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A commentary on
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Meeting energy demands in neurons is critical for proper functions of nervous systems. In addition
to glucose, lactate is used as a major energy source in the brain, and a significant amount of lactate
is produced through aerobic glycolysis in astrocytes (Schurr et al., 1988; Gladden, 2004; Ivanov
et al., 2011; Dienel, 2012). It is reversibly converted to and from pyruvate by lactate dehydrogenase
(LDH), and it is transported from astrocytes to neurons via the astrocyte-neuron lactate shuttle
(Pellerin and Magistretti, 2012). Lactate is released from astrocytes through monocarboxylate
transporters (MCT1 and MCT4), and has been also reported to be released through ion channels
yet to be identified (Korn et al., 2005; Sotelo-Hitschfeld et al., 2015). Released lactate is taken
into neurons through MCT2 and converted to pyruvate (Bergersen, 2007). Lactate also induces
expression of genes (e.g., arc and c-fos) involved in synaptic plasticity (Suzuki et al., 2011; Yang
et al., 2014).

In epilepsy where abnormal network activities of hyperexcitable neurons are uncontrollably
synchronized, abundant energy for these activities has to be supplemented (Bertram et al., 1998).
Expectedly, although more studies need to be done, high rates of glucose metabolism and elevated
activity of LDH have been shown in people with epilepsy (PWE) and in animal models of epilepsy
(Dufour et al., 2003). Increased level of lactate has been reported in some epilepsy cases (Hill et al.,
1999). Other glycolytic enzymes are identified as markers for intractable temporal lobe epilepsies
(e.g., neuron-specific enolases) and their defects (e.g., malic enzyme 2 and pyruvate dehydrogenase)
are also shown either causative or susceptible to certain types of epilepsy (Steinhoff et al., 1999;
Greenberg et al., 2005; Prasad et al., 2011).

Recently, Tsuyoshi Inoue’s group in Japan reported that the anti-epileptic effect of the ketogenic
diet (KD) bypass glycolysis (especially LDH), but occur elaborately through KATP channels–
mediated mechanisms (Ma et al., 2007; Sada et al., 2015). They have shown in electrophysiological
recordings that switching glucose to ketone bodies [ß–hydroxybutyrate (ß-HB) or acetoacetate]

in artificial cerebrospinal fluid hyperpolarized resting membrane potentials in excitatory neurons,
and reduced the firing rate of action potentials in acute brain slice preparations. Replacing ß-
HB either with glucose or lactate returned the initial level of resting membrane potentials and
the firing rate. Electrophysiological data recorded when oxamate, an LDH inhibitor, was included
in the recording pipette showed similar effects to the ß-HB’s data. This suggests that bypassing
glycolysis in astrocytes, to supply energy for neurons, reduces the neuronal excitability. Paired
recordings of astrocytes and neurons demonstrated that astrocytes are the site of LDH inhibition.
Next, in kainate and pilocarpine models of epilepsy in mice, direct injection in the hippocampus or
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intraperitoneal injection of oxamate reduced the number of
paroxysmal discharges (epileptiform activity), although the effect
was short-lived (losing its drastic effect in an hour). Oxamate
suppressed pilocarpine-induced acute behavioral seizures (status
epilepticus) and prolonged its latency. It also suppressed
paroxysmal discharges in a chronic epilepsymodel. The antisense
oligodeoxynucelotide targeting LDHA, one of two major genes
composed of LDH, was injected into the hippocampus of kainate
model, suppressing spontaneous spikes. This confirms that
LDH is a critical target. Next, they screened clinically available
anti-epileptic drugs for inhibiting activities of purified LDH,
and found that Stiripentol partially inhibits LDH. Isosafrole,
a Stiripentol derivative that has a greater LDH inhibitory
effect than Stiripentol does, suppressed spontaneous spikes
dramatically in kainate model (Sada et al., 2015). This is a
significant step forward elucidating the metabolic mechanism of
epilepsy. Although LDH is not the first metabolic enzyme shown
to be important in epilepsy, its inhibition was the first to suppress
the epileptiform discharges in vivo (Novarino et al., 2012; Papetti
et al., 2013).

In epilepsy, hypoxia-inducing factor 1α (HIF1α) has been
induced in reactive astrocytes (Vangeison et al., 2008; Li et al.,
2014). Several glycolytic enzymes, including LDH, have been
shown to be upregulated by HIF-1α, although HIF-1α-mediated
LDH induction needs to be verified in PWE and animal
models of epilepsy (Marín-Hernández et al., 2009). Interestingly,
oxamate inhibits not only LDH but also mTOR pathway, which
is the major signaling pathway in both genetic and acquired
epilepsies (Cho, 2011; Zhao et al., 2015). In addition, activation
of mTOR pathway increases the expression of LDH by activating
STAT3, a transcription factor and downstream target of mTOR
pathway, which has been shown to be activated in epilepsy

(Lund et al., 2008; Zha et al., 2011). Furthermore, rapamycin,
an mTOR inhibitor, reduces lactate level by decreasing the
activity and expression of LDH and/or inhibiting hexokinase
II, an upstream enzyme of glycolysis (Venkatesh et al., 2012;
Lee et al., 2013). Therefore, there are interactions between the
mTOR pathway and lactate/LDH, which need to be explored
further. Finally, metabolic enzymes in glycolysis are regulated
in a circadian manner (Zhang et al., 2009). Particularly,
LDH activity and its mRNA expression follow the circadian
pattern in suprachiasmatic nucleus (Isobe et al., 2011). It is
entertaining to imagine that if the level of lactate in the brain
is higher at night than during the day, nocturnal types of
epilepsy might be better explained (Isobe et al., 2011; Cho,
2012).

There are many follow-up questions that remain to be
addressed. First, what would be the side-effect of prolonged
inhibition of LDH for controlling epileptic seizures? Will cells
in other organs (e.g., heart and muscle) function properly with
LDH inhibitors? If not, how we can make this work only on
(reactive) astrocytes in the epileptic foci? Second, will isosafrole
have enhancing effects of GABAergic synaptic transmission like
stiripentol (Quilichini et al., 2006; Fisher, 2009; Grosenbaugh and
Mott, 2013)? Third, although lactate in the hippocampus has
been shown to be decreased by KDwithout affecting the level and
the activity of LDH in this study, it remains to be seen that the
level of lactate is lowered by KD in PWE and animal models of
epilepsy.
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