal brain to live in dynamic environments.
For this purpose, the encoding efficiency was measured for
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FIGURE 4 | The Dynamics of model’s parameters in the presence

of homeostatic regulation of neurotransmitter release and

absence of Hebbian mechanism. (A) Spike train history of a

presynaptic neuron with firing probability equal to 0.85 in 200 time bins.

(B) Current history into the postsynaptic site triggered by presynaptic

neuron’s spiking. In time bins between 50 and 150 homeostatic

regulation of neurotransmitter release was applied by generation of

retrograde messenger in the postsynaptic site and its effect in

presynaptic neuron. (C) Spike trace history in the presynaptic site in

time bins between 50 and 150. Spike trace activity is affected by both

spiking pattern of the presynaptic neuron. (D) Retrograde messenger is

generated in the postsynaptic site and received by the presynaptic site

as a consequence of the presynaptic neuron activity. (E) Inhibitory

complex activity is affected by both retrograde messenger and spike

trace activity in time bins between 50 and 150. (F) Neurotransmitter

release probability is determined by the inhibitory complex activity.

different synaptic conditions at different firing probabilities of
the input layer.

Figure 7A shows that for synapses that act as low-pass filters
(initial neurotransmitter release probability equal to 0.85), the
maximum efficiency of a single neuron is obtained whenHebbian
mechanism and homeostatic regulation of neurotransmitter
release are integrated and interact with each other in the model.
However, in the absence of Hebbian mechanism or homeostatic
regulation of neurotransmitter release the efficiency of a single
neuron is found to be low. Minimum efficiency is obtained when
synapses without both mechanisms are modeled.

Figure 7B shows the encoding efficiency of neurons with
synapses which act as band-pass filters (initial neurotransmitter
release probability equal to 0.55) for different synaptic
mechanisms. The comparison of these results with neurons with
synapses that act as low-pass filters revealed a higher encoding
efficiency when both Hebbian plasticity and homeostatic
regulation of neurotransmitter release exist in the synapses.
When initial neurotransmitter release probability was set to 0.25
(synapses acting as high-pass filters) the encoding efficiency for
all synaptic conditions is remarkably lower than low and band
pass filters (Figure 7C).

The effect of feedback inhibition was studied in this work
in combination with Hebbian mechanism and homeostatic
regulation of neurotransmitter release. Figure 8A shows that for
neurons with synapses acting as low pass filters (high initial

release probability equal to 0.85) when high firing probability
of the input layer is presented to the neural system, feedback
inhibition helps a single neuron keep its efficiency at high levels.
For high pass filters (low initial release probabilities set to 0.25)
the association of Hebbian learning with homeostatic regulation
of neurotransmitter release independently or in combination
with feedback inhibition does not help neurons show high
levels of encoding efficiency (Figure 8C). The highest encoding
efficiency was obtained when encoding efficiency of neurons with
synapses as band-pass filters were simulated (Figure 8B).

Discussion

New explorations have shown different kinds of neuronal
plasticity and neuromodulations that influence neural
communication. Neuromodulators can exert effects at different
timescales from short term to persistent long term regulations.
The temporal dynamics of neuromodulator release plays an
important role in the modulation of neural circuits, yet its effect
on circuit output is not easy to understand (Marder, 2012).
However, it is required to explore integrative functionalities
of neuromodulators and plasticity mechanisms in network
dynamics. For a better understanding of the cellular event
underlying short and long term neuronal plasticity and network
dynamics, a new generation of models and theories is required
(Doya et al., 2002; Dayan, 2012).
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FIGURE 5 | The Dynamics of model’s parameters in the presence

of homeostatic regulation of neurotransmitter release and

Hebbian mechanism. (A) Spike train history of a presynaptic neuron

with firing probability equal to 0.85 in 200 time bins. (B) Current history

into the postsynaptic site triggered by the presynaptic neuron’s spiking.

In time bins between 50 and 150 homeostatic regulation of

neurotransmitter release was applied by generation of retrograde

messenger in the postsynaptic site and its effect in the presynaptic site.

(C) Spike trace history in the presynaptic site in time bins between 50

and 150. Spike trace activity is affected by both spiking pattern of the

presynaptic neuron and Hebbian mechanism. (D) Retrograde messenger

is generated in the postsynaptic site and received by the presynaptic

site as a consequence of the presynaptic neuron activity. (E) Inhibitory

complex activity is affected by both retrograde messenger and spike

trace activity in time bins between 50 and 150. (F) Neurotransmitter

release probability is determined by inhibitory complex activity.

In this work, an approach was applied to measure encoding
efficiency which is based on counting the frequency of defined
words in a spiking pattern. The method measures the efficiency
of a neuron to detect fluctuation in its inputs.

The activity of a neuron may be affected by some mechanisms
at network levels like feed-back and feed-forward inhibition
such that any abnormality in these neurons may cause some
mental disorders (Brown et al., 2015). Therefore, in this study
the question that was addressed was how neuron encoding
efficiency is determined in an integrated paradigm in which
Hebbian learning rule and retrograde messenger effect on
neurotransmitter release exist in synapses. Specifically, it is not
known what potential roles played by inhibitory neurons that
widely exist in neural systems in such complicated cellular events.

To address key questions related to the possible effect of
the Hebbian learning rule and retrograde messengers on the
presynaptic neurons and their role in homeostatic regulation
of spiking activity, we developed a hypothesis that presume
a molecular machinery which is responsible for inhibiting
neurotransmitter release of the neuron. Suchmachinery may be a
cellular pathway or a set of protein-protein interactions such that
its activation depends on the effective presence of a spike trace
(molecular changes induced by action potential) and induced
effects of diffused retrograde messenger from postsynaptic
neurons. The importance of dependency of release inhibition
activity on spike trace is to prevent any non-specific activation

of molecular machinery by diffused retrograde messenger to
non-activated synapses in neural networks. Our modeling
and simulation results suggest novel experiments to explore
such molecular machinery or biochemical pathways. In this
model, spiking of the presynaptic neurons (if associated with
neurotransmitter release) may trigger postsynaptic neurons to
produce locally retrograde messenger which is rapidly received
by the presynaptic neuron. Such assumption suggests gaseous
chemical like nitric oxide as a retrograde messenger candidate
for this hypothesis (Hardingham et al., 2013; Neitz et al., 2014;
Sagi et al., 2014). Non-gaseous chemicals may have a longer
time scale to affect presynaptic neurons so their contribution
in interaction with Hebbian mechanism may lead to different
results. If associated with effective levels of spike trace, received
retrograde messengers received by presynaptic neurons may
lead to the inhibition of neurotransmitter release. A decrease in
synaptic weight is obtained if the postsynaptic neuron spikes in
response to the sum of its input (according to the Hebbian rule,
in Table 2). In this study, we modeled synapses in which Hebbian
plasticity and neuromodulatory mechanism as fast diffused
outward of retrograde signaling exist and interact in short term
timescales. The best candidate for such retrograde signaling is
nitric oxide which is produced and diffused by the stimulation of
the sum of input current from presynaptic sites. Such assumption
gives rise to the existence of a loop between pre-and postsynaptic
sites as follows: retrograde messenger from postsynaptic
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FIGURE 6 | Comparing spiking in pre-and postsynaptic neurons for

different synaptic conditions. (A) Spiking history of a presynaptic neuron

in response to stimulus presentation as firing probability equal to 0.85. (B)

Postsynaptic spiking history in the presence of Hebbian mechanism and in

the absence of homeostatic regulation of neurotransmitter release induced

by retrograde messenger. (C) Postsynaptic spiking history in the absence of

Hebbian mechanism and in presence of homeostatic regulation of

neurotransmitter release induced by retrograde messenger. (D) Postsynaptic

spiking history in presence of both Hebbian mechanism and homeostatic

regulation of neurotransmitter release induced by retrograde messenger.

site modifies release probability of neurotransmitter. The
released neurotransmitter in combination with synaptic efficacy
determines the current influx into postsynaptic site. The
spike timing of postsynaptic activity triggered by total current
affects the Hebbian plasticity mechanism. Consequently, synaptic
efficacy between pre-and postsynaptic sites is changed and so
it leads to a change in current into postsynaptic site which
modify retrograde messenger production in the next time bins.
Hence, the combination of both mechanisms at the network
level has resulted in a firing rate of postsynaptic neuron (single
neuron) at moderate level (not too high or too low) when high
stimulus intensity was presented to the neural system. In such
stimulus presentation conditions, in the absence of retrograde
messenger effect on presynaptic neuron, due to Hebbian learning

rule, postsynaptic neurons generate spiking with high frequency
which leads to a low encoding efficiency. Retrograde signaling
in the absence of Hebbian learning rule can help neurons to
control their spiking activities, but encoding efficiency does
not reach high levels because release inhibitory activity is not
strong enough to control spiking rate. Moreover, adding the
simulation of effective inhibitory feedback by an inhibitory
neuron on the network shows its vital role in encoding efficiency
of single neurons when combined with Hebbian mechanism
and retrograde messenger comparing to the efficiency in the
absence of these synaptic mechanisms (Faghihi and Moustafa,
2015). These simulations assign a critical role for nitric oxide as
a known retrograde messenger with desired properties for the
proposed hypothesis. Therefore, our simulation studies provide
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FIGURE 7 | The encoding efficiency of a single neuron in different

synaptic conditions. (A) Synapses as low-pass filters. Initial release

probability was set to 0.85. The maximum efficiency was observed when

both Hebbian mechanism and homeostatic regulation of neurotransmitter

release were modeled (red line). Homeostatic regulation of neurotransmitter

release in the absence of Hebbian mechanism leads to lower efficiency in

comparison to the presence of both mechanisms in the modeled synapse

(brown line). The combined presence of Hebbian mechanism and the

absence of homeostatic regulation of neurotransmitter release lead to a

higher efficiency in comparison to efficiency in the absence of both

mechanisms (shown as green and blue lines, respectively). Hebb+ stands

for existing Hebbian mechanism and RM stands for existing of retrograde

messenger based induced activity. (B) Synapses as band-pass filters. Initial

release probability was set to 0.55. In comparison to low pass-filters, when

both Hebbian mechanism and homeostatic regulation mechanism of

retrograde messenger exist, studied a single neuron demonstrates higher

encoding efficiency. (C) Synapses as high-pass filters. Initial release

probability was set to 0.25. In comparison to low and band-pass filters,

studied single neuron shows low encoding efficiency for all synaptic

conditions.

new predictions and additional experiments on the role of this
chemical in the nervous system.

Retrograde messenger with different timescales of operation
may play other roles in homeostatic regulation of neuronal
spiking stability. One may be its role as an error signal.

Such error signal as the difference between the basal level of
retrograde messenger or synaptic efficacy and updated level
can act as a correction mechanism to stabilize synaptic activity
(Davis, 2006). Therefore, the correction mechanism of different
retrograde messengers in combination with Hebbian plasticity
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FIGURE 8 | The effect of feedback inhibition in efficiency of a

single neuron for different types of synapse. (A) Synapses as

low-pass filters. Initial release probability was set to 0.85. In the

presence of feedback inhibitory neuron the efficiency of a single neuron

to encode stimulus presented to the neural system is higher for high

firing probability of input layer (for firing probability larger than 0.6). (B)

Synapses as band-pass filters. Initial release probability was set to 0.55.

In comparison to low-pass filters, in the presence of feedback inhibitory

neuron the efficiency of a single neuron to encode stimulus is higher.

(C) Synapses as high-pass filters. Initial release probability was set to

0.25.Neuron shows low levels of encoding efficiency with or without

feedback inhibitory effect.

and homeostatic plasticity should be considered in future
computational modeling work.

In our simulations, a high firing rate was used for
dopaminergic neurons in order to keep dopamine at constant
levels such that the dynamics of synaptic efficacy is affected only
by changes in the spike trace and Hebbian learning rule. In future
work, one may examine different levels of dopaminergic neurons’
firing rate and different learning strategies to study its effect on
network activity when assumptions about retrograde messenger’s
effect or feedback inhibition are either changed or fixed. It is
known that synapses may vary in their molecular compositions

which lead to demonstrate a different initial release probability
(Fernandez-Chacon et al., 2001; Kavalali, 2015). Accordingly, it
is important to consider synapses with different initial release
probability and its effect on encoding efficiency. This theoretical
study assigns a critical role for homeostatic regulation of
neurotransmitter release by fast diffused retrograde messenger
and Hebbian plasticity in efficient neuronal encoding tasks when
synapses are acting as low or band pass filters. Moreover, the
model predicts that there are other synaptic mechanisms for
neurons with synapses which act as high-pass filters that enable
them to encode their inputs with different levels of intensity.
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Modeling work in the current study is based on a simple
mechanistic implementation of complicated molecular events in
which some biophysical properties of agents were simplified. For
example, we did not model diffusion of retrograde messenger.
Assuming that it acts at very low distances, it can affect partially
activated synapses in the network. Our understanding of the
cellular mechanism of neurotransmitter release machinery and
its inhibition mechanisms, especially the time scale of different
underlying mechanisms, may lead to a modification of the
dynamics of the model and basic assumptions. However, such
modification and improvements need many experiments on
the hypothesis and its mechanistic details. Another possibility
to improve the model is to consider how structural plasticity
(the dynamic connectivity of neurons over time) interact with
the change of information flow into a neuron (Lamprecht and
LeDoux, 2004; Yin and Yuan, 2015).

The simulations presented in this study predict that
impairment in any part of such complex cellular mechanisms
may lead to a deficiency in neural encoding of neurons and
neural populations. Therefore, it offers an explanation of the role
of genetic mutations that may affect biochemical pathways of
information processing in neurons which gives rise to synaptic
diseases (Chakroborty et al., 2012; Grant, 2012).

Modeling and simulation studies in combination with
experiments can help improve our understanding of neural
encoding and decoding in different physiological conditions,
specifically where cellular parameters like biophysical properties
of channels or changing biochemical pathways are not easily
assessable to be modified by experimental techniques. The
importance of such efforts are better realized when we consider
the role of theoretical studies in measuring quantities that
are not basically determined by experiments at molecular,
cellular or network levels. One of the best examples of such
quantities is to measure information transferred by neurons.
Until now mainly information theory and some mathematical
measures have been used for this purpose. Therefore, applying
such measures in simulations especially if they are based on
information about cellular architecture and functionality can play
a very critical role in designing research plans to explore basic
principles of information processing in animal and human the
brain.
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