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An electromechanical model of
neuronal dynamics using Hamilton’s
principle

Corina S. Drapaca*

Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA

Damage of the brain may be caused by mechanical loads such as penetration, blunt
force, shock loading from blast, and by chemical imbalances due to neurological
diseases and aging that trigger not only neuronal degeneration but also changes in the
mechanical properties of brain tissue. An understanding of the interconnected nature of
the electro-chemo-mechanical processes that result in brain damage and ultimately loss
of functionality is currently lacking. While modern mathematical models that focus on how
to link brain mechanics to its biochemistry are essential in enhancing our understanding
of brain science, the lack of experimental data required by these models as well as the
complexity of the corresponding computations render these models hard to use in clinical
applications. In this paper we propose a unified variational framework for the modeling
of neuronal electromechanics. We introduce a constrained Lagrangian formulation that
takes into account Newton’s law of motion of a linear viscoelastic Kelvin—-Voigt solid-state
neuron as well as the classic Hodgkin—Huxley equations of the electronic neuron. The
system of differential equations describing neuronal electromechanics is obtained by
applying Hamilton’s principle. Numerical simulations of possible damage dynamics in
neurons will be presented.

Keywords: electromechanics, dynamic stiffness, Kelvin-Voight model, Hodgkin-Huxley model, Hamilton’s
principle

Introduction

Brain tissue is an inhomogeneous, multi-scale composite material composed of interconnected
networks of blood vessels, neuron, and glia cells submerged in cerebrospinal fluid. Effects of
mechanical and/or electro-chemical stresses and deformations on brain vary widely depending
on the cell types, mechanical and bio-chemical characteristics of the cells, as well as cell’s
mechanosensitivity and mechanotransduction abilities. For instance, brain damage may take
many different forms. For neurons, damage might include breakage of cytoskeleton networks
in dendrites or axons, membrane rupture, separation of synaptic connections, or severance of
dendritic or axonal projections. For the vascular system, damage might be puncture of macro or
micro capillaries, or restrictions that alter perfusion on various scales. Depending on severity, most
of these mechanical injuries will be followed by short or long term chemical imbalances and/or
functional impairments or even death.

Given the high complexity of brain’s structure and dynamics, designing, performing,
and interpreting experiments on brain in vivo at various time and length scales continue
to be very challenging and as a result the mechanisms that govern the interconnected
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electro-chemo-mechanical processes that result in brain damage
and ultimately loss of functionality remain poorly understood.
Mathematical models and corresponding computer simulations
can increase our comprehension on brain damage processes (and,
in general, on neurological diseases and neurodegeneration) and
help design better experiments for measurements and hypothesis
testing that ultimately will lead to improved medical diagnostic
and therapeutic protocols. In the last few decades a multitude
of mathematical models have been proposed to study brain
biomechanics and, independently, brain bio-chemistry at cell
as well as tissue levels. The majority of these models are
mentioned in the comprehensive reviews of brain biomechanics
and mechanobiology by Goldsmith (2001) and Goriely et al.
(2015). Recently, models that link brain biomechanics to its bio-
chemistry have also started to be developed (Drapaca and Fritz,
2012; Lang et al., 2015). Such coupled models are essential in
enhancing the understanding of brain mechanisms such as the
onset of normal pressure hydrocephalus due to ionic imbalances
and in the absence of an elevated intracranial pressure (Drapaca
and Fritz, 2012), and the propagation of damage in brain tissue
caused by edema and lack of proper oxygenation (Lang et al,
2015). However, the lack of experimental data required by these
very advanced mathematical models as well as the complexity
of the corresponding computations render these models hard
to use in today’s clinical applications. In addition, these coupled
models have been built at tissue level and thus they cannot predict
the mechano-chemical responses of brain cells to mechanical
and/or electro-chemical events that happen at tissue and organ
scales.

The latest survey of the literature on brain biomechanics
and mechanobiology by Goriely et al. (2015) emphasizes the
current need in the field of brain research for the development
of “bottom-up” mathematical models that link brain mechanics
and function at each relevant length scale as well as across scales,
incorporate anatomically accurate geometry and connections of
cells and cerebral vasculature, and ultimately allow information
from molecular and cellular levels to propagate to tissue
and organ levels and vice versa. One possible first step in
building such a bottom-up model is to start at the cell level
and create an electromechanical model of neuronal dynamics.
The aim of this paper is therefore to develop a lower-
dimensional electromechanical model of a neuron which (1) is
simple enough so that its predictions may be experimentally
verified, and (2) could be used as a foundation model for
more advanced multi-scaling (bottom-up) mathematical models.
We assume that the electro-chemical activity of a neuron is
described by the classic Hodgkin-Huxley equations (Hodgkin
and Huxley, 1952) and that from a mechanical point of view
the neuron behaves like a linear visco-elastic Kelvin-Voigt
solid. The assumption of linear viscoelastic neuron is supported
by experimental evidence reported by Lu et al. (2006) and
Grevesse et al. (2015). In order to couple the Kelvin-Voigt
mechanical model and the Hodgkin-Huxley electric model we
will use a constraint Lagrangian formulation and the non-
conservative form of Hamilton’s principle. This approach will
give us the coupled equations of motion by minimizing a
special integral functional (action) whose integrand is made

of kinetic and potential energies (Lagrangian) and the work
done by the forces acting on the neuron. Although Hamilton’s
principle has been used in classical mechanics for a very long
time (see for instance Lanczos, 1986), and recently has been
applied to model neuronal electro-chemical activities (Dickel,
1989; Paninski, 2006; Wilson and Steyn-Ross, 2008; Chuankui,
2012) and ion transport through cell's membrane (Eisenberg
et al., 2010), the principle has not been used to link neuron’s
mechanics and its electro-chemistry until now. The proposed
electromechanical model has the following desirable features: (1)
incorporates relevant macroscopic (cell level) and microscopic
(ionic level) mechanical and electrical information, (2) facilitates
the study of the dynamics of neuronal stiffness due to the
evolutions of microstructural components, and (3) highlights
neuronal mechanotransduction. We test the performance of our
model in numerical simulations of neuronal mechanical insults.
Although today it is well-known and accepted that traumatic
brain injuries change the mechanics and electrophysiology
of neurons on short and long time scales (see for instance
Goriely et al., 2015, and the references within), the focus
of the experimentalists as well as the modelers has been
primarily on the mechanical characterization of the neuronal
damage, and therefore a direct liaison between the neuronal
mechanical properties and its altered functions has not been
established yet. Our numerical simulations clearly show neuronal
mechanotransduction: for initially applied displacements and
speeds of magnitudes comparable to the size of the neuron,
action potentials are observed, while very fast initially applied
speeds (jabbing) inhibit the action potentials and this case might
describe one possible neuronal damage dynamics following
a serious mechanical injury. In addition, we notice that our
proposed dynamics for the stiffness of a neuron appears to
be in agreement with the experimental observations of healthy
neurons reported by Zou et al. (2013).

The paper is organized as follows. In Section Mathematical
Model we present our mathematical model, and in Section
Results we show some relevant numerical simulations. The paper
ends with a section containing concluding remarks and future
directions.

Mathematical Model

We model the axon as a axi-symmetric circular cylinder made of
an inner core filled with the intracellular space and an outer layer
filled with the cell’s membrane (Figure 1). Both the intracellular
space and the membrane are assumed to be homogeneous such
that the study of neuronal electromechanics can be reduced to the
study of a simple electromechanical element that we introduce
here. Our novel low-dimensional electromechanical model of
a neuron couples a spring-dashpot-mass mechanical model of
the neuron and an electric circuit model of cell's membrane
(Figure 1). Inspired by recent experimental findings by Lu et al.
(2006) and Grevesse et al. (2015) we model the macroscopic
material neuron as a linear visco-elastic Kelvin-Voigt solid.
We use the classic Hodgkin-Huxley equations (Hodgkin and
Huxley, 1952) to model the macroscopic electric dynamics of
neuron’s membrane. The linkage between the Kelvin-Voigt and
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FIGURE 1 | Schematic of the proposed model: the neuron is an enough to study half of the neuron whose properties are encapsulated into a
axi-symmetric homogeneous circular cylinder whose inner core is the spring-dashpot-mass mechanical system with the spring and dashpot
intracellular space (light blue), and the outer layer is the membrane connected in parallel (Kelvin—Voigt model), and the membrane is represented
(purple). Due to the symmetry (dashpot line) and material homogeneity, it is as an electric circuit governed by the classic Hodgkin—Huxley equations.

Hodgkin-Huxley models is achieved by using a Lagrangian
formulation and Hamilton’s principle as follows.
We start by introducing a Lagrangian of the form:

1 2
2w ¢

1 1 1- 1.
L = ~Mil + ~am? + —bn® + —th® —
5 u zam 2 n 2C

—%k(m, n, h) u?, (1)

where M is half of the constant mass of the neuron of
constant cross-sectional area A, u(t) is the macroscopic (cell
level) displacement that depends on time ¢, k(m, n, h) is the
macroscopic spring constant (can be interpreted as a “rescaled”
stiffness, as we will show in the results section), C(u) is the
macroscopic capacitance of membrane’s lipid bilayer modeled as
a capacitor of electric charge q¢ , and 4, b, and ¢ are positive
constants with physical units of Joules. Lastly, m(t), n(t), and h(¢)
are time-dependent variables between 0 and 1 representing the
activations of the Na+ and K+ channels and, respectively, the

inactivation of Na+ channel. For simplicity, we denote by f = %
the first order time derivative of a generic function f(¢). The first
term of the Lagrangian £ in Formula (1) is the macro-kinetic
mechanical energy, while the second, third and fourth terms are
micro-kinetic electric energies. The fifth term in Formula (1)
represents a macro-potential electric energy and the last term of
L is a macro-potential mechanical energy.

Following the variational formulations for electric circuits
(Ober-Blobaum et al., 2013) and for neurons (Chuankui, 2012)
we introduce gng, gk > and gj, the electric charges of Nat,K* and
leakage channels, respectively. The law of charge conservation
provides the following constraint:

qc+qnat+qxk+q; = 0. )

We take qnga, gk, q1, m, n, h, and u as generalized coordinates.
By replacing qc from Formula (2) into the Lagrangian expression

(1) we can calculate the variation of the Lagrangian £ as follows:

8L = lime—o L (qNa+€3qNa, qx + 39K, 1 + €dq1, m + €dm,
n +edn,h +edh,u + e?m)

- .. 1
= Misdic + arinbrin + birdis + Ehdh + =dc (5qna

1 dC ,
+8qx +8q1) + 202 4, %€ du — kudu
1[0k , ok ok ,
— | =—us —u-d —u“3h
Z(Bmu m—i—anu n—i—ahu , (3)

where 3qng, 3Kk, 3q;, dm, 3n, 8h, and du are variations of the
generalized coordinates.

We further define the virtual work done by non-conservative
forces as (Ober-Blobaum et al., 2013; Cusumano et al., 2015):

SW = — (RNadNadqNa + Rxqrdqx+Riqidq
+nudu) + (—ENaSqNa—EKSqK—EISql + F,,dm
+Fdn-+Fy,8h-+fdu) 4)

In Formula (4) the terms inside the first set of parentheses
represent dissipative forces due to the resistors of resistances
Rna, Rk, Ry in the Hodgkin-Huxley model, and due to the linear
dashpot in the Kelvin-Voigt model whose damping coefficient
is n (can be interpreted as a “rescaled” dynamic viscosity, as we
will show in the results section). The second set of parentheses
in Formula (4) contains the following generalized forces: the
reverse potentials En,, Ex, Ej of the Hodgkin-Huxley model,
an externally applied mechanical force f, and forces F,,, Fy,, Fj
which are work conjugates of the gating variables m, n, and
respectively /. The choice of signs in Formula (4) guarantees that
the virtual work 8 W is thermodynamically consistent.
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We employ now the non-conservative form of Hamilton’s
principle:

ty
BL+3W)dt =0, (5)

1y

where the variations 3qng, dqxk, 3q;, dm, dn, 8h, and du are
independent and vanish at the arbitrary times ¢;, f,. By replacing
Formulas (3) and (4) into the Hamilton’s principle, Equation (5),
using integration by parts, the independence of the variations
3qNa, dqK, 8q;, dm, 8n, 8h, 8u and the fact that these variations
are zero at t,t;, we obtain the following Euler-Lagrange
differential equations:

1dc , _

RNaQNa =V - ENa (7)
Rkgx =V — Ex (8)
Rig =V — E )
k
am + ——u? = Fy, (10)
aom
~ k )
bin + ——u° =F, (11)
on
. 10k
th+ =—u’=F 12
cn + 3hu h (12)

where V = q¢/C is the potential of the capacitor.

Lastly, Kirchhoft’s current law needs to be added to the system
of Equations (6-12) (Ober-Blobaum et al., 2013). Replacing
Equations (7-9) into Kirchhoff current law yields the well-known
Hodgkin-Huxley equation for the membrane potential:

. 1
CV=I-
R

1 1
- (V —Eng) "R (V—Eg) — R (V—Ep, (13)

where I is a known external current applied on the membrane.

The unknown functions u, V, m, n, and h can be found by
solving the coupled Equations (6, 10-13) with appropriate initial
conditions. However, in order to solve these equations we need to
provide expressions for F,,, F,, Fj, a, ZJ, ¢, C(u), k(m,n, h).
These expressions are very difficult to prescribe due to insufficient
knowledge of neuronal mechanotransduction processes. Thus,
for the sake of simplicity, we take f = 0 in Equation (6),
and replace Equations (10-12) by the classic Hodgkin-Huxley
equations for m, n, h (Dayan and Abbott, 2001):

m = oy (1—m) — Bym
n=a,(l—n)— Bun

h = o, (l—h) — Buh
where
0.1(V + 40)
m = , Bmn=4 —0.0556(V + 65)),
* 1—exp(—0.1(V + 40)) p exp ( (V'+65))
0.01(V + 55)

= = 0.125exp (—0.0125(V +65)),
1—exp(—0.1(V+55))"B e ( (V+65)

1
1+ exp(—0.1(V 4 35))

ay = 0.07exp (—0.05(V + 65)) , B =

In addition, we take (Dayan and Abbott, 2001):

1 52 1 .-
= m hA, — = n A,
Rna &N Ry &K

1 -
— =gjA, 14
R g (14)

with A the surface area of the neuron, and gn,, gk, g the maximal
conductances of the Nat, Kt and respectively leakage currents.
We propose further expressions for C(u) and k(m, n, h).
According to Dayan and Abbott (2001) the capacitance is
proportional to the surface area of the membrane and since our
model is one-dimensional we could for instance assume that the
membrane acts like a parallel-plate capacitor. Thus we have:

(15)

- €A €A eA
C=cnA = = = (1-2).
r+u  r(l4u/ r) r
where c,, is the specific membrane capacitance, € is membrane’s
permittivity, and r is the thickness of the membrane. Regarding
the expression for the dynamic spring constant k(m, n, h), we
hypothesize that the cell stiffens during an action potential. Such
an assumption appears to be supported by the observations made
by Hille (2001) and Zou et al. (2013). During activation, the
neuron stiffens due to the pulling on cytoskeletal elements by
the swelling of the cell (Zou et al., 2013), and by the gates in ion
channels that act as protein motors (Hille, 2001). According to
Formula (14), Na™ conductance uses three gates of type m and
one gate of type h, while Kt conductance uses four gates of type
n and we could for instance assume that:

k(m,n, h) =k (1 +m*(1 — h)l’l4) , (16)

where kg is the spring constant in the inactive state of the neuron.

We observe that in the proposed model the electromechanical
coupling is achieved through Equations (6, 10-12), and through
Expressions (15-16).

Results

In our simulations we used the following parameters taken from
Dayan and Abbott (2001):

Eng = 50mV, Ex= —77mV, E; = —54.387mV,

mS mS mS
gNna= 1. 2 ,gK 0. 36 ,gl— 0. 0037.
The thickness of the membrane is r = 4 nm, the radius of
the neuron is rp = 2um (Dayan and Abbott, 2001), an average
Young’s modulus (stiffness) of the neuron is Ey = 200Pa (Lu
et al., 2006; Zou et al., 2013), half of the neuronal mass is M =
0.1ng (Corbin et al., 2014). The specific membrane capacitance
for a neuron in mechanical equilibrium (u = 0) is 0. 01-- “ F and
thus from Formula (15) we have:
u) wF

= 0.01 (1 Py
r mm
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We also used a value of u = 4mPa - s for the dynamic viscosity
of the neuron (this value was found by Park et al. (2010) for
non-neuronal cells).

Under the assumption that the neuron has a circular
cylindrical shape, the cross-sectional area is A = mrg?. Then the
spring constant of an inactive neuron is calculated from equating
two different representations of the restoring force in a linear
elastic spring: kou = Ej %A. Thus ky = Eo;%. Similarly, the
damping constant is calculated from the shear force to be: n =
p,%. Lastly, in all numerical simulations we applied a constant

. A
external current per unit (surface) area of 0.1 ”mz .

Because of the numerical stiffness of Equation (6) we solved
instead Mii + nut + ku = 0, with k given by Formula (16), and
we solved the classic Hodgkin-Huxley equations with C given
by Formula (15). We notice that this simplification preserves a
weaker coupling between the mechanical and electrical behaviors
of the neuron expressed by Formulas (15) and (16).

We re-wrote Mii + nit + ku = 0 as a system of first order
differential equations:

(17)

and used Matlab built-in function odel5s that solves stiff
ordinary differential equations. The function odel5s uses a
modified linear multistep backward difference formula of order
up to five known to have good stability and changes the stepsize
of the discretization adaptively according to a numerical scheme
that calculates relative and absolute error tolerances (Shampine
and Reichelt, 1997).

The Hodgkin-Huxley equations were solved with the
following initial conditions:

V(0) = —65mV, m (0) = (V) :
O (V(O)) + Bm (V(O))
a,(V (0)) an(V(0))

n(0) = h(0) =

oy (V(0) + Br(V(0)

oy (V(0) + Ba(V(0))
We solved System (17) using two sets of initial conditions:

Setl:u (0) = 1nm, d (0) = w(0)= 10nm/ms
Set2:u (0) = 0,d (0) = w(0)= 1nm/us

Working with Matlabs default values for the relative error
tolerance (1073) and the absolute error tolerance (107°), the
function odel5s solved System (17) and the classic Hodgkin-
Huxley equations coupled by Formulas (15) and (16) using a
minimum (maximum) stepsize of 0.0051 ms (1.0076 ms) for
the initial conditions in Set 1, and a minimum (maximum)
stepsize of 0.00075 ms(0.0067 ms) for the initial conditions in
Set 2. In Figures 2, 3 we show the evolutions of the voltage,
gaiting variables, displacement and Young’s modulus for Set 1
respectively, Set 2. For initial conditions in Set 1, we observe
that the action potentials occur and the Young’s modulus and the
displacement variations appear to be physically admissible and
possibly within a healthy range. The dynamics of the stiffness of

a neuron is in agreement with the experimental observations in
the normally functioning regime reported by Zou et al. (2013).
However, for the initial conditions in Set 2 which mimic a more
serious traumatic event, not only that the action potentials do not
happen anymore (Figure 3A) but also sustained big oscillations
of the displacement field are noticed (Figure 3C). In this case
the gaiting variables (Figure 3B) as well as the Young’s modulus
(Figure 3D) remain almost constant. The solutions obtained
using the initial conditions in Set 2 might show damaging effects
of a very fast initial speed (jabbing) on the material structure
and electro-chemical activity of a neuron. As it is apparent from
Figures 2, 3, the proposed model is able to capture neuronal
mechanotransduction. In Figure 4 we show the evolutions of the
displacements obtained using the two sets of initial conditions
during 1 ms. While the oscillations are quickly attenuated for
Set 1 of initial conditions (Figure 4A) which allows the action
potential to develop soon afterwards, for the initial conditions of
Set 2 the amplitudes of the oscillations of the displacement field
are much higher than in the previous case and do not appear to
diminish in time. Also, the membrane’s depolarization does not
occur in this case (Figure 4B).

Conclusions and Future Directions

In this paper we proposed a new electromechanical model that
couples the mechanical behavior and electro-chemical activity
of a neuron and investigated neuronal mechanotranduction
through numerical simulations. The neuron was modeled as
a liner-viscoelastic Kelvin-Voigt solid whose electro-chemical
activity was described by the classic Hodgkin-Huxley equations.
We used a Lagrangian formulation and Hamilton’s principle to
obtain the coupled equations of motion. This approach has the
advantage that it can link macroscopic (cell level) as well as
microscopic (ionic level) mechanical and electrical information
and thus it can describe neuronal mechanotransduction. In
addition we assumed that the membrane’s capacitance depends
on the mechanical displacement of the neuron, while the Young’s
modulus of the neuron depends on the gating variables in the
Hodgkin-Huxley model. Our numerical simulations were done
in Matlab using the built-in function odel5s to solve a simplified
version of our differential equations. When a constant external
electric current was applied and the initial displacement and
speed were of orders of magnitude comparable to the size of
the neuron, the action potentials occurred and looked similar
to the ones observed in healthy neurons. In this case the
dynamics of the neuron’s stiffness appeared to be in agreement
with experimental measurements done on healthy neurons (Zou
et al., 2013). However, for very fast initial speeds which could
model a serious traumatic event and in the presence of a
constant applied external current, high persisting oscillations
in the mechanical displacement of the neuron were observed
and the action potentials did not happen, suggesting possible
structural and functional damage of the neuron.

One of the limitations of the proposed model is coming
up with physically relevant expressions that couple capacitance
and displacement and respectively stiffness and gating variables,
because there are no experimental observations that could guide
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us. However, given the simplicity of the proposed model, we hope
that our approach will inspire future experimental work that will
provide empirical relationships among the model’s mechanical
and electrical parameters. Another limitation of our approach
is the use of the Matlab built-in function odel5s to solve
the proposed system of stiff differential equations. Shampine
and Bogacki (1989) advised caution in drastically reducing the
stepsize in the discretization implemented in odel5s since this

References

Chuankui, Y. (2012). “A neuron model based on Hamilton principle and energy
coding;” in Proceedings of the 2011 2nd International CACS, AISC, Vol. 145
(Berlin; Heidelberg: Springer), 395-401.

Corbin, E. A, Millet, L. ], Keller, K. R, King, W. P, and Bashir,
R. (2014). Measuring physical properties of neuronal and glial cells
with resonant microsensors. Anal. Chem. 86, 4864-4872. doi: 10.1021/
ac5000625

Cusumano, J. P, Roy, A, and Li, Q. (2015). Damage dynamics, rate laws,
and failure statistics viat Hamilton’s principle. Meccanica 50, 77-98. doi:
10.1007/s11012-014-0055-2

Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience Computational and
Mathematical Modeling of Neural Systems. Cambridge, MA: The MIT Press.

Dickel, G. (1989). Hamilton’s principle of least action in nervous excitation.
J. Chem. Soc. Faraday Trans. 85, 1463-1468. doi: 10.1039/f19898501463

Drapaca, C. S., and Fritz, J. S. (2012). A mechano-electro chemical model of brain
neuro-mechanics: application to normal pressure hydrocephalus. Int. J. Numer.
Anal. Model. B 3, 82-93.

Eisenberg, B., Hyon, Y.-K., and Liu, C. (2010). Energy variational analysis of ions
in water and channels: field theory for primitive models of complex ionic fluids.
J. Chem. Phys. 133, 104104. doi: 10.1063/1.3476262

action may in fact increase numerical error and cause instabilities
in the solutions.

In our future work we plan to develop a better numerical
solver that will allow us to solve the fully coupled differential
equations which are numerically stiff. In addition, we will
perform the bifurcation analysis of the model. Lastly, we intend to
incorporate in our model ion transport through cell’s membrane
using the variational formulation from Eisenberg et al. (2010).

Goldsmith, W. (2001). The state of head injury biomechanics: past,
present, and future: part 1. Crit. Rev. Biomed. Eng. 29, 441-600. doi:
10.1615/CritRevBiomedEng.v29.i56.10

Goriely, A., Geers, M. G. D., Holzapfel, G. A., Jayamohan, J., Jerusalem, A.,
Sivaloganathan, S., et al. (2015). Mechanics of the brain: perspectives,
challenges, and opportunities. Biomech. Model. Mechanobiol.  doi:
10.1007/510237-015-0662-4. [Epub ahead of print].

Grevesse, T., Dabiri, B. E., Parker, K. K., and Gabriele, S. (2015). Opposite
rheological properties of neuronal microcompartments predict axonal
vulnerability in brain injury. Sci. Rep. 5:9475. doi: 10.1038/srep
09475

Hille, B. (2001). Ion Channels of Excitable Membranes, 3rd Edn. Sunderland, MA:
Sinauer Associates Inc.

Hodgkin, A. L., and Huxley, A. F. (1952). A qualitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol.
117, 500-544. doi: 10.1113/jphysiol.1952.sp004764

Lanczos, C. (1986). The Variational Principles of Mechanics, 4th Edn. Mineola, NY:
Dover Publications Inc.

Lang, G. E,, Vella, D., Waters, S. L., and Goriely, A. (2015). Propagation of
damage in brain tissue: coupling the mechanics of oedema and oxygen delivery.
Biomech. Model. Mechanobiol. doi: 10.1007/s10237-015-0665-1. [Epub ahead of
print].

Frontiers in Cellular Neuroscience | www.frontiersin.org

July 2015 | Volume 9 | Article 271


http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive

Drapaca

Electromechanical model of neuronal dynamics

Lu, Y. B, Franze, K., Seifert, G., Steinhauser, C., Kirchhoff, F., Wolburg, H.,
et al. (2006). Viscoelastic properties of individual glial cells and neurons in
the CNS. Proc. Natl. Acad. Sci. U.S.A. 103, 17759-17764. doi: 10.1073/pnas.
0606150103

Ober-Blobaum, S., Tao, M., Cheng, M., Owhadi, H., and Marsden, J. E. (2013).
Variational integrators for electric circuits. J. Comput. Phys. 242, 498-530. doi:
10.1016/j.jcp.2013.02.00

Paninski, L. (2006). The most likely voltage path and large deviations
approximations for integrate-and-fire neurons. J. Comp. Neurosci. 21, 71-87.
doi: 10.1007/s10827-006-7200-4

Park, K., Larry, J. M., Kim, N,, Li, H,, Jin, X,, Popescu, G., et al. (2010).
Measurement of adherent cell mass and growth. Proc. Natl. Acad. Sci. U.S.A.
107, 20691-20696. doi: 10.1073/pnas.1011365107

Shampine, L. F., and Bogacki, P. (1989). The effect of changing the stepsize
in linear multistep codes. SIAM J. Sci. Stat. Comput. 10, 1010-1023. doi:
10.1137/0910060

Shampine, L. F., and Reichelt, M. W. (1997). The MATLAB ODE suite. SIAM J. Sci.
Comput. 18, 1-22. doi: 10.1137/S1064827594276424

Wilson, M. T., and Steyn-Ross, D. A. (2008). Subthreshold dynamics of a
single neuron from a Hamiltonian perspective. Phys. Rev. E 78:061908. doi:
10.1103/PhysRevE.78.061908

Zou, S., Chisholm, R., Tauskela, J. S., Mealing, G. A., Johnston, L. J., and Morris,
C. E. (2013). Force spectroscopy measurements show that cortical neurons
exposed to excitotoxic agonists stiffen before showing evidence of bleb damage.
PL0oS ONE 8:€73499. doi: 10.1371/journal.pone.0073499

Conflict of Interest Statement: The author declares that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2015 Drapaca. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cellular Neuroscience | www.frontiersin.org

July 2015 | Volume 9 | Article 271


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive

	An electromechanical model of neuronal dynamics using Hamilton's principle
	Introduction
	Mathematical Model
	Results
	Conclusions and Future Directions
	References


