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Bursts of activity in networks of neurons are thought to convey salient information and
drive synaptic plasticity. Here we report that network bursts also exert a profound
effect on Spike-Timing-Dependent Plasticity (STDP). In acute slices of juvenile rat
somatosensory cortex we paired a network burst, which alone induced long-term
depression (LTD), with STDP-induced long-term potentiation (LTP) and LTD. We
observed that STDP-induced LTP was either unaffected, blocked or flipped into LTD by
the network burst, and that STDP-induced LTD was either saturated or flipped into LTP,
depending on the relative timing of the network burst with respect to spike coincidences
of the STDP event. We hypothesized that network bursts flip STDP-induced LTP to
LTD by depleting resources needed for LTP and therefore developed a resource-
dependent STDP learning rule. In a model neural network under the influence of the
proposed resource-dependent STDP rule, we found that excitatory synaptic coupling
was homeostatically regulated to produce power law distributed burst amplitudes
reflecting self-organized criticality, a state that ensures optimal information coding.

Keywords: synaptic plasticity, patch-clamp, acute brain slices, somatosensory cortex, STDP, self-organized
criticality, neural networks simulations

Introduction

Periods of synchronous neuronal firing, or bursts of action potentials (APs) in populations of
neurons, are ubiquitous in the central nervous system. Bursts can induce long-lasting changes
in synaptic efficacy depending on the frequency of bursting, with long-term depression (LTD)
being induced by low frequency bursts and long-term potentiation (LTP) being induced at higher
frequencies (Bliss and Lomo, 1973; Lynch et al., 1983; Stanton and Sejnowski, 1989; Dudek and
Bear, 1992) with notable exceptions (Coesmans et al., 2004). This phenomenon led to the well-
known Bienenstock Cooper and Munro (BCM) model of synaptic plasticity (Bienenstock et al.,
1982). The relative timing of single spikes generated in connected pairs of neurons can also induce
LTP and LTD (Markram et al., 1997; Bi and Poo, 1998), which has led to the well-known Spike-
Timing-Dependent Plasticity (STDP) model of synaptic plasticity (Markram et al., 2011). The
manner in which these two induction protocols for synaptic plasticity interact is unclear, and it
remains to be seen if they can be unified under a common mechanism.

According to the so-called calcium hypothesis, synaptic changes are thought to be determined
by the magnitude and time-course of the transient influx of calcium into the synaptic spine induced
by pre- and post-synaptic spiking (Bear et al., 1987; Shouval and Kalantzis, 2005; Nevian and
Sakmann, 2006; Graupner and Brunel, 2010, 2012). Large calcium influxes are thought to induce
potentiation, whereas moderate and prolonged calcium influxes are thought to induce depression
(Bienenstock et al., 1982; Nevian and Sakmann, 2006). A network burst induced transient
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reduction in extracellular calcium would reduce the magnitude
of calcium influx into the spine approximately proportionally
(Egelman and Montague, 1999; Wiest et al., 2000), and could
subsequently alter the outcome of plasticity. In particular, spiking
motifs yielding LTP could instead yield LTD when embedded in
a network burst.

This shifting of the direction of plasticity in bursting
networks toward LTD is an interesting observation, as it is a
possible mechanism for counteracting run-away potentiation in
networks of neurons with on-going synaptic plasticity. Increases
in synaptic coupling between excitatory neurons are known
to induce a transition to bursting activity regimes, as has
been reported in previous theoretical studies (Tsodyks et al.,
2000; Kudela et al., 2003) and under pathological experimental
conditions where synaptic up-scaling was induced by activity
deprivation (Trasande and Ramirez, 2007). While homeostatic
mechanisms have been proposed to down-regulate synaptic
strengths if neuronal firing rates become excessive (Turrigiano
et al., 1998; Trasande and Ramirez, 2007), such mechanisms have
been shown to be insufficient to maintain network stability in
simulations of networks of neurons incorporating empirically
constrained STDP models at excitatory synapses (Zenke et al.,
2013). One important reason for this is that such mechanisms
are insensitive to the transition to the network bursting state,
which occurs with only minor changes in neuronal firing rates.
The proposed interplay between network bursting activity and
STDP could provide negative feedback allowing fine homeostatic
control to be maintained in the presence of on-going synaptic
plasticity, and thus to maintain states of criticality observed in
cortical networks (Beggs and Plenz, 2003; Priesemann et al., 2009,
2013).

To gain insight into the proposed interaction of STDP
and network bursting activity, we investigated in vitro the
effect of precisely timed network bursts on STDP at excitatory
synaptic inputs to layer 5 pyramidal neurons where the STDP
phenomenon was first reported (Markram et al., 1997). STDP
protocols known to induce LTP and LTD were applied, and
network bursts were induced at precise timings before, during, or
after the STDP pairing protocols using the electrodes of a multi-
electrode array (MEA) located in layer 5. The pairing of STDP
events with network bursts can influence the plasticity outcome
by altering the timing relationship in the pre–post spike motif
due to the additional spikes, and by changes in context due to
the network burst (such as voltage, competition for resources,
etc.). To separate the former effects from the latter, we performed
burst-spike-substitution (BSS) experiments whereby the MEA
burst was replaced with an excitatory postsynaptic potential
(EPSP) paired with a simultaneous post-synaptic AP.

Our main experimental finding is that certain specific timings
of network bursts relative to the STDP events can induce flips of
LTD into LTP and LTP into LTD, which cannot be accounted for
by the BSS protocols, and thus on pre–post spiking alone. We
propose that the observed flips are manifestations of positive and
negative synaptic cooperativity, respectively, for which a number
of mechanisms have been proposed. We hypothesize that negative
cooperativity could be due to the depletion of critical resources
needed for LTP, perhaps through the depletion of an intracellular

messenger (Fonseca et al., 2004), or the transient reduction of
extracellular calcium at synaptic junctions immediately following
network bursting (Egelman and Montague, 1999; Wiest et al.,
2000).

We further hypothesize that the observed negative
cooperativity could have an important role in the maintenance
of the excitation–inhibition balance and of network criticality
in the presence of on-going synaptic plasticity. To evaluate
this hypothesis, we employ simulations of networks of neurons
incorporating an empirically constrained STDP rule (Morrison
et al., 2007), and augment it with a resource depletion term
implementing a shift of STDP outcomes from LTP to LTD when
embedded in a network burst. Networks including the resource
depletion term are found to induce a transition to a state of
criticality in the network (Beggs and Plenz, 2003; Priesemann
et al., 2009, 2013). The proposed resource-dependent interaction
between network activity and STDP therefore represents a
novel mechanism for the homeostatic regulation of the network
activity regime.

Materials and Methods

Electrophysiology
In accordance with the Swiss national and institutional
guidelines, 300 μm thick sagittal brain slices were prepared from
somatosensory cortex of postnatal days 13–17 Wistar rats of
either sex in iced artificial cerebrospinal fluid (ACSF) containing
(in mM) 125 NaCl, 2.5 KCl, 25 D-glucose, 25 NaHCO3, 1.25
NaH2PO4, 2 CaCl2, and 1 MgCl2; all chemicals from Sigma–
Aldrich (St. Louis, MO, USA or Merck, Darmstadt, Germany),
using a HR2 vibratome (Sigmann Elektronik, Heidelberg,
Germany). The primary somatosensory cortex was manually
dissected and isolated to obtain rectangular slices of 5–7 mm
width and containing the neocortex in its entire height. Optimal
slices, with apical cell dendrites running parallel to the slice
surface, were selected for recordings. Slices were incubated at
22◦C for 30–60 min until mounting in the recording chamber.
Slices were mounted on a 3D-MEA with 60 pyramidal platinum
electrodes (electrode basis: 40μm× 40μm, electrode height: 50–
70 μm, electrode interspacing: 200 μm; Qwane Bioscience SA,
Lausanne, Switzerland) after evaporation of a mounting solution
of 0.14 mg/L nitrocellulose in an ethanol (99%) – methanol
(1%) mixture. Cells were visualized by infrared differential
interference contrast video microscopy using a camera (VX 55,
Till Photonics, Gräfelfing, Germany) mounted on an upright
microscope (BX 51WI, Olympus, FI, Japan) fitted with a
40× objective (LUMPLAN, Olympus). Whole-cell recordings
were performed using Axopatch 200B amplifiers (Molecular
Devices, Union City, CA, USA). Data acquisition, sampled at
5–10 kHz, was performed via an ITC-18 board (Instrutech Co,
Port Washington, NY, USA), connected to a computer running
IgorPro (Wavemetrics, Portland, OR, USA). The voltage signal
was filtered with a 2 kHz Bessel filter. Multiple somatic whole
cell recordings (1–3 cells simultaneously) were performed using
patch pipettes pulled with a P-97 Flaming/Brown micropipette
puller (Sutter Instruments Co, Novato, CA, USA) with an initial
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resistance of 8–10 M �. Patch pipettes were filled with standard
intracellular solution (ICS) containing (inmM): 110 K-gluconate,
10 KCl, 4 ATP-Mg, 10 phosphocreatine, 0.3 GTP, 10 N-2-
hydroxyethylpiperazine-N ′ -2-ethanesulfonic acid (pH 7.3), and
0.5% biocytin. Recordings were not corrected for the liquid
junction potential between ACSF and ICS (–14 mV). Variation
in the cell input resistance was measured from beginning to
end of the experiment, and all cells having a change in input
resistance greater than 33% were excluded. Cell access resistance
was typically less than 20 M�.

Electrical Stimulation
A STDP protocol known to induce LTP (the STDP+ event)
was applied as a 50 Hz train of three APs with a single evoked
EPSP 10 ms earlier (Nevian and Sakmann, 2006; Figure 1B).
A STDP protocol known to induce LTD (the STDP− event) was
applied as a 50 Hz train of three APs with a single evoked EPSP
10 ms later (Nevian and Sakmann, 2006; Figure 1C). EPSPs
were evoked by extracellular stimulation using an extracellular
pipette located near the basal dendrites of the patched-cell,
and paired with APs evoked with supra-threshold intracellular
current injection, as previously described (Nevian and Sakmann,
2006). Pairings were repeated 60 times at a frequency of 0.1 Hz.
EPSPs were monitored at a frequency of 0.1 Hz, for 10 min prior
to pairing to record the baseline and for more than 1 h post
pairing. Network bursts were evoked by extra-cellular electrical
stimulation of layer 5 (STG2008 stimulator, Multi Channel
System, Reutlingen, Germany) using a 3D-MEA (electrode basis:
40 μm × 40 μm, electrode height: 50–70 μm, inter-electrode
spacing: 200 μm; Qwane Bioscience SA, Lausanne, Switzerland).
Stimulation strength was tuned to trigger a single AP in every
patched cell (1–2 V biphasic pulses; 1 ms duration in each
polarity). On average, the network burst failed to evoke a spike
in 6.8% of the cases, triggered a single spike in 89.2% of the
cases, and two spikes in 4% of the cases (Supplementary Figure
S1). We never observed a network burst causing more than two
spikes in the patched cells. The latency of the first evoked spike
was 3.7 ± 0.2 ms (range 1.4–10.8 ms, n = 3960 network bursts
recorded in 66 cells). Due to the symmetry of the MEA evoked
network burst, pre-synaptic spiking in excitatory cells during
the burst is assumed to mirror post-synaptic spiking. The time
interval �T between EPSP and the network burst was defined
as the time between EPSP digital trigger and the network burst
digital trigger.

Bursts were evoked before (–20 ms), simultaneous to (0 ms)
or at the end of (50 ms) an STDP+ event, and at the beginning
of (–50 ms), simultaneous to (0 ms), or after (20 ms) an STDP−
event. The timing of the burst with respect to the STDP− protocol
to was chosen to exactly mirror all tested protocols for LTP. The
combined burst-STDP event pairing was applied at a frequency
of 0.1 Hz.

Burst-spike-substitution experiments replaced the network
burst with an EPSP paired with a simultaneous post-synaptic
AP for burst-STDP pairings, to mirror the pre- and post-
synaptic spiking as seen by a synapse during a burst-STDP event
(assuming the predominant case above that bursts trigger a single
pre- and post-synaptic spike), but without the network context.

FIGURE 1 | Induction of long-term potentiation (LTP) and long-term
depression (LTD) by pairing an EPSP with a short burst of action
potentials (APs), or by network bursting. (A) Cortical slice mounted on a
3D-multi-electrode array (MEA), with a reconstruction of a layer 5 pyramidal
neuron (blue axons, red dendrites) overlaid (left). A whole-cell patch of the
pyramidal neuron (post) receiving an EPSP (pre) evoked by extracellular
electrical stimulation (upper-right). The post-synaptic responses due to
network bursts evoked by MEA stimulation in the region of layer 5 are overlaid
for 30 repetitions (lower-right). (B) A typical recording for the STDP+ paradigm
(STDP+; black circles). EPSP amplitude was measured every 10 s (baseline
and final amplitude indicated by the red line). (C) A typical recording for the
STDP− paradigm (STDP−; black circles). (D) Mean change in EPSP amplitude
for STDP+ (�EPSP amp. = 103 ± 33%, n = 11), STDP− (�EPSP
amp. = −44 ± 10%, n = 6) and 0.1 Hz network bursting (�EPSP
amp. = −25 ± 20%; n = 9).

Experimental Data Analysis and Statistics
Experimental data analysis was performed in Matlab (The
MathWorks, Inc., Natick, MA, USA) with custom scripts. EPSP
amplitude was monitored for an hour and 20 min. Baseline EPSP
was acquired over the first 10 min, followed by 10 min of pairing,
as described above. The final EPSP amplitude was averaged over
the last 20 min of recordings. EPSP failure or EPSPs that caused
the cell to spike were excluded from the analysis. However, if after
the pairing, a cell fired 100% of the time following the EPSP onset
within an averaging time window (20 repetitions), we assumed
a strong potentiation to have occurred and set the synaptic gain
to a value of 5 for this time period. Data are presented as the
mean ± SEM. Paired Student’s t-tests were applied as statistical
tests, and statistical significance was asserted for: ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001.

Network Simulations
We simulated a network of 1000 integrate-and-fire (IF)
neurons (of which 80% are excitatory and 20% inhibitory)
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arranged on a 10 × 10 × 10 lattice, corresponding to a
200 μm × 200 μm × 200 μm volume of cortex in an
active state. Neuron parameters were fit to publicly available
Hodgkin–Huxley type neuron models (Destexhe et al., 1998)
for f-vs-I curves and noise current injections. Excitatory
neurons contained a spike triggered conductance inducing
spike-frequency adaptation (Muller et al., 2007). Each neuron
had 1000 excitatory (AMPA) and 250 inhibitory (GABAA)
conductance-based synapses with a peak conductance of 2 nS
(except plastic synapses) and time constants of 1.5 ms and
10 ms, respectively. Consistent with anatomy, 10–20% of the
synaptic inputs originated from neurons inside the network (140
exc. → exc., 200 exc. → inh., 50 inh. → exc., 50 inh. → inh.),
and delays were computed as dβ (1 + ξ), where d is the distance,
β = 0.25 ms/unit lattice and ξ is a random number drawn
from an exponential distribution with mean of 0.2. Extrinsic
input was modeled by Poisson processes with firing rates
parameterized separately for excitatory and inhibitory input,
6 and 10.5 Hz, respectively. These rates were determined
numerically to be consistent with excitatory and inhibitory
model neuron firing rates resulting from application of
exclusively Poissonian input at these rates at all synapses.
Neuronal properties in the network are consistent with
the “high-conductance state” (Destexhe et al., 2003). We
used the Power-law STDP rule (Morrison et al., 2007)
parameterized for cortical (Froemke and Dan, 2002)
conductance-based synapses to achieve a mean of ∼1.9 nS
under extrinsic input alone as follows: τ+ = 14 ms; τ− = 34 ms;
w0 = 4.29 × 10−2 nS; μ = 0.4; λ = 0.1; and α = 4.8 × 10−2.
For the computation of STDP time differences, connection
transmission delays were treated as half axonal and half
dendritic. Where stated, the STDP rule was augmented
with a model for activity-dependent resource availability
as described in the main text. The network and neuron
models were implemented using the PyNN modeling language
(Davison et al., 2009) with the NEURON simulator backend
(Hines and Carnevale, 1997) and are publicly available
at: https://neuralensemble.org/svn/PyNN/trunk/examples/iaf_sfa_
relref/

Resource Dependent STDP
To implement the hypothesized effects of resource depletion,
such as extracellular calcium, on STDP as a mechanism to flip
LTP into LTD, we added a resource depletion term to a standard
STDP learning rule (Morrison et al., 2007) in the network
model. We modeled resource depletion caused by network
activity by assuming the equilibrated resource availability for
any fixed average network firing rate, α, has the form η0(α) =(
1 + α

/
k
)−1, where k is the depletion rate constant (k was

assigned to 20 Hz to allow for a 50% resource depletion
during sustained 20 Hz network activity). The dynamic resource
availability η(t)was then computed by low pass-filtering η0(α (t))
as follows:

d
dt

η(t) = η0(α (t)) − η(t)
η0(α (t)) · τη

,

where α(t) is a continuous estimator of the average networking
firing rate (low-pass filtered network spiking with a filter time
constant τα = 2.5 ms and normalized by network size), τη is
the recovery time constant of the resource availability (assumed
to be 100 ms) in the absence of network activity, and the factor
of η0(α (t)) in the denominator ensures that depletion is fast
while recovery is slow. Biologically, the hypothesized resource
depletion is likely to be a local phenomenon, but the extent of
the locality remains unknown. As further experiments reveal the
actual distance over which the network could act on a synapse,
sub-volumes can be defined and η(t) computed for each voxel in
the context of the whole network. We, however, did not define
sub-volumes of the network and considered the firing of all
neurons when computing η(t), representing the average resource
availability for the entire network volume.

To regulate LTP induced by STDP+ events, we scaled
the computed synaptic weight change �W+ by the resource
availability η(t) and implemented the scaling as

�W
′
+ = γ (η (t)) · �W+ ,

where γ(η) is a sigmoidal resource modulation function,

γ(η (t)) = 2

1 + exp
(

η∗−η(t)
m

) − 1,

with η∗ = 0.6 defining the LTP–LTD reversal point andm = 0.03
the steepness of the reversal. In this model, synapses active at
the onset of bursts consume resources needed to potentiate, thus
forcing later activated synapses to depress.

Criticality Analysis
We fit a power-law using methods described in Clauset et al.
(2009) to the cumulative burst size distribution of the network
PSTH (dt = 2 ms) normalized by the SD of the activity of the
sub-threshold network model (ω = 1.2 nS) without plasticity.
The threshold for burst detection was set to the mean network
firing rate normalized by the SD of the network firing rate when
ω = 1.2 nS plus two. The branching parameter (σ) was computed
as previously described (Beggs and Plenz, 2003; Priesemann et al.,
2009).

Results

Network-Timing-Dependent Plasticity
We investigated in acute slices of juvenile rats mounted on a 3D-
MEA (Figure 1A) the effect of precisely timed network bursts
on STDP at excitatory synaptic inputs to layer 5 pyramidal
neurons. STDP protocols known to induce LTP (the STDP+
event) and LTD (the STDP− event) were applied as a 50 Hz
train of three APs with, respectively, a single evoked EPSP
10 ms earlier or later (Nevian and Sakmann, 2006; Figure 1,
see Materials and Methods). The STDP+ event reliably induced
LTP (Figures 1B,D; �EPSP = 103 ± 33%, n = 11) and the
STDP− event reliably induced LTD (Figures 1C,D; �EPSP = –
44 ± 10%, n = 6), also as previously reported (Nevian and
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Sakmann, 2006). Network bursts were evoked by extra-cellular
electrical stimulation of layer 5 using a 3D-MEA (see Materials
and Methods). On average, the network burst failed to evoke
a spike in 6.8% of cases, triggered a single spike in 89.2% of
cases, and two spikes in 4% of cases (Supplementary Figure
S1). We never observed a network burst causing more than
two spikes in the patched cells. The latency of the first evoked
spike was 3.7 ± 0.2 ms (range 1.4–10.8 ms, n = 3960 network
bursts recorded in 66 cells). Bursts alone evoked at 0.1 Hz
induced LTD in seven out of nine cells (�EPSP = –41 ± 12%,
p < 4e-3, one sample t-test to baseline 0%), whereas one cell
exhibited no significant change (�EPSP = 19 ± 20%), and one
cell expressed LTP (�EPSP = 111 ± 15%). Pooling all these cells
in a single group led to a relatively high variability, and a skewed
distribution (Figure 1D; �EPSP = –25 ± 20%; n = 9). Taken
together, these results indicate that bursts alone evoked at 0.1 Hz
generally induced LTD, consistent with previous reports for 1 Hz
evocation of population EPSPs in hippocampal slices (Stanton
and Sejnowski, 1989; Dudek and Bear, 1992), however, a small
sub-population of cells expressing LTP cannot be excluded.

We then examined the interaction between burst-induced
LTD and STDP+ events (Figures 2A–C). The LTP induced by
STDP+ remained unchanged when bursts coincided with the
STDP+ events (�T = 0; �EPSP = 109 ± 64%, p = 0.17; n = 8),
indicating that plasticity driven by relative spike timing in a
specific synaptic pathway is unaffected by simultaneous network

bursts. This result also indicates that LTD normally induced by
such network bursts is blocked by simultaneous STDP+ events.
However, when bursts preceded the STDP+ event by 20 ms,
LTP flipped into LTD with a magnitude comparable to that of
the burst-induced LTD (�T = –20 ms; �EPSP = –21 ± 7%,
p = 3e−4, n = 7), indicating that immediately preceding network
bursts block STDP+-induced LTP. Conversely, STDP+ events
fail to block LTD induced by preceding bursts. Burst- and
STDP+-induced plasticity mutually canceled when bursts were
evoked 5s before or after STDP+ events (�T = ±5000 ms;
�EPSP = 7 ± 24%, p = 2.8e−2; n = 8) or 50 ms after
the STDP+ event (�T = +50 ms; �EPSP = 8 ± 21%,
p = 9.3e−3; n = 14). All statistical tests comparing each protocol
to baseline and to other protocols are provided in Supplementary
Table S1.

We next tested for interactions between burst-induced
LTD and STDP− events (Figures 2D–F). Bursts that were
simultaneous, 50 ms before and 5s before or after STDP−
events had no cumulative effect on the LTD induced by the
STDP− events, indicating that LTD is saturated. This saturation
suggests that burst- and STDP−-induced LTD share expression
mechanisms. Surprisingly, LTD flipped into LTP when bursts
immediately followed STDP− events (�T = 20 ms, 81 ± 50%,
p = 3.5e−2, n = 9), indicating that the combination of LTD
expressionmechanisms induced by both burst and STDP− events
results in the expression of LTP.

FIGURE 2 | Network-timing-dependent modulation of
Spike-Timing-Dependent Plasticity (STDP). (A) Pairing of STDP+ with
MEA evoked network bursts at various relative timings with respect to the
presynaptic STDP+ input. (B) EPSP amplitude changes due to
burst-STDP+ pairings when the burst precedes (�T = −20 ms; blue
circles) or follows (�T = 50 ms; gray circles) the STDP+ event (black
circles). (C) Summary of changes in EPSP amplitude for the various STDP+
protocols. Dotted lines and gray shaded areas show the mean ± SEM
EPSP amplitude change induced by STDP+ and STDP−. Depending on its
relative timing, the burst either flipped LTP to LTD (burst preceding;

�T = −20 ms), blocked LTP (burst following; �T = 50 ms, ± 5 s), or had
no effect on the STDP pairing (simultaneous burst; �T = 0 ms). (D) Pairing
of STDP− with network bursts at various timings. (E) EPSP amplitude
changes due to burst-STDP− pairings when the burst precedes
(�T = −50 ms; gray circles) or follows (�T = 20 ms; red circles) the
STDP− event (black circles). (F) Summary of changes in EPSP amplitude
for the various STDP− protocols. Dotted lines and gray shaded areas show
the mean ± SEM EPSP amplitude change induced by STDP+ and STDP−.
STDP− induced LTD is unaffected unless the burst shortly follows the
STDP− event (�T = 20 ms).
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FIGURE 3 | Burst-spike-substitution (BSS) protocols do not explain
the flip from LTP to LTD and LTD to LTP, and inhibitory circuits do
not contribute to the flip from LTP to LTD. (A) EPSP amplitude
changes for BSS protocols of burst-STDP+ pairings, with simultaneous AP
and EPSP at �T = −20 ms (red), �T = 0 ms (black) and �T = 50 ms
(gray). All timings yielded LTP. (B) EPSP amplitude changes for BSS
protocols of burst-STDP− pairings, with simultaneous AP and EPSP at

�T = 20 ms (red), �T = 0 ms (black) and �T = −50 ms (gray). All
timings yielded LTD. (C) Average normalized EPSP baseline waveforms for
control cells, and cells with intracellular picrotoxin (PTX) reveal the effect of
PTX on the evoked response by the stimulation with the extracellular
pipette. (D) EPSP amplitude change for the STDP+ event (black) with the
network burst at �T = −20 ms (blue), and with the network burst at
�T = −20 ms with PTX (red).

The pairing of STDP events with network bursts can influence
the plasticity outcome by alterations of the timing relationship
in the pre–post spike motif due to the additional spikes,
and by changes in context due to the network burst. To
determine whether the observed interaction between bursts
and STDP events can be explained entirely by the single pre-
synaptic and single post-synaptic spikes added to the STDP
pairing protocol by the MEA stimulation, we repeated the
burst-STDP pairing experiments substituting the burst with a
single EPSP simultaneous to an AP (Figures 3A,B; BSS, see
Materials and Methods). In terms of pre- and post-synaptic
spiking, this BSS is equivalent to MEA stimulation (see Materials
and Methods and Supplementary Figure S1). BSS could not
account for the flip of LTP into LTD due to a burst 20 ms
before the STDP+ event (Figure 3A; red bar), nor the flip
of LTD into LTP due to a burst 20 ms after the STDP−
event (Figure 3B, red bar). All other BSS timings yielded
changes in EPSP amplitudes that were consistent with their
respective burst-STDP pairings (Figures 3A,B). These data imply
that multiple inputs to the neuron from the bursting network
are required to induce the observed flips in directionality of
plasticity.

Finally, we examined whether inhibitory synaptic inputs
activated by the burst played a role in the observed flip of LTP into
LTD. We repeated the burst-STDP+ experiment with the burst
20ms before the STDP+ event, while blocking inhibitory currents
in the patched cells with intracellular picrotoxin (PTX;Figure 3C;
Paille et al., 2013). We found that the bursts still flipped the LTP
into LTD (Figure 3D; burst at �T = –20 ms + PTX; open red
circles; �EPSP amp = –26 ± 14%, p = 0.18 against STDP+
and p = 0.38 against burst + STDP+, n = 5), indicating that
inhibitory inputs do not play a significant role in burst-dependent
STDP.

FIGURE 4 | A modest increase in excitatory coupling leads to
spontaneous network bursting. Firing rate of recurrent randomly
connected network of 1000 integrate-and-fire (IF) neurons with 20% inhibitory
cells in an active state (see Materials and Methods);

_
ωe−e is the mean

excitatory coupling, FRe and FRi are the mean firing rate of excitatory (red)
and inhibitory (blue) cells in the network, respectively. The simulated network
changes its state from sub-critical (A), to super-critical (spontaneous periodic
bursting, B) after a 10% increase of mean synaptic weight for
excitatory–excitatory connections. (Inset) Example of a typical network burst is
shown to the right.
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FIGURE 5 | A STDP model with activity-dependent resource
consumption counter-balances runaway potentiation. (A) With a
standard STDP rule, the firing rate and mean synaptic weight of a
network initialized in a sub-critical state drift toward non-physiological

values in a supra-critical state; ω0 is the initial mean
excitatory–excitatory synaptic strength. (B) The resource-dependent
STDP rule drives networks initialized in a super-critical state toward a
critical state.

Taken together, these data suggest that the observed flips
of LTD into LTP and LTP into LTD could be manifestations
of positive and negative synaptic cooperativity, respectively.
We hypothesized that the flip from LTP into LTD (negative
cooperativity) could be due to the depletion of critical resources
needed for LTP.

Resource-Dependent Regulation of STDP
In order to assess the significance of the observed flip from
LTP into LTD, and the hypothesized resource depletion on
STDP, we proposed a resource-dependent STDP learning rule
(see Materials and Methods), and examined its implications in
network simulations. We simulated the network dynamics
and evolution of synaptic weight distributions without
STDP, with STDP and with resource-dependent STDP in a
simplified network model consisting of 1000 IF neurons (80%
excitatory, 20% inhibitory; see Materials and Methods). Without
STDP, network dynamics are highly sensitive to the mean
excitatory–excitatory synaptic coupling. For example, a mere
10% increase in coupling is sufficient to drive the network
from a sub-critical regime exhibiting aperiodic occurrence
of spontaneous bursts at low frequencies (Figure 4A), to a
supra-critical regime exhibiting frequent spontaneous and
periodic network bursts (Figure 4B; Beggs and Plenz, 2003; Shew

and Plenz, 2013). This transition from sub- to supra-critical
activity regimes has been reported in previous theoretical
studies (Tsodyks et al., 2000; Kudela et al., 2003) and under
pathological experimental conditions where synaptic up-scaling
was induced by activity deprivation (Trasande and Ramirez,
2007).

When STDP was introduced into the model network (see
Materials and Methods), spontaneous network bursts resulted
in more LTP than LTD on average, which gradually increased
excitatory–excitatory coupling, and in turn led to an increase
in burst frequency and amplitude. This positive feedback drove
synaptic weights and network activity to non-physiological
regimes (Figure 5A).

When the proposed resource-dependent STDP learning rule
was introduced into the model, we found that when networks
were initialized with strong excitatory–excitatory coupling that
caused supra-critical activity and spontaneous network bursting
at low rates, the network converged to a critical level (Figure 5B)
in which regular periodic network bursts were replaced with low
frequency irregular bursts. Mean synaptic weights also decreased
and stabilized at an intermediate value (Figure 5B; bottom
panel), consistent with experimental observations (Figure 6A;
Bear et al., 1987). On the other hand, the mean synaptic
weight for sub-critical networks was found to increase toward
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FIGURE 6 | Excitatory coupling is rising due to on-going synaptic
activity. (A) The mean synaptic weight (black), as in the bottom panel in
Figure 5B, but with an enlarged scale. Red dotted horizontal lines have been
drawn to indicate the progressive increase of the mean synaptic weight
between network bursts. (B) The firing rate and mean synaptic weight of a
network with the resource-dependent STDP rule when the network is
initialized in a sub-critical state. The mean synaptic weight is continuously
rising, and ultimately will reach the threshold for network bursting.

the same intermediate value (Figure 6B). Resource-dependent
STDP therefore homeostatically regulates synaptic weights to
maintain a mean value just below the threshold for synchronous
bursting.

Self-Organized Criticality Emerges from
Resource-Dependent STDP
To determine whether the proposed resource-dependent STDP
gives rise to what is known for physical systems as a self-
organized critical state (Bak et al., 1988), we analyzed the bursting
statistics under the different network conditions described
above. Self-organized criticality is indicated when the cumulative
probability distribution of event amplitudes follows a power law
(Beggs and Plenz, 2003). We therefore plotted the cumulative
probability of a burst of a given event size occurring for
the network dynamics without STDP, with STDP, and with
resource-dependent STDP (Figure 7A). Without STDP and at
the implemented mean excitatory–excitatory synaptic couplings

(ω = 1.2, 2, and 3 nS), the burst-size distribution did not
follow a power law distribution (Figure 7A; gray to black
dotted lines). With STDP alone, the distribution was markedly
different from a power law (Figure 7A; red dotted line).
With resource-dependent STDP, all bursts up to 15 times the
amplitude of the minimally detected burst followed a power
law. The distribution began to deviate when the bursts engaged
more than about 20% of the neurons in the network (largest
burst involves around 45% of the neurons), equivalent to
14 times the mean network activity (Figure 7A; blue dotted
line).

Another measure of criticality is the branching parameter
(see Materials and Methods), which also gives an indication
of the efficiency of the network state to convey information
(Beggs and Plenz, 2003; Shew and Plenz, 2013). Networks
without STDP have a fixed branching parameter (Figure 7B;
gray lines). Networks with STDP alone transitioned to a
supra-critical state with a branching parameter greater than 1
(Figure 7B; red line), and were equivalent to networks without
STDP and strong excitatory–excitatory synaptic coupling
(Figure 7B; solid black line). With resource-dependent
STDP, networks converged to a state with a branching
parameter around 1, indicating a critical state (Figure 7B;
blue line).

Discussion

Spike-Timing-Dependent Plasticity provides a mechanism to
modify the synaptic weight of inputs to a neuron according
to their relative timing with respect to the back-propagating
AP. We report here a phenomenon we refer to as network-
timing-dependent plasticity (NTDP), whereby local spike-timing-
dependent plasticity of individual synaptic pathways is regulated
by the relative timing of synchronous bursts generated by
the network. NTDP can regulate STDP by blocking (acting
in the opposite plasticity direction), saturating (acting in
the same direction) and flipping (acting in the same or
opposite direction and crossing a threshold of interaction)
depending on the relative timing of synchronous network
activity. Positive cooperativity (flipping LTD into LTP) could
be explained by cooperative interactions between weak and
strong inputs (Levy and Steward, 1983; Sjöström et al.,
2001), multiple input-driven facilitation of the bAP (Sjöström
and Häusser, 2006) or by the threshold accumulation of
resources (same directions of plasticity), such as intracellular
calcium levels (Lisman, 1989; Shouval et al., 2002; Graupner
and Brunel, 2010, 2012). In the case of the latter, calcium
influxes of individual events would not cross the threshold
concentration for LTP and consequently lead to depression,
but together more easily cross a threshold concentration for
LTP induction (Lisman, 1989). Such a hypothesized positive
cooperativity would, however, require a temporal separation
to explain why LTD was not flipped into LTP when the
burst- and STDP−-induced LTD events occurred simultaneously.
We further proposed that negative cooperativity (flipping
LTP into LTD) could be explained by threshold depletion of
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FIGURE 7 | Self-organized criticality emerges from
resource-dependent STDP. (A) Cumulative probability distribution of
network burst magnitudes (Clauset et al., 2009). In networks without STDP,
varying the mean synaptic weight of excitatory–excitatory connections
(ω = _

ωe−e) results in different activity regimes: sub-critical with rare aperiodic
network bursts (light gray, ω = 1.2 nS), weakly supra-critical with periodic
network bursts at rates around 1–10 Hz (dark gray, ω = 2 nS) or strongly
supra-critical with periodic network bursts at high rates (black, ω = 3 nS).
A standard STDP rule drives the network to a strongly super-critical regime

(red), whereas for resource-dependent STDP the resulting burst amplitude
statistics follow a power-law (blue). Dashed lines show power-law fits to
respective datasets (dot-dashed, ω = 1.2 nS; dashed, ω = 2 nS;
cyan-dashed, resource-STDP). (B) The branching parameter (σ) is shown for
all networks in (a). In networks without STDP, σ does not evolve (gray traces,
ω = 1.2, 2, and 3 nS). With a standard STDP rule, σ increases as the
network becomes super-critical (red), whereas with the resource-dependent
STDP rule a transition from supra-critical to (sub-) critical occurs rapidly and
σ further converges toward a value around 1 (blue).

resources (opposite directions of plasticity) for LTP, such as
extracellular calcium levels (Egelman and Montague, 1999).
Together, these data suggest a novel mechanism for embedding
local timing rules for synaptic plasticity at individual synaptic
pathways into global timing rules for synaptic plasticity in the
network.

One caveat of the experimental approach here is that
severed neuromodulatory axons remaining in the slices
could be evoked to release due to MEA stimulation, and
could mediate the observed interactions between the
two plasticity induction protocols. Recent advances in
optogenetic stimulation methods, which can differentially
target pyramidal, inhibitory, and neuromodulatory axon
populations, could be employed to clarify their role. Also,
applying a standard suite of inhibitors for characterizing
the signaling pathways involved could further elucidate the
biophysical mechanisms at play and could be pursued in
follow-up studies as the basis for more detailed biophysical
models.

Amodel in which the negative cooperativity was implemented
as resource-dependent STDP was found to homeostatically
regulate synaptic weights in an active network, consistent with
previous observations of synaptic down-scaling in disinhibited
networks (Turrigiano et al., 1998). Stable biological distributions
of synaptic weights are the result, even in the presence
of synchronous network activity. Moreover, network burst
amplitude statistics were power-law distributed reflecting self-
organized criticality, a state optimal for information coding
(Bak et al., 1988; Beggs and Plenz, 2003; Shew and Plenz,
2013). Self-organized criticality has been observed in various
states of vigilance in vivo (Petermann et al., 2009; Priesemann

et al., 2009, 2013; Hahn et al., 2010), but a plasticity rule
to achieve and preserve such a state has thus far been
missing. The NTDP rule proposed here offers a candidate
solution, and may have implications for the mechanisms
underlying pathological network states that occur in epilepsy
(Trasande and Ramirez, 2007) as well as the down-scaling
of synaptic weights during slow-wave sleep (Massimini and
Amzica, 2001; Tononi and Cirelli, 2006; Vyazovskiy et al.,
2008).

The present experiments indicate that burst- and STDP−-
induced LTD share expression mechanisms. The proposed
resource-dependent STDP model accounts for LTD at low
frequencies of network bursting (Stanton and Sejnowski, 1989;
Dudek and Bear, 1992) while preserving the spike-timing
dependence of the underlying STDP rule, thus unifying the two
phenomena under one mechanism.

Candidatemechanisms for the observed positive cooperativity
rely on variables local to the dendrite (Levy and Steward,
1983; Lisman, 1989; Sjöström et al., 2001; Sjöström and
Häusser, 2006). An exploration of the impact of combined
negative and positive cooperativity, saturation, and blocking
effects on the interaction between burst-induced plasticity
and STDP would therefore require simulations of detailed
neuron morphology and a biophysical STDP rule. Combined
with an experimental characterization of the interactions
between STDP and LTP induced by high frequency tetanic
stimulation (Bliss and Lomo, 1973; Lynch et al., 1983), this
approach could reveal a complement to our proposed resource-
dependence of STDP, and provide a unifying model for both
directionalities of burst induced plasticity, STDP, and their
interactions.
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