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A commentary on

Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may

not be sufficient

by Reddington, A. E., Rosser, A. E., and Dunnett, S. B. (2014). Front. Cell. Neurosci. 8:398.
doi: 10.3389/fncel.2014.00398

Proof-of-concept has long been gained from both Huntington’s disease (HD) animal models and
pilot clinical trials that transplantation of fetal striatal tissue has the potential to offer a substitutive
therapy to HD patients (Peschanski et al., 1995; Bachoud-Lévi et al., 2006; Reuter et al., 2008;
Paganini et al., 2014). Nonetheless, in the stem cell era, the body of knowledge so far obtained
from fetal tissue as cell source may well be handed over to the clinical exploitation of neural stem
cells (Tabar and Studer, 2014).

Loss of DARPP-32 medium-sized spiny projection neurons (MSN) in the striatum is a hallmark
of HD. Hence, production of this cell type from pluripotent stem cells holds promises for achieving
brain repair (Dunnett and Rosser, 2014). Reddington et al. (2014) analyzed the shortcomings of
targeting at just the MSN lineage and correctly pointed out that one has to readdress the question
“what constitutes a functional striatal graft?” Important insights are in fact emerging from studies
encompassing fetal striatal grafting and normal striatal development.

Caudate-putaminal transplantation of human striatal primordium is straightforward in its
procedure, since just involves the injection of a dissociated cell suspension into the adult HD brain
without any additional growth factors or other supply (Bachoud-Lévi and Perrier, 2014). Four
reports provided long-term analysis of Unified HDRating Scale performances after transplantation
of a limited number of patients (Bachoud-Lévi et al., 2006; Reuter et al., 2008; Barker et al., 2013;
Paganini et al., 2014). The results of these not-randomized studies are reportedly at variance. While
Barker et al. (2013) found no sustained functional benefit due to deadly and/or insufficient number
of grafted cells, the other three studies demonstrated some clinical benefit which paralleled with
graft survival, development and function. In the Florence experience, some of the grafts have been
growing for 9–12 months, then stopped, perhaps according to a self-limiting and time-scheduled
pattern (Gallina et al., 2010, 2014; Mascalchi et al., 2014). In particular, Gallina et al. (2014)
reported an illustrative case where the characterization of the intrinsic, multifaceted molecular
asset of the graft was associated with its ability to perform those developmental steps that led
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to a viable structure remodeling basal ganglia anatomy. In vitro
studies, aimed at characterizing the fetal striatal source used in
transplantation protocols, revealed that human striatal precursor
(HSP) cells isolated from 9 to 12-week-old human fetuses,
possess the machinery for long-term survival, proliferation
and differentiation (Sarchielli et al., 2014; Ambrosini et al.,
2015). Indeed, HSP cells featured a mixed population of
immature elements, neuronal/glial-restricted progenitors and
striatal neurons, pointing to a plastic phenotype already
committed to become striatum. This heterogeneous composition
reflects that of striatal primordium and favors its regenerative
potential in HD patients. In addition, HSP cells are well equipped
for adaptation and survival to hypoxia (Ambrosini et al., 2015),
one of the micro-environmental stress to which grafted cells
are exposed when transplanted into the diseased host brain,
where the loss of neurons is also accompanied with reduced
trophic support due to both astrocyte and blood vessel atrophy
(Cisbani et al., 2013). Further investigations on the mechanisms
underlying normal striatal ontogenesis are needed to identify the
optimal fetal source and the adequate developmental window in
order to optimize protocols for the use of human fetal striatal
transplantation therapy in HD. In this regard, both in vitro
modeling and ex vivo experiments have recently provided a
molecular definition of developing striatal anatomy, showing
how transcriptional and functional processes converge to specify
human striatal and neocortical neurons during development
(Onorati et al., 2014). In particular, the observation that DARPP-
32 is expressed in the human LGE together with other striatal

markers, but also in the human cortical plate at 8–11 weeks
(Onorati et al., 2014), should be considered when monitoring
in vitro the differentiation of human pluripotent stem cells
toward MSN, as well as when grafting fetal striatum.

Even if deeper understanding is needed to fully answer the
question “what constitutes a functional striatal graft,” provided
it is taken within the appropriate developmental stage, striatal
primordium seems to fulfill the requirements for effective repair.
We definitely agree that a pureMSN fate may not be sufficient for
successful stem-cell based transplantation protocols, especially
because multiple types of striatal neurons and glial cells are
required for a full striatal reconstruction. Therefore, more
sophisticated differentiation protocols will be necessary. In the
meanwhile, it would be extremely important for people who
are now living the dramatic condition of HD prospective
trials be undertaken to assess the clinical utility of fetal-tissue
based therapies. Certainly, several challenges remain to be
faced, including overall optimization of graft procedure and
patientmanagement (Baizabal-Carvallo, 2014; Bachoud-Lévi and
Perrier, 2014). However, based on what we have learned up to
now, it seems appropriate not to neglect this approach and keep
going. We owe it to patients.
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