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For long time, plasticity of brain circuits has been hypothesized to mainly rely on the flexibility of
glutamatergic excitatory synapses, whereas inhibitory synapses have been assumed to be relatively
invariant. Based on this view, inhibition should be exclusively modulated by the differential
glutamatergic-driven activation of a highly diverse population of inhibitory interneurons displaying
specific temporal dynamics and selective innervation patterns. However, it has been demonstrated
that inhibitory synapses undergo several forms of plasticity, thus providing an additional source
of versatility to the regulation of the neuronal network and the emergence of complex brain
states.

The cellular and molecular mechanisms occurring at inhibitory synapses during the
induction/expression of inhibitory short- and long-term synaptic plasticity are now beginning to
be unraveled. At the presynaptic side, retrograde synaptic messengers modulate GABA release
(Mendez and Bacci, 2011; Iremonger et al., 2013; Lourenco et al., 2014; Younts and Castillo,
2014), whereas postsynaptic plasticity typically involves changes in the number/gating properties
of post-synaptic GABAA receptors (Kurotani et al., 2008; Houston et al., 2009; Luscher et al., 2011;
Petrini et al., 2014; Flores et al., 2015). In addition, acute or chronic alterations of intracellular
chloride concentration modulate the driving force of GABAergic currents and the subunit
composition of GABAA receptors (Woodin et al., 2003; Raimondo et al., 2012; Succol et al.,
2012).

The 14 articles presented in this ebook (including hypothesis and theory, minireviews, reviews,
and original research articles) cover the mechanisms of inhibitory synaptic plasticity, at the
molecular and microcircuit levels. Zacchi et al. (2014) focus on the signaling pathways controlling
the phosphorylation state of gephyrin, a key scaffold protein at inhibitory synapses responsible
for the synaptic clustering of both glycine and GABAA receptors. By considering the synapse as a
highly dynamic element, Petrini and Barberis (2014), review the recent literature addressing the role
of protein diffusion in the reorganization of the inhibitory postsynaptic density during inhibitory
synaptic plasticity. A similar conceptual approach, based on the analysis of receptor dynamics, has
been adopted by Muir and Kittler (2014) to investigate inhibitory plasticity in relation to GABAA
receptor diffusion at inhibitory synapses located in the axon initial segment. This original research
article reports that chronic depolarization increases the lateral mobility of GABAA receptors and
reduces the size of post-synaptic GABAA receptor clusters, thus critically interfering with neuronal
excitability. Hirano and Kawaguchi (2014) review another form of postsynaptic inhibitory plasticity
observed at cerebellar synapses formed by stellate cells onto Purkinje cells. This inhibitory long-
term potentiation involves the CaMKII-dependent increase of GABAA receptor signaling through
direct GABAA receptor phosphorylation and/or promoted surface delivery via a GABARAP-
dependent mechanism. In their original article, Gao et al. (2014) further address the molecular
mechanisms of the aforementioned long-term inhibitory plasticity at cerebellar Purkinje cells.
They report that the pathway of iLTP induction critically depends on the coordinated action of
both αCaMKII and βCaMKII isoforms, and is modulated by the activation of GABAB receptors.
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Flores et al. (2015) provide a broad yet detailed analysis of
the molecular organization of inhibitory post-synaptic density.
In addition, they highlight the formation and elimination of
GABAergic synapses as an important source of inhibitory
synaptic plasticity. The mini review by Maguire (2014) examines
the plasticity of inhibition in response to acute and chronic
stress involving region-specific changes of GABAA receptor

subunit expression and alterations of the chloride gradient.

Moreover, Dr. Maguire reports that stress acts as a metaplastic
switch by enabling iLTP at parvocellular neuroendocrine cells

(PNCs). Mapelli et al. (2015) provide a comprehensive overview
of diverse forms of plasticity at specific cerebellar sub-circuits,
introducing the concept of the coordination between excitatory
and inhibitory plasticity for correct circuit functioning. In
their minireview, Chevaleyre and Piskorowski (2014) highlight
the importance of short- and long-term changes of inhibitory
synaptic strength in tuning the threshold for the induction of
excitatory plasticity. In addition, they discuss how plasticity of
glutamatergic synapses onto PV+ interneurons shapes inhibition
at hippocampal microcircuits. Pallotto and Deprez (2014)
analyze the influence of inhibition in adult neurogenesis in
the olfactory bulb and dentate gyrus, by discussing the role
of GABAergic signaling in the development and plasticity of
adult-born neurons. In their comprehensive review Griffen and
Maffei (2014) examine different forms of pre- and post-synaptic
inhibitory plasticity occurring at diverse somatosensory cortex
interneuron subtypes and discuss the role of such plasticity in
sensory cortical activity.

Synaptic signaling does not only depend on pre- or post-
synaptic determinants but is also shaped by the dynamics of
neurotransmitter in the synaptic cleft. The minireview and
the hypothesis and theory by Scimemi (2014a,b) propose the
intriguing idea that changes of GABA transporters activity may
modulate GABAergic responses. In particular, by exploiting
a computer modeling approach, Dr. Scimemi validates the
hypothesis that the density, distribution and lateral mobility of
GABA transporters affect the GABA concentration sensed by
postsynaptic GABAA receptors.

In addition to synaptic inhibition, tonic inhibition produced
by the persistent activation of extrasynaptic GABAA receptors is
crucial for the tuning of neuronal excitability. Recent evidence
demonstrates that also tonic inhibition is plastic. The original
article by Barth et al. (2014) illustrates that the ovarian cycle
is associated with variations of expression of GABAA receptors
containing the “tonic” δ-subunit, both in hippocampal principal
cells and interneurons. Interestingly, such plasticity modulates γ-
oscillations, thus representing a possible determinant for altered
memory and cognitive performance observed during ovarian
cycle.

The ability of inhibitory synapses to undergo plasticity
emphasized in this ebook raises important questions. First, what
are the specific molecular mechanisms of inhibitory plasticity
at synapses formed by different interneuron subtypes? Second:
how is plasticity orchestrated at both excitatory and inhibitory
synapses? In keeping with this, how do different forms of
excitatory and inhibitory plasticity co-exist? Do variations of both

excitation and inhibition strength occur in parallel/homestatic
(Froemke et al., 2007; Xue et al., 2014; Flores et al., 2015),
independent (Lourenco et al., 2014), or opposite fashions (Petrini
et al., 2014). Are these different “plasticity modes” dependent
on the stimulus pattern, specific spatial distributions of synapses
and/or time points after plasticity induction? What are the
behavioral and cognitive correlates of these different forms of
plasticity?

Answering these questions will contribute in redefining
the excitation to inhibition balance (E/I) as a “dynamic”
activity-dependent determinant for the functioning of brain
microcircuits.
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