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Whnt-5a is a synaptogenic factor that modulates glutamatergic synapses and generates
neuroprotection against AB oligomers. It is known that Wnt-5a plays a key role in
the adult nervous system and synaptic plasticity. Emerging evidence indicates that
miRNAs are actively involved in the regulation of synaptic plasticity. Recently, we showed
that Wnt-5a is able to control the expression of several miRNAs including miR-101b,
which has been extensively studied in carcinogenesis. However, its role in brain is
just beginning to be explored. That is why we aim to study the relationship between
Whnt-5a and miRNAs in glutamatergic synapses. We performed in silico analysis which
predicted that miR-101b may inhibit the expression of synaptic GTPase-Activating
Protein (SynGAP1), a Ras GTPase-activating protein critical for the development of
cognition and proper synaptic function. Through overexpression of miR-101b, we
showed that miR-101b is able to regulate the expression of SynGAP1 in an hippocampal
cell line. Moreover and consistent with a decrease of miR-101b, Wnt-5a enhances
SynGAP expression in cultured hippocampal neurons. Additionally, Wnt-5a increases
the activity of SynGAP in a time-dependent manner, with a similar kinetic to CaMKIl
phosphorylation. This also, correlates with a modulation in the SynGAP clusters density.
On the other hand, AB oligomers permanently decrease the number of SynGAP clusters.
Interestingly, when neurons are co-incubated with Wnt-5a and A oligomers, we do not
observe the detrimental effect of Ap oligomers, indicating that, Wnt-5a protects neurons
from the synaptic failure triggered by AB oligomers. Overall, our findings suggest that
SynGAP1 is part of the signaling pathways induced by Wnt-5a. Therefore, possibility
exists that SynGAP is involved in the synaptic protection against Ap oligomers.

Keywords: Wnt-5a, microRNAs, SynGAP, CamKlIl, Alzheimer disease

Introduction

Dendritic spines compartmentalize biochemical cascades at the postsynaptic level and are
enriched in neurotransmitter receptors, ion channels, and components of various signaling
pathways (Chen and Sabatini, 2012; Colgan and Yasuda, 2014), including the Wnt
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signaling pathway (Inestrosa and Arenas, 2010; Budnik and
Salinas, 2011).

The signaling pathways mediated through Wnt have
been implicated in various cellular processes, including cell
proliferation, migration, establishment of polarity, cell fate
specification, and adult hippocampal neurogenesis (Lie et al.,
2005; Nusse and Varmus, 2012; Varela-Nallar and Inestrosa,
2013). Therefore, deregulation of Wnt signaling has been
associated with the development of several diseases, including
autism (Zhang et al., 2012; Sowers et al., 2013), schizophrenia
(Lovestone et al., 2007; Inestrosa et al., 2012), and Alzheimer
disease (AD; Inestrosa and Toledo, 2008; Purro et al., 2012;
Inestrosa and Varela-Nallar, 2014). Recently, a number of
studies have highlighted a role for Wnt signaling in synaptic
formation and function (Gogolla et al, 2009; Ciani et al,
2011; Mufoz et al, 2014). In particular, we showed that the
Wnt-5a ligand exerts important effects in the postsynaptic region
of hippocampal neurons. For example, Wnt-5a stimulation
increases the: GABAa receptor recycling (Cuitino et al., 2010),
the clustering of postsynaptic density (PSD) protein 95 (PSD-95;
Farias et al., 2009) and the density of dendritic spines (Varela-
Nallar et al., 2010). Moreover, in hippocampal slices, Wnt-5a
modulates synaptic activity through the enhancement of long-
term potentiation (LTP; Cerpa et al., 2011; Vargas et al., 2014).
These findings indicate that Wnt-5a regulates the assembly and
function of the excitatory postsynaptic region of central synapses
(Inestrosa and Varela-Nallar, 2014). However, the mechanism
underlying these effects is still elusive.

Recently, we explore a new mechanism of regulation
mediated by Wnt-5a that includes the modulation of microRNAs
(miRNAs). MiRNAs are a family of small non-coding RNAs,
that control the gene expression of their targets through base
pairing between the 3’ untranslated region (UTR) of mRNA
and miRNA “seed” region at the 5 end, thereby inhibiting the
translation of the target proteins (Bartel, 2009). We identified
more than 30 miRNAs with differential expression after 1 h
treatment with Wnt-5a in cultured rat hippocampal neurons and
miR-101b was the most affected miRNA after Wnt-5a signaling
activation (Codocedo and Inestrosa, 2013). While the role of
miR-101b has been thoroughly investigated in cancerogenesis
(Strillacci et al., 2009; Hao et al., 2011; He et al., 2012), the role
for this miRNAs in the brain has just begun to emerge. It was
reported that miR-101b regulates the expression of the amyloid
precursor protein (APP; Vilardo et al., 2010; Long and Lahiri,
2011; Barbato et al., 2014), ataxinl (Lee et al., 2008), and the
Fragile X Mental Retardation gene 1 (FMR1; Zongaro et al., 2013)
in the hippocampus.

Among the many targets predicted for miR-101b, we focused
on SynGAP (Synaptic GTPase-Activating Protein), because it is
an abundant key PSD signaling enzyme. It negatively regulates
small G protein signaling downstream of glutamate receptor
activation and is related to the regulation of synapse density,
dendritic spine shape, and synaptic physiology (McMahon
et al., 2012). Conversely, alterations in SynGAP functions has
been linked to intellectual disability (ID) and autism spectrum
disorders (ASDs) (Berryer et al, 2013). Additionally, several
reports suggest that the upstream activator of SynGAP is

Ca%*/calmodulin-dependent protein kinase II (CaMKII) which
in turn is activated by increased calcium levels mediated
by N-methyl-D-aspartic acid receptors (NMDAR) activation
(Krapivinsky et al., 2004; Rumbaugh et al., 2006; Araki et al,,
2015). Since Wnt-5a is able to down-regulate a miRNA that
targets SynGAP in silico and activates the Wnt/Ca?" signaling
pathway in the dendritic compartments of mature hippocampal
neurons (Varela-Nallar et al., 2010), we evaluate whether SynGAP
is part of the mechanism by which Wnt-5a induces changes
at the post-synaptic region. Considering the neuroprotective
effects of this ligand against amyloid- oligomers (Af oligomers;
Cerpa et al, 2010; Varela-Nallar et al., 2012), we explore
the effects of Wnt-5a over SynGAP, in the presence of AP
oligomers.

Materials and Methods

Ethics Statement

Sprague-Dawley rats were housed in the University Animal
Facility and handled according to the guidelines outlined and
approved through the Institutional Animal Care and Use
Committee at the Faculty of Biological Sciences of the Pontificia
Universidad Catolica de Chile, and following the guidelines of the
American Physiological Society Rockville, MD.

Primary Culture of Rat Hippocampal Neurons

Rat hippocampal cultures were prepared as previously described
(Alvarez et al, 2004; Kaech and Banker, 2006). Primary
hippocampal neurons were obtained from 18-days-old Sprague-
Dawley rat embryos and maintained in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% horse serum
for 2 h. The culture medium was subsequently substituted
with Neurobasal medium supplemented with B27, 100 pg/ml
streptomycin, and 100 units/ml penicillin. At 3 days in vitro
(DIV), the cells were treated with 2 M araC for 24 h to reduce
the number of glial cells present in the culture. For western
blot (WB) analyses, 400,000 cells per well were seeded, and for
immunofluorescence studies, 35,000 cells were plated per well.
At 14 DIV, the neurons were stimulated with 300 ng/mL of
recombinant Wnt-5a (rWnt-5a; R&D System, Minneapolis, MN,
USA) resuspended in Neurobasal medium. Incubations were
conducted at 37°C.

HT22 Cell Line

HT22 murine hippocampal neuronal cells were maintained in
DMEM supplemented with 10% fetal bovine serum, 100 pg/ml
streptomycin, and 100 units/ml penicillin, high glucose and
incubated at 37°C under 5% CO, as previously described
(Chhunchha et al., 2013). Transfections were performed after
2 days at approximately 60% confluency.

Bioinformatics

For computational prediction of the miRNA targets, we used
the TargetScan web platform (Lewis et al., 2005), which predicts
biological targets of miRNAs by searching for the presence of
conserved 8- and 7-mer sites that match the seed region of each
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miRNA. In addition, TargetScan examines the binding sites for
thermodynamic stability using RNAfold from the Vienna RNA
Package (Hamzeiy et al., 2014).

miR-101b Gain-of-Function

For miR-101b gain-of-function, we used mirVana miRNA mimic
(Life Technologies, Carlsbad, CA, USA), which represents
a partially double-stranded RNA that mimics endogenous
precursor miRNA and is processed to form an active miRNA
molecule that targets specific mRNAs (Nicoloso et al., 2009). For
miR-101b gain-of-function in HT-22 cells, Lipofectamine 2000
reagent (Invitrogen, Karlsruhe, Germany) was used according to
the manufacturer’s protocol. At 48 h post-transfection, the cells
were used for WB analysis. For controls conditions HT-22 cells
were transfected with mirVana miRNA Mimic Negative Control
#1 (Life Technologies, Carlsbad) which correspond to a random
sequence miRNA mimic molecule that not produce identifiable
effects on known miRNA function.

Western Blot Analysis

The extraction of total protein from cell culture of hippocampal
neurons and immunoblot analysis were performed as previously
described (Varela-Nallar et al., 2009; Codocedo et al., 2012).
The following primary antibodies were used: rabbit anti-
pSynGAP (1:1.000; ABCAM), rabbit anti-SynGAP (1:1.000;
ABCAM), mouse anti pCAMKII (1:1.000, Santa Cruz), and
anti GAPDH (1:10.000, Santa Cruz). Primary antibodies
were recognized using either a horseradish peroxidase
(HRP)-conjugated goat anti-rabbit antibody (1:7000, Thermo
Scientific) or an HRP-conjugated rabbit anti-mouse antibody
(1:7.000 Thermo Scientific). The secondary antibodies were
detected through enhanced chemiluminescence using the
ECL Plus Western blotting detection system (GE Healthcare).
Densitometric analysis was performed using NIH Image]
software.

Immunofluorescence and Microscopy
Immunofluorescence studies were performed as previously
described (Varela-Nallar et al., 2009; Codocedo et al., 2012).
Briefly, 14-16 DIV hippocampal neurons were depleted with
Neurobasal medium (Invitrogen Corporation, Carlsbad, CA,
USA) 1 h before treatment. Then, cells were treated in vitro with
300 ng/mL rWnt-5a and/or 1 wM AB1-42 oligomers following a
time curve (0, 15, 30, 60, and 120 min). In every case, cells were
kept at 37°C in incubator with 95% O,. Following treatment,
cells were washed three times with PBS Ca>*/Mg?* and fixated
with paraformaldehyde 4%-sucrose 4%. After another round of
washes, cells were permeabilized with PBS Ca?*/Mg?* 4 Triton
X 0.2%. Then, cells were immunolabeled with anti-SynGAP
antibody (1:500, ABCAM) overnight at 4°C. On the next day,
cells where washed as previously stated, and incubated with
Alexa-conjugated secondary antibodies for 30 min at 37°C and
Hoéescht staining (1:1000) for 10 min at room temperature.
Coverslips were mounted using Fluoromont G mounting media
and analyzed on an Olympus Takyo Japan Fluoview FV 1000
confocal microscope.

AB1_42 Oligomers Preparation

A lyophilized stock peptide was resuspended in anhydrous sterile
dimethyl sulfoxide (DMSO), to form 5 mM aliquots that were
immediately frozen. Aliquotes were diluted in PBS, pH 7.4
to a final concentration of 100 WM and stirred continuously
approximately at 1350 rpm for 1 h at room temperature. Final
concentrations for immunofluorescence studies were 5 WM AP
oligomers and 0.02% DMSO. Control of the monomers to
tetramers oligomeric (low molecular weight) species present after
following this protocol can be found in previous publications
from our group (Silva-Alvarez et al., 2013).

Statistical Analysis

All data were analyzed statistically with Prism 5 (Prism GraphPad
Software, GraphPad Software Inc., La Jolla, CA, USA) using one-
way ANOVA, followed by Dunn’s Multiple Comparison Test. The
error bars indicate SEM. A p < 0.05 was considered statistically
significant.

Results

SynGAP is a Target of miR-101b,

a Wnt-5a-Regulated microRNA

The miRNAs recognition element for miR-101b in the 3'UTR
of SynGAP (Figure 1A) corresponds to a canonical binding
site (8-mer; Figure 1B) broadly conserved among mammals
(Figure 1C). To validate the in silico prediction of SynGAP
as a target of miR-101b, we introduced a miRNA mimic into
the immortalized mouse hippocampal cell line, HT22, and
evaluated the expression of endogenous SynGAP through WB.
It is evident that the increase of miR-101b decreases the level
of SynGAP in a dose-dependent manner (Figures 1D,E). This
result validates the in silico prediction of SynGAP as a target
of miR-101b and suggests that SynGAP expression could be
modulated through Wnt-5a signaling via miR-101b. Considering
that Wnt-5a signaling generates a significant decrease in the
levels of miR-101b (Codocedo and Inestrosa, 2013), we reasoned
that the levels of SynGAP could be increased in the presence
of Wnt-5a. Using WB analyses, we determined that treatment
with recombinant protein Wnt5a (rWnt-5a) increases the levels
of SynGAP in a time-dependent manner in primary hippocampal
neurons (Figures 1E,G) which could be due to the loss of
translational repression exercised by miR-101b.

Wnt-5a Rapidly Increases the Phosphorylation
Levels of SynGAP, Modulating SynGAP

Clusters

Synaptic GTPase-Activating Protein is a synaptic GTPase
activating protein (GAP) that facilitates the hydrolysis of GTP
to GDP and thereby negatively regulates the activity of RAS
and RAP (Walkup et al,, 2015). The GAP activity of SynGAP
is increased by direct phosphorylation of serine residues by
CaMKII (Oh et al., 2004), another prominent component of the
PSD. Since Wnt-5a is able to increase calcium levels at dendritic
compartments, activates CaMKII and has a significant role in
the organization of the PSD (Farias et al., 2009). We evaluated
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FIGURE 1 | Synaptic GTPase-Activating Protein (SynGAP) is a target of miR-101b mimics in HT22 cells. (E) Densitometric analysis of the western blot
miR-101b, a Wnt-5a-regulated microRNA. (A) Predicted binding site for the (WB) shown in (D). (F) WB analysis of total SynGAP levels in hippocampal
seed sequence of miR-101b in the 3'UTR of SynGAP. Obtained from neurons treated with recombinant Wnt-5a (300 ng/mL) at different time points.
TargetScan. (B) Complementarity of the sequences between miR-101b and the (G) Densitometric analysis of the WB experiments shown in (F). The results are
SynGAP 3'-UTR of rat genome obtained from TargetScan. (C) Degree of presented as the mean of n = 3 experiments, and the statistical analysis was
conservation in mammalian species obtained from TargetScan. (D) Endogenous performed using one-way ANOVA, followed by Dunn’s Multiple Comparison Test
levels of SynGAP are significantly decreased through gain-of function of *p < 0.05.
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whether Wnt-5a is able to activate SynGAP. The treatment with
recombinant Wnt-5a generates a fast and transient increase in
the phosphorylation levels of S1123 of SynGAP (Figures 2A,B),
a major phosphorylation site for CaMKII (Oh et al., 2004).
Additionally, the kinetics of this activation is similar to the
activation of CaMKII after Wnt-5a treatment (Figures 2A,C).

Synaptic GTPase-Activating Protein is expressed only in
neurons, including most excitatory neurons and a subset of
inhibitory neurons (Zhang et al, 1999), where it is highly
localized to the PSD (Chen et al, 1998). To evaluate the
effects of Wnt-5a over the localization of SynGAP, we perform
immunofluorescence studies on 14 DIV neurons treated with
Wnt-5a at different time points.

Under control conditions, SynGAP showed a clear punctate
localization (clusters) at dendrites which is consistent with
previous studies on SynGAP’s enrichment in dendritic spines
(Kim et al, 1998). Interestingly, upon Wnt-5a treatment,
the amount of SynGAP clusters was significantly reduced
(Figures 2D,E). This reduction occurred within 15-30 min after
Wnt-5a treatment and was not fully recovered after 1 h of
stimulation (Figures 2D,E). The reduction in SynGAP clusters,
as shown above, was not due to decreased levels of total protein
as demonstrated by WB analysis (Figures 1E,G). This suggests
that the reduction in the SynGAP cluster number is due to a
translocation from dendritic spines to a diffuse pool in the shaft
of the dendrite.

As shown in the model (Figure 2F), SynGAP is tightly
associated with the postsynaptic plasma membrane and binds to
the PDZ domains of PSD-95 (Kim et al., 1998) which positions it
in close proximity to the NMDA receptors. Previous reports show
that SynGAP is rapidly dispersed from spines upon NMDAR
activation (Araki et al, 2015). This dispersion is mediated by
direct phosphorylation by CaMKII. In our hypothetical model,
the activation of CaMKII mediated by Wnt-5a should be able to
induce a reduction in the clusters of SynGAP in hippocampal
neurons. This is probably the result of the translocation of
SynGAP from relatively large clusters in spines, to a diffuse pool
in the dendritic shaft.

SynGAP Loss Induced by Af Oligomers is
Prevented by Wnt-5a

In the amyloid cascade hypothesis of AD, AP neurotoxicity
has its origin in the binding of AP oligomers to the
post-synaptic region (Hardy and Selkoe, 2002). Af directly
affects synaptic components including PSD-95 (Roselli et al.,
2005; Cerpa et al., 2010), NMDA receptors (Snyder et al,
2005), and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptors (AMPARs; Hsich et al., 2006), to name a few
(Dinamarca et al., 2012). Still, there is no evidence of an effect of
AP oligomers on SynGAP function. To evaluate this possibility
we treated neurons with 5 WM AP oligomers at different time
points. At this concentration, AB oligomers do not induce
significant neuronal cell death; in the time frame we performed
the experiments, as revealed by Hoechst staining (Supplementary
Figure S1). This is in agreement with the idea that A oligomers
causes synaptic failure before neuronal death occurs (Hardy
and Selkoe, 2002). AB oligomers treatment generates a fast and

important decrease in SynGAP clusters per um of dendrite,
this effect seems to be permanent in time (Figure 3A). By WB
analysis we evaluate the effect of AB oligomers on the SynGAP
levels. The treatment with AP generates a significant decrease
in the total amount of SynGAP (Figure 3C) which is consistent
with the decrease in the dendritic clusters of SynGAP and
the previously reported synaptic loss induced by AP oligomers
(Dinamarca et al., 2008).

Previous studies indicate that Wnt-5a is able to prevent
the AP synaptotoxicity triggered by the AP oligomers.
Electrophysiological ~analysis of Schaffer collaterals-CAl
glutamatergic transmission in hippocampal slices demonstrated
that Wnt-5a prevents the decrease in the amplitude of field
excitatory postsynaptic potentials (fEPSPs). Moreover, Wnt-5a
prevented the decrease of PSD-95 and synaptic loss in cultured
hippocampal neurons (Cerpa et al., 2010). Additionally, the
in vivo activation of Wnt signaling, with a mimetic peptide of
Wnt-5a, rescues memory loss and improves synaptic dysfunction
in APP/PS1-transgenic mice, a model the amyloid pathology
of AD (Skaper, 2014; Vargas et al, 2014). Considering this
evidence, we decided to evaluate the neuroprotective effects of
Wnt-5a over SynGAP. The co-incubation of Wnt-5a with AP
oligomers, reduced the number of apoptotic neurons at 120 min
of treatment, time in which AP alone shows a slight increase
in the apoptotic rate (Supplematary Figure S1). Hippocampal
neurons treated with AP oligomers in the presence of the
Wnt-5a ligand, showed a decrease in the SynGAP clusters
(Figure 3B), very similar to the observed by the treatment with
Wnt-5a alone (Figures 2D,E). At longer time of incubation,
the SynGAP cluster number shows an increase close to control
levels (Figure 3B), which is not observed in neurons treated
with AP oligomers alone (Figure 3A). Interestingly, by WB
analysis we observe that the total level of SynGAP is not altered
when neurons were treated with AP oligomers in the presence
of Wnt-5a (Figure 3D). This contrast with the effects observed
in the cluster number of SynGAP when Wnt-5a is co-incubated
with A oligomers, in which we observe an inicial decrease. This
suggest that the decrease observed at 5 min could be product
of a translocation of SynGAP and not a loss in the protein
level.

As shown in the model (Figure 3E), our results suggests that
AP oligomers cause a disarrangement of SynGAP organization,
which could be due to the PSD disassembling (Dinamarca et al.,
2008, 2012). In our hypothetical model, Wnt-5a prevents the
SynGAP loss induced by A oligomers treatment by maintaining
the integrity of the PSD and dendritic spines as previously has
been reported (Cerpa et al., 2010; Varela-Nallar et al., 2012).
This allow that the initial decrease observed for SynGAP cluster
density in the presence of Wnt-5a and AP oligomers (15 min)
return to control conditions at longer times of incubations.

Discussion

Wnt-5a is a synaptogenic factor, whose expression increases
during development. It has been suggested that Wnt-5a plays
a key role in synaptic function in the adult nervous system
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FIGURE 2 | Wnt-5a increases the phosphorylation levels of SynGAP by a
mechanism dependent of CamKIl. (A) WB analysis of pSynGAP (S1123) and
p-calmodulin-dependent protein kinase Il (CaMKIl) levels in hippocampal
neurons treated with recombinant Wnt-5a (300 ng/mL) at different time points.
(B) Densitometric analysis of pSynGAP1, shown in (A). (C) Densitometric
analysis of pCaMKIl, shown in (A). The results are presented as the mean of

n = 3 experiments and were normalized to GAPDH expression.

(D) Representative neurite images of SynGAP immunofluorescence (green) from
samples subjected to rWnt-5a (300 ng/mL) treatment for different time points,

NMDAR

NMDAR

white bar represents 5 um. (E) Quantification of the cluster density of SynGAP
(cluster number/pm) in neurons described in (A). (F) Model of the effect of
Wnt-5a on SynGAP function. After binding of Wnt-5a to their receptors, there is
an increase of intracellular calcium which could be due to a release from internal
stores (Wnt/Ca™2 pathway) or modulation of NMDAR. Activation of CaMKII
induces the increase in phosphorylation levels of SynGAP at S1123 and
migration from dendritic clusters to a diffuse pool in the dendritic shaft.
Statistical analysis was performed using one-way ANOVA, followed by Dunn’s
Multiple Comparison Test. *p < 0.05.

Frontiers in Cellular Neuroscience | www.frontiersin.org

June 2015 | Volume 9 | Article 227



http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Codocedo et al.

Wnt-5a regulates SynGAP in hippocampal neurons

A
SynGAP
wn
S
(]
£
o
.20
o
Q.
<
£ 15
% B
;_; 1.0 R
Eos i
o
0.0
0 15 30 60
Time (min)
Cc
ABo (5 pm)
0 5 15 30 60 120 (min)
SYNGAP quww ww s = - -~
Adin = armeTTED T T
15
<
T
g
<
2
g 05
00
o L 15 30 [ 120
E Time (min)
AP oligomers A oligomers
- \-7 e \ -~
C \ NMOAR :}»
¥
&
c
: AN
FIGURE 3 | SynGAP loss induced by AB oligomers is rescued by
Wnt-5a. (A) Representative neurite images of SynGAP immunofluorescence
(green) from samples subjected to a AB oligomers (5 wM) treatment for
different time points, white bar represents 5 wm. Below, quantification of
SynGAP (cluster number/um) after AB oligomers treatment, compared to
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points, white bar represents 5 pm. Below, quantification of SynGAP (cluster

NMOAR

"

S
/
&

SynGAP

AB Oligomers + rWnt5a

1.5

-

[l
o

14 e
(= °

Cluster Number/pm

Tlme (mm)

ABo (5 pm)+rWnt-5a (300ng/mL)

0 5 30 60 120 (min)

15

SYNGAP

Actin | — e — o —

15
coll“lll
o 5 30 60 120

Time (min)

_6

%SynGAP/Actin

AB oligomers

_\,/
Y

N MOAR

number/um) after AB oligomers plus rWnt-5a treatment, compared to control
condition, as seen in (B). Significant differences are found only at 15 min.
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Test. *p < 0.05, **p < 0.005.
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(Inestrosa and Arenas, 2010; Inestrosa and Varela-Nallar, 2014).
Emerging in vitro and in vivo studies have implicated Wnt
signaling in synaptic plasticity, regulating LTP (Cerpa et al,
2011), and episodic memory (Vargas et al., 2014). Furthermore,
activation of Wnt-5a signaling has shown to protect against
AB-induced synaptic impairment (Cerpa et al, 2010; Varela-
Nallar et al., 2012; Vargas et al., 2014). However, the molecular
targets of their activity are just beginning to be elucidated.

Synaptic GTPase-Activating Protein is a prominent Ras/Rap
GTPase-activating protein located in the PSD. It regulates the
timing of spine formation and trafficking of glutamate receptors
in cultured neurons (Rumbaugh et al, 2006). The role of
SynGAP in plastic processes has been well established. SYNGAP1
knockout mice show deficits in NMDAR-dependent LTP (Kim
et al., 2003) and have deficits in learning and memory (Clement
etal, 2012).

In the present study, we evaluated the hypothesis that
treatment with Wnt-5a modulates SynGAP function in
hippocampal neurons, considering first, that SynGAP is a
predicted target of a Wnt-5a-regulated microRNA, miR-101b,
and second, that CaMKII activity is a major component in the
signaling of both proteins. Our results show that endogenous
SynGAP is down-regulated in HT-22 cells transfected with miR-
101b mimic which validate the in silico prediction. In agreement
with this observation and considering that Wnt-5a generates
a significant decrease in the levels of miR-101b (Codocedo
and Inestrosa, 2013), the treatment with Wnt-5a generates an
increases in the total levels of SynGAP in hippocampal neurons
at 1 h of stimulation. The meaning of this regulation could be
related to the increase in protein translation observed in synaptic
plasticity process (Kelleher et al., 2004; Schuman et al., 2006;
Costa-Mattioli et al., 2009), however, additional experiments are
required to confirm this hypothesis.

The GAP activity of SynGAP is increased by direct
phosphorylation of serine residues by CaMKII (Oh et al., 2004).
The treatment with Wnt-5a, increases the phosphorylation of
S1123 residue of SynGAP, a major phosphorylation target of
CaMKII. Additionally, we observed that the kinetics of this
effect is similar to the activation of CaMKII induced by Wnt-
5a. Both proteins increased their levels with a peak in 15 min
and then return to basal levels. This finding is interesting
because it suggests that the increase in intracellular calcium
levels mediated by Wnt-5a might activate SynGAP. In the
literature, is normally accepted that the calcium source that
results in SynGAP activation is the influx mediated by NMDAR,
posterior to LTP induction (Krapivinsky et al., 2004; Rumbaugh
et al, 2006; Araki et al., 2015). In the Wnt/Ca?* pathway,
the Wnt-5a ligand activates PKC, CaMKII and calcineurin,
by increasing the intracellular calcium concentration coming
from internal stores (Kiihl, 2004; Kohn and Moon, 2005;
Muiioz et al.,, 2014), suggesting a mechanism independent of
NMDAR activation. However, is possible that the Wnt/Ca?™
pathway activate SynGAP through NMDAR modulation. Recent
reports show that Wnt-5a increases the GIuN2B subunit of the
NMDAR on the hippocampal neuronal cell surface (Mufioz et al.,
2014). Additionally, Wnt-5a acutely and specifically upregulates
synaptic NMDAR currents in rat hippocampal slices (Cerpa

et al, 2011). Further studies are necessary to determine if
the mechanism of activation of SynGAP mediated by Wnt-
5a, is independent of NMDAR activation or could result from
NMDAR modulation.

The functional consequence of SynGAP activation has been
highly debated because RAS and RAP, their major targets at the
synapse, have opposite effects in synaptic strength modulation.
Active Ras increases insertion (exocytosis) of AMPARs at
the synapse; whereas, active Rap increases their removal
(endocytosis) from the synapse (Zhu et al., 2002). Additionally,
SynGAP has also been reported to have a promiscuous GTPase
activity that directly or indirectly regulates the small G-proteins
Racl, and Rab5, which may in turn regulate the actin cytoskeleton
and membrane trafficking involved in LTP-induced increases
in spine size and AMPAR recruitment (Carlisle et al., 2008).
Wnt-5a signaling induces a strengthening of synapses which
is inconsistent with the Ras inhibition induced by SynGAP.
However, a recent report shows that differential phosphorylation
of SynGAP by CaMKII and CDK5 may alter the proportions of
activated Ras and Rap in synapses with consequent effects on
the cellular processes regulated by the two GTPases (Walkup
et al,, 2015). Phosphorylation of SynGAP by CaMKII at S1123
accelerates the rate of inactivation of Rap more potently than the
rate of inactivation of Ras; whereas, phosphorylation by CDKS5,
which occurs at 773 and S802, has the opposite effect (Walkup
et al, 2015). Another interesting mechanism of regulation
of SynGAP mediated by CaMKII was recently described, in
which their phosphorylation triggers a rapid dispersion of
SynGAP clusters from synaptic spines, activating synaptic Ras
and inducing LTP (Araki et al., 2015). We observe a fast and
significative reduction of SynGAP cluster number after Wnt-5a
treatment, without a reduction in SynGAP protein levels, which
is consistent with a translocation of SynGAP from aggregates
(presumably dendritic spines) to a diffuse pool in dendritic shaft.
The timing of reduction in cluster number is similar to the peak
of phosphorylation of SynGAP and CaMKII. The cluster number
returns to basal levels more slowly than the dephosphorylation of
SynGAP and CaMKILI. This suggests that this post-transcriptional
modification is necessary for cluster translocation. However, the
re-insertion of the clusters in the PSD could implicate additional
mechanisms.

In addition to its synaptic role, Wnt-5a is able to protect
neurons against AP oligomers synaptotoxicity. Deregulation
of the Wnt signaling has been suggested as an etiological
cause for AD (Inestrosa and Arenas, 2010), which correspond
to the most common type of dementia in people over
65 years old, in which death or malfunction of neurons
causes changes in memory, behavior, and cognition (Thies
and Bleiler, 2013). Synaptic pathology is an early event in
AD, and soluble AB oligomers are principal responsible for
the synaptic failure. Long before the occurrence of plaque
deposition and neuronal death (Walsh and Selkoe, 2007).
Activation of Wnt-5a signaling rescues memory loss and
improves synaptic dysfunction in both in vivo and in vitro
models of AD (Cerpa et al, 2010; Varela-Nallar et al., 2012;
Skaper, 2014; Vargas et al., 2014). Considering the importance
of SynGAP signaling in plastic and cognitive processes, it results
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surprising the absence of reports studying the role of SynGAP
in AD mice models. For this reason, we evaluate the clustering
of SynGAP in the presence of AP oligomers. The treatment
with 5 pM of AP oligomers generates a fast and significant
decrease in SynGAP level which becomes more pronounced
in time. The initial decrease in SynGAP cluster number could
be attributable to an increase in intracellular calcium levels,
as has been reported previously for AP oligomers (Kawahara,
2010). However, the fact that the cluster number continues
to decrease, as opposed to what is observed with Wnt-5a,
suggests that the reduction is the result of synaptic toxicity.
Interestingly, the co-application of Wnt-5a prevents this toxic
effect. This probably explains why, when AP oligomers are co-
applied with Wnt-5a we do not observe a decrease in SynGAP
clusters. Moreover, it shows a similar effect to the one observed
for Wnt-5a treatments. This observation is also similar to
the previously reported effects of Wnt-5a in the clustering of
PSD-95. Which drastically decreased in the presence of AP
oligomers, while the co-incubation with Wnt-5a prevented such
changes (Cerpa et al, 2010). The loss of SynGAP clusters
in the presence of AP oligomers, could be due to the loss
of PSD-95, considering that this scaffolding protein binds
SynGAP through their PDZ (Postsynaptic Density Protein-
95, Drosophila Disk Large Tumor Suppressor, and Zonula
Occludens-1) domains. The fact that Wnt-5a prevents the loss
of PSD-95 and dendritic spine structure in the presence of AP
oligomers, helps to preserve the platform that allow the recovery
of SynGAP clustering. Additional experiments are necessary to
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