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Extracellular ATP, related nucleotides and adenosine are among the earliest signaling
molecules, operating in virtually all tissues and cells. Through their specific receptors,
namely purinergic P1 for nucleosides and P2 for nucleotides, they are involved in a wide
array of physiological effects ranging from neurotransmission and muscle contraction
to endocrine secretion, vasodilation, immune response, and fertility. The purinergic
system also participates in the proliferation and differentiation of stem cells from
different niches. In particular, both mesenchymal stem cells (MSCs) and neural stem
cells are endowed with several purinergic receptors and ecto-nucleotide metabolizing
enzymes, and release extracellular purines that mediate autocrine and paracrine
growth/proliferation, pro- or anti-apoptotic processes, differentiation-promoting effects
and immunomodulatory actions. Here, we discuss the often opposing roles played
by ATP and adenosine in adult neurogenesis in both physiological and pathological
conditions, as well as in adipogenic and osteogenic MSC differentiation. We also focus
on how purinergic ligands produced and released by transplanted stem cells can be
regarded as ideal candidates to mediate the crosstalk with resident stem cell niches,
promoting cell growth and survival, regulating inflammation and, therefore, contributing
to local tissue homeostasis and repair.

Keywords: purinergic receptors, ATP, adenosine, mesenchymal stem cells, neural stem cells

Purinergic Ligands are Ancient and Widespread Mediators of
Cell-to-Cell Communication

It is now widely accepted that in adult organisms stem cells contribute to tissue homeostasis
and repair through paracrine mechanisms, along with a mere integration into existing tissue
architecture (Wang et al., 2014). Trophic factors combined with immunomodulatory molecules
often represent the main mechanism responsible for the functional improvements exerted
by transplanted stem cells (Uccelli et al., 2008; Leatherman, 2013). Released nucleotides
and nucleosides behave as trophic, differentiating, and immunomodulatory molecules in
many physiological and pathological events, through autocrine and paracrine mechanisms
(Glaser et al., 2012). Phylogenetically, purinergic ligands are considered ancient molecules
involved in cell-to-cell communication, and their receptors are expressed by almost every
cell type, even in very primitive organisms such as prokaryotes, protozoa, and early plants
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(Burnstock and Verkhratsky, 2010). Purinergic receptors are
also among the first neurotransmitter receptors to be expressed
during very early stages of ontogenetic development (Burnstock
and Ulrich, 2011). This conserved and widespread use of
purinergic ligands for intercellular communication is possibly
due to the fact that nucleotides (and ATP in particular) are
fundamental constituents of cells, being the most widely used
high energy carrier molecules, and because they are the building
blocks of nucleic acids. Cells therefore usually contain millimolar
concentrations of intracellular ATP that can be discharged into
the extracellular space by vesicular exocytosis, concentrative, and
equilibrative transporters, connexin/pannexin hemichannels and
uncontrolled leakage from injured cells (Lohman et al., 2012).

Once released into the extracellular environment, purinergic
ligands behave as signal mediators, activating different subtypes
of purinergic receptors. There are four subtypes of adenosine
P1 receptors (A1, A2A, A2B, and A3), seven subtypes of
nucleotide P2X ligand-gated ion channel receptors (P2X1–7)
and eight subtypes of nucleotide P2Y metabotropic receptors
(P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14).
The P1 and P2Y subtypes are classical seven-transmembrane
domain receptors, whose action is mediated through G-proteins
and intracellular second messengers, including Ca2+, cAMP, and
InsP3 (Burnstock, 2007).

The effects of ATP and adenosine are usually opposite
and the resulting signal cascade activated by extracellular
nucleotides and nucleosides in target cells is the combinatorial
resultant of their extracellular metabolism, uptake and binding
to specific receptors (Volonté and D’Ambrosi, 2009). Ecto-
nucleotide metabolizing enzymes (in particular ecto-nucleoside
triphosphate phosphohydrolases, and ecto-5′-nucleotidase) are
powerful tools to control the effects mediated by extracellular
purines, as they switch off the signal induced by ATP on P2
receptors, hydrolyzing it into adenosine, thereby activating P1
receptors.

Because of their widespread presence and the broad array of
functions they can mediate, it is not surprising that purinergic
receptors are involved in many aspects of stem cell physiology:
mesenchymal stem cells (MSCs) and neuronal progenitor cells
(NPCs) release and respond to purinergic ligands with altered
proliferation, migration, differentiation and apoptosis, and by
regulating immune responses associated with their mobilization
(Burnstock and Ulrich, 2011). In this review we will analyze how
purinergic signaling behaves as a common paracrine pathway
that activates MSCs and neural stem cells (NSCs) in both
physiological and pathological conditions.

Dual Role of the Purinergic System in
NSCs in Physiological and Pathological
Conditions

Extracellular Purines Modulate Adult
Neurogenesis
Neural progenitor cells in adult brain express different purinergic
receptors. Indeed, mRNAs for P2X4 and P2X7 subtypes, all P2Y

receptors except P2Y4 and P2Y11, and all P1 receptors, but A3,
have been found in subventricular zone (SVZ)-derived primary
neurospheres (Stafford et al., 2007; Table 1). Moreover, neural
progenitor cells of both SVZ and subgranular zone neurogenic
niches highly express the nucleotide-metabolizing enzymes
ectonucleoside triphosphate diphosphohydrolase (NTPDase) 2
and the tissue-non-specific alkaline phosphatase (TNAP; Langer
et al., 2007). Extracellular nucleotides generated by these enzymes
in the SVZ produce a rapid and transient increase in intracellular
calcium mainly through the activation of the metabotropic P2Y1
receptor (Mishra et al., 2006). The role of P2Y1 in modulating
neurogenesis changes depending on the physiological conditions
and the concomitant presence of EGF and FGF. In fact, specific
stimulation of this receptor in NPCs increases cell proliferation
and migration (Grimm et al., 2010), but only when the growth
factor concentration is low or absent (Mishra et al., 2006;
Boccazzi et al., 2014; Table 1; Figure 1A). Conversely, when
the growth factor concentration is higher, activation of P2Y1
has an antiproliferative effect (Stafford et al., 2007; Table 1).
It was recently demonstrated that infusion of ATP in rat SVZ
selectively increases the proliferation of type C cells but not of
type B or A (Suyama et al., 2012). This effect is counteracted
by the selective P2Y1 antagonist 20-deoxy-N6-methyladenosine-
30,50-bisphosphate (MRS2179) suggesting a specific role of the
P2Y1 receptor in modulating the activity of transit amplifying
cells. In line with this, an additional indication of P2Y1
receptor functioning comes from evidence that ATP secreted
by astrocytes, even at basal levels, promotes the proliferation of
neural progenitor cells through activation of the P2Y1 subunit
(Cao et al., 2013; Figure 1A).

The effect of P2Y1 in stimulating the proliferation of
progenitor cells and neurogenesis can be counterbalanced by
activation of the P2X7 receptor (Figure 1A). This receptor
subtype can regulate the homeostasis of the neurogenic
niche, limiting excessive neuro- and glio-genesis by inhibiting
proliferation and stimulating NPC differentiation (Tsao et al.,
2013) and activating apoptotic mechanisms (Delarasse et al.,
2009; Table 1). The P2X7 receptor expressed on neuroblasts can
also contribute to the clearance of apoptotic cells by activating
innate phagocytosis during early stages of neurogenesis (Lovelace
et al., 2015; Table 1).

Extracellular Purines Affect NSC Response in
Pathological Conditions
Massive release of extracellular ATP is one of the hallmarks
of neurodegeneration. After a pathological event in the brain,
such as ischemia or Parkinson’s disease all CNS cell types
activate different purinergic receptors. P2X7, which is expressed
mainly in microglia, astrocytes, and neurons, is the principal
agent responsible for purinergic-induced excitotoxic cell death
(Sperlagh et al., 2006). Activation of P2X7 in pathological
conditions in neurons and astrocytes induces the formation of
large pores which, together with pannexin channels, allow the
passage of cations, the leakage of metabolites of up to 900 Da
and further release of ATP. During an insult extracellular ATP
can achieve millimolar concentrations in the extracellular space,
determining sustained activation of purinergic receptors and an
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TABLE 1 | Presence and function of purinergic P1 and P2 receptors in neural precursor cells and mesenchymal stem cells.

Neural precursor cells (NPCs) Mesenchymal stem cells (MSCs)

P1/P2 Presence Effect Presence Effect

A1 + n.d. + Lipogenic activity Gharibi et al.
(2011)

A2A + n.d. + Maintainace of osteoblastic
differentiation; ↑ adipogenesis
Gharibi et al. (2011)

A2B + n.d. + ↑ Osteogenesis Ham and Evans
(2012)

A3 n.d. n.d. + n.d.

P2X1 n.d. n.d. + n.d.

P2X2 n.d. n.d. n.d. n.d.

P2X3 n.d. n.d. + n.d.

P2X4 + n.d. + n.d.

P2X5 n.d. n.d. + ↑ Osteogenesis Zippel et al.
(2012)

P2X6 + ↓ Migration after ischemia
Vergni et al. (2009)

+ ↓ Osteogenesis Zippel et al.
(2012)

P2X7 + ↓ Proliferation; ↑ neuronal
differentiation Tsao et al. (2013)
↑ Apoptosis Delarasse et al.
(2009), Messemer et al. (2013)
↓ Migration after ischemia
Vergni et al. (2009)
↑ Innate phagocytosis Lovelace
et al. (2015)

+ ↑ Osteogenesis and
mineralization
Sun et al. (2013), Noronha-Matos
et al. (2014)

P2Y1 + ↑ Proliferation Mishra et al.
(2006), Boccazzi et al. (2014)
↑ Migration Grimm et al. (2010)
↓ Proliferation in the presence
of high growth factor
concentration
Stafford et al. (2007)

+ ↓ Proliferation Coppi et al. (2007)
↑ Adipogenesis Ciciarello et al.
(2013)

P2Y2 + ↑ Proliferation Mishra et al.
(2006)
↓ Migration after ischemia
Vergni et al. (2009)

+ ↓ Osteogenesis Zippel et al.
(2012)

P2Y4 n.d. n.d. + ↑ Adipogenesis Zippel et al.
(2012), Ciciarello et al. (2013)

P2Y6 + n.d. + n.d.

P2Y11 n.d. n.d. + ↑ Adipogenesis Zippel et al.
(2012)
↑ Proliferation, migration,
cytochine release Fruscione et al.
(2011)

P2Y12 + n.d. + n.d.

P2Y13 + n.d. + ↑ Osteogenesis,
↓ adipogenesis Biver et al. (2013)

P2Y14 + n.d. + n.d.

+, Presence; n.d., not detected; ↑, stimulation; ↓, inhibition. The presence of purinergic receptors in NSCs was established by Stafford et al. (2007), in MSCs by Ferrari
et al. (2011) and Zippel et al. (2012).

increase in intracellular calcium in target cells. The imbalance
of calcium homeostasis in microglia results in the release of
different interleukins, triggering a neuroinflammatory reaction
(Sperlagh et al., 2006). However, the role of neuroinflammation
in modulating neurogenesis during a pathological event is still
debated. Inflammatory cytokines have both a positive and a

negative effect on neurogenesis (Borsini et al., 2015) and the
activation of purinergic receptors on microglia and astrocytes
plays a relevant role in modulating their release. For example,
microglial P2X7 activated by its specific agonists ATP and
benzoyl-ATP during neuronal stress modulates the expression
of NOD-like receptor (NLR) P3 inflammasome (Franceschini
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FIGURE 1 | Physiological effects of purinergic receptors in neural and
mesenchymal stem cells (MSCs). (A) Proposed model of purinergic receptor
action on neurogenesis: ATP, released from astrocytes, and ADP, resulting from
ATP hydrolysis, stimulate, respectively, P2X7 and P2Y1 receptors present on
neural stem cells (NPCs). The activation of P2Y1 receptor leads to increased
proliferation and migration and this effect is counterbalanced by P2X7 activation

that decreases proliferation, induces neuronal differentiation, and apoptosis.
(B) Osteogenic and adipogenic actions of purinergic receptors present on
MSCs : A2B, P2Y13, P2X5, and P2X7 receptors stimulate osteogenesis, while
P2X6 and P2Y2 are inhibitory. A2A, P2Y1, P2Y4 and P2Y11 receptors are
adipogenic. P2Y11 receptor also induces migration, cytokine release, and
proliferation. Proliferation is inhibited by P2Y1 receptor.

et al., 2015), sustaining the release of proinflammatory cytokines
which, in turn, may contribute to the inhibition of progenitor cell
activity. Conversely, the increase in P2X4 expression in astrocytes
contributes to CNS remodeling after trauma and further increases
synaptogenesis (Franke and Illes, 2006). Brain ischemia is also
characterized by the release of inflammatory cytokines. After an
ischemic insult the SVZ is able to release factors that can protect
against cortical damage (Cavaliere et al., 2006) and the purinergic
system can inhibit this function. Indeed, ATP released after brain
insult overstimulates P2 receptors expressed in SVZ progenitor
cells (mainly P2X6, P2X7, P2Y1, and P2Y2; Stafford et al., 2007;
Vergni et al., 2009), inhibiting the migration of neuroblasts to
the damaged cortex (Table 1). This process is further enhanced
by a locally decreased production of the chemoattractant SDf-
1alpha and may also be reversed by blocking the activation of
microglia (Vergni et al., 2009). In this case, purines, together with
other death signals released by damaged cells, counterbalance the
response of progenitor cells recruited after damage (Messemer
et al., 2013; Table 1).

The general assumption is that, during an insult, ATP can
act as a detrimental pro-inflammatory signal, whereas adenosine,
mainly through A1 and A3 receptors, usually has opposite
properties (Fiebich et al., 2014). It is well known that ATP released
after brain injury can be hydrolized by NTPDase2, which is highly

expressed in the neural progenitor cell membrane (Gampe et al.,
2015), and generate adenosine that, together with the adenosine
released directly during brain damage, also has a modulatory
effect on neurogenesis (Ulrich et al., 2012).

Finally, an important role in the modulation of NSC function
following a stressful event is also exerted by orphan G protein-
coupled receptors, which can be activated by extracellular
nucleotides. This is the case of GPR17, a novel P2Y receptor
specifically activated by both uracil nucleotides (UDP, UDP-
glucose, and UDP-galactose) and cysteinyl-leukotrienes (cysLTs;
Blasius et al., 1998; Ciana et al., 2006). GPR17 is also expressed in
neural progenitor cells, mainly oligodendrocyte precursor cells,
and acts as a regulatory factor in mediating oligodendrocyte
response and neuronal death after brain ischemia (Lecca et al.,
2008).

Purinergic Signaling in MSCs

Mesenchymal stem cells are self-renewing multipotent stem
cells with the capacity to differentiate into chondrocytes,
osteoblasts, or adipocytes. Numerous studies have shown that
many molecules, inorganic compounds, and mechanical agents
contribute to their commitment in the different lineages and
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it is now clear that there is an inverse relationship between
their differentiation into osteoblatsts and into adipocytes.
This balance is regulated by intersecting signaling pathways
that converge on the regulation of two main transcription
factors: peroxisome proliferator-activated receptor-γ (PPARγ)
and Runt-related transcription factor 2 (Runx2), which are
generally regarded as the master regulators of adipogenesis and
osteogenesis, respectively (James, 2013).

Purinergic ligands have been widely described as early factors
determining MSC fate (Glaser et al., 2012; Scarfi, 2014) but,
while the role of the P1 receptors in MSC physiology is fairly
clearly defined, the function of P2 receptors is more controversial,
possibly because most of the 15 P2 receptor subtypes have been
identified on MSCs (Zippel et al., 2012), it is often difficult to
separate the effects of ATP from those of adenosine, and their
function seems also to be influenced by the source of origin of the
cells. To simplify, ATP can be considered both adipogenic and
osteogenic, while its degradation product, adenosine, switches off
adipogenic differentiation and has a prevalently osteogenic action
(Gharibi et al., 2012; Ciciarello et al., 2013).

P1 Receptors on MSCs are Mostly Osteogenic and
Immunomodulatory
Mesenchymal stem cells release adenosine and possess all P1
receptors (Evans et al., 2006), with A2B as the predominant
subtype in undifferentiated cells and during osteoblastogenesis
(Gharibi et al., 2011). Not only is adenosine released but most
of it derives from the hydrolysis of ATP by ectonucleoside
triphosphate diphosphohydrolase 1 (CD39) and ecto-5′-
nucleotidase (CD73) activities that are abundantly present in
the plasma membrane of MSCs (Sattler et al., 2011). Adenosine
exerts an osteogenic action (Ham and Evans, 2012) mainly via
the A2B receptor (Table 1; Figure 1B), its effects being canceled
on pharmacological inhibition of this receptor subtype (He
et al., 2013), and since overexpression of A2B receptors induces
the synthesis of osteoblast-related genes (Runx2 and alkaline
phosphatase; Gharibi et al., 2011). Consistently with these in
vitro results, the knockout of CD73 in mice decreases osteoblast
differentiation, resulting in osteopenia (Takedachi et al., 2012);
A2B-deficient mice show impaired osteogenic differentiation,
a mild osteopenic phenotype and impaired fracture physiology
(Carroll et al., 2012); finally, loss of equilibrative nucleoside
transporter 1 (ENT1) in mice, with consequent inhibition of
adenosine reuptake, leads to ectopic calcification of spinal tissues
(Warraich et al., 2013). Adenosine formation and activation of
A2B receptors has also been strongly implicated in osteogenic
differentiation induced by biomaterials containing calcium
phosphate moieties (Shih et al., 2014). The A2A subunit has also
been implicated in osteogenesis, being involved mainly in the
maintenance of osteoblastic differentiation (Table 1) and this
P1 subunit, together with the A1 receptor subtype, is also found
upregulated during adipogenesis, influencing, respectively,
differentiation (through upregulation of PPARγ; Figure 1) and
lipogenic activity (Gharibi et al., 2011; Table 1).

The regenerative effects of MSCs largely depend on their
capacity to regulate inflammation and tissue homeostasis
via the secretion of an array of immunosuppressive factors,

cytokines and growth and differentiation factors that may
inhibit inflammatory responses and facilitate the proliferation
and differentiation of progenitor cells in tissues in situ. P1
receptors are also involved in this aspect of MSC physiology
following a pathological insult, being implicated in tissue repair
and wound healing by stimulating local repair mechanisms
and enhancing the accumulation of endothelial progenitor cells
(Katebi et al., 2009). Released adenosine usually displays direct
anti-inflammatory effects (Hasko and Pacher, 2008) blocking
the proliferation of T-lymphocytes mainly through the A2A
subtype, and the addition of A2A antagonists or CD39 inhibitors
significantly counteracts this effect (Saldanha-Araujo et al., 2011;
Sattler et al., 2011; Lee et al., 2014).

P2 Receptors have Pleiotropic Effects in MSCs
Human MSCs have been reported spontaneously to release ATP
(Coppi et al., 2007) which, in a paracrine way, initiates and
propagates intracellular Ca2+ waves, promoting the activation
of transcription factors that are involved in cell differentiation
(Kawano et al., 2006). ATP inhibits the proliferation of bone
marrow (BM)-MSCs (Coppi et al., 2007) and stimulates their
migration (Ferrari et al., 2011) and PPARγ levels through
the activation of different P2X and P2Y receptor subunits
(Omatsu-Kanbe et al., 2006; Zippel et al., 2012; Ciciarello
et al., 2013; Table 1; Figure 1B). Together with this adipogenic
role for extracellular nucleotides, it was recently demonstrated
that P2 receptors are also involved in osteogenesis (Table 1)
and up- or down-regulation of different P2 subtypes was
observed in adipogenic and osteogenic differentiation of MSCs
derived from adipose tissue and dental follicles (Zippel et al.,
2012). In particular, P2Y13-deficient mice exhibit a decreased
bone turnover associated with a reduction in the number
of both osteoblasts and osteoclasts (Wang et al., 2014)
and MSCs derived from these mice undergo a preferential
adipogenic differentiation, showing that the P2Y13 receptor
physiologically stimulates the differentiation of osteoblasts
(Figure 1B) and inhibits that of adipocytes (Biver et al., 2013;
Table 1). P2X7 receptor activation in BM-MSCs from post-
menopausal women and following shockwave treatment also
promotes osteogenic differentiation and mineralization (Sun
et al., 2013; Noronha-Matos et al., 2014; Table 1; Figure 1B).
Finally, it has been demonstrated that activation of P2Y11
receptor by NAD+ released from connexin hemichannels
increases proliferation, migration, and cytokine release in
BM-MSCs, sparing in this case osteogenic and adipogenic
differentiation markers (Fruscione et al., 2011; Table 1;
Figure 1B).

Purinergic Ligands may be Involved in
the Crosstalk between NSCs and MSCs

In this review we have described how purinergic signaling is
involved in the physiology of NSCs and MSCs, as both cell types
produce and respond to nucleotides and nucleosides. Although
purinergic receptors can mediate different effects in the two cell
niches (Figure 1), in both cases purinergic signaling converges
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in the modulation of the immune response that is at the basis
of stem cell recruitment, in particular after a stressful insult.
The activation of P1 receptors is mainly immunosuppressive and
trophic for stem cells, while the stimulation of P2 receptors is
often proinflammatory and can enhance cell death pathways.
Purinergic ligands produced and released by transplanted stem
cells can behave as ideal candidates in promoting in situ cell
growth and decreased apoptosis and in regulating inflammation.
For example, although at present there is little evidence of
transdifferentiation of MSCs into neurons, it is believed that
the secretome of transplanted MSCs can empower surrounding
cells to facilitate tissue repair also in CNS pathologies such
as stroke, Parkinson’s disease, traumatic brain injury, and
epilepsy (Kim et al., 2009; Joyce et al., 2010). With regard to
epilepsy, a large body of literature demonstrates the supporting
role of adenosine as an endogenous anticonvulsant agent
involved in anti-epileptic and anti-apoptotic functions, also by
promoting neurogenesis (Glaser et al., 2012; Boison, 2013).
Although numerous adenosine agonists have been shown to be
potent anticonvulsants in a wide array of animal models of
epilepsy, they often produce serious systemic adverse events.
An alternative strategy under investigation is to transplant
MSCs engineered to release high amounts of adenosine in
several models of epilepsy, in order to enhance the natural
adenosinergic mechanism triggered by seizures. This approach
is very attractive as it provides large amounts of adenosine

in loco, limiting its action to the foci of seizure and it
has indeed proved successful, as engineered MSCs produce a
local boost of adenosine and trigger anti-epileptic and anti-
apoptotic effects (Boison, 2009; Li et al., 2009; Huicong et al.,
2013).

In an acute optic nerve injury model it was shown that
MSCs exert neuroprotective and anti-inflammatory effects, also
through the down-regulation of the P2X7 receptor in retinal
ganglion cells (Chen et al., 2013). Conversely, it was recently
shown that ATP released from light-depolarized astrocytes
promotes the neuronal differentiation of MSCs through the
activation of P2X receptors in vitro and in vivo (Tu et al.,
2014). It is evident from these results that purinergic ligands
activate shared pathways that can be involved in MSC and NSC
crosstalk, thus allowing mesenchymal and neurogenic niches to
become closer.
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