
ORIGINAL RESEARCH
published: 17 July 2015

doi: 10.3389/fncel.2015.00272

Edited by:
Dirk Schubert,

University Medical Center Nijmegen,
Netherlands

Reviewed by:
Susanna Narkilahti,

Institute of Biosciences and Medical
Technology, Finland

Monica Frega,
University of Genova, Italy

*Correspondence:
Thomas Voigt,

Institut für Physiologie, Medizinische
Fakultät, Otto-von-Guericke

Universität Magdeburg, Leipziger
Straße 44, D-39120 Magdeburg,

Germany
thomas.voigt@med.ovgu.de

†Present address:
Thomas Baltz,

Technische Wissenschaften und
Betriebliche Entwicklung,

Erziehungswissenschaftliche Fakultät,
Universität Erfurt,

Nordhäuser Straße 63,
D-99089 Erfurt,

Germany

Received: 27 April 2015
Accepted: 02 July 2015
Published: 17 July 2015

Citation:
Baltz T and Voigt T (2015) Interaction

of electrically evoked activity with
intrinsic dynamics of cultured cortical
networks with and without functional

fast GABAergic synaptic transmission.
Front. Cell. Neurosci. 9:272.

doi: 10.3389/fncel.2015.00272

Interaction of electrically evoked
activity with intrinsic dynamics of
cultured cortical networks with and
without functional fast GABAergic
synaptic transmission
Thomas Baltz1† and Thomas Voigt1,2*

1 Institut für Physiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany, 2 Center
for Behavioral Brain Sciences, Magdeburg, Germany

The modulation of neuronal activity by means of electrical stimulation is a successful
therapeutic approach for patients suffering from a variety of central nervous system
disorders. Prototypic networks formed by cultured cortical neurons represent an
important model system to gain general insights in the input–output relationships of
neuronal tissue. These networks undergo a multitude of developmental changes during
their maturation, such as the excitatory–inhibitory shift of the neurotransmitter GABA.
Very few studies have addressed how the output properties to a given stimulus change
with ongoing development. Here, we investigate input–output relationships of cultured
cortical networks by probing cultures with and without functional GABAAergic synaptic
transmission with a set of stimulation paradigms at various stages of maturation. On the
cellular level, low stimulation rates (<15 Hz) led to reliable neuronal responses; higher
rates were increasingly ineffective. Similarly, on the network level, lowest stimulation
rates (<0.1 Hz) lead to maximal output rates at all ages, indicating a network wide
refractory period after each stimulus. In cultures aged 3 weeks and older, a gradual
recovery of the network excitability within tens of milliseconds was in contrast to
an abrupt recovery after about 5 s in cultures with absent GABAAergic synaptic
transmission. In these GABA deficient cultures evoked responses were prolonged and
had multiple discharges. Furthermore, the network excitability changed periodically, with
a very slow spontaneous change of the overall network activity in the minute range,
which was not observed in cultures with absent GABAAergic synaptic transmission. The
electrically evoked activity of cultured cortical networks, therefore, is governed by at
least two potentially interacting mechanisms: A refractory period in the order of a few
seconds and a very slow GABA dependent oscillation of the network excitability.

Keywords: MEA, multielectrode arrays, gamma-aminobutyric acid, neocortex, cerebral cortex, stimulation,
network activity, cell culture

Abbreviations: AP5, (2R)-amino-5-phosphonovaleric acid; CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione; C-Pulse,
conditioning pulse; DIV, days in vitro; GABAAR, GABA receptor type A; ISI, inter spike interval; KCC2, potassium chloride
cotransporter 2; MEA, multielectrode arrays; SNR, single-to-noise ratio; T-Pulse, test pulse.
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Introduction

To date electrical stimulation of neuronal structures has become
an important therapy for patients suffering from central nervous
system disorders such as Parkinson’s disease, epilepsy and
deafness [for review see for example Clark (2006), Kringelbach
et al. (2007), Kipke et al. (2008), Moore and Shannon (2009),
Lenarz et al. (2013)]. It has also been proposed to replace
impaired or degenerated neuronal circuits in the visual system.
For example the remaining neurons in the visual system
can be excited by electrical pulses in patients suffering from
blindness, which can restore or enhance visual percepts to a
certain extend (Roessler et al., 2009; Walter, 2009; Ahuja et al.,
2011; Klauke et al., 2011; Zrenner et al., 2011; Lewis et al.,
2015). Intracellular electrical stimulation, i.e., the injection of
currents into single neurons, has been used to characterize
single neuron firing properties, such as regular or fast spiking
(McCormick et al., 1985), bursting (Connors and Gutnick,
1990) or resonance phenomena (Hutcheon and Yarom, 2000;
Izhikevich, 2006). Extracellular electrical stimulation, in contrast,
acts on the network level by activating multiple elements
in the network simultaneously, which can lead to complex
responses due to extensive neuronal and synaptic interactions.
This is of interest because these interactions lead to variable
responses of the neuronal network to repeated representations
of the very same stimulus, which in turn impedes experimental
findings or might induce an undesired variability in percepts
of patients. General insights into input–output relationships
of neuronal networks are therefore important to allow precise
predictions of the networks output in response to a given
stimulus. Similarly, it would be of great advance if experimenters
could deduce to certain network properties, such as the efficacy
of GABAergic inhibition, on the basis of specific output
characteristics.

Cortical neurons grown onto arrays of microelectrodes
(MEAs) form networks with straightforward complexity and,
therefore, represent a relative easy to understand model system.
After neurons are born, they interconnect via synaptic contacts
and spontaneously develop slow oscillatory synchronized
activity, which is typical for developing networks and observed in
various neuronal structures in vivo as well as in vitro, including
the cerebral cortex, the hippocampus, the spinal cord, as well
as in the developing retina (Robinson et al., 1993; Feller, 1999;
O’Donovan, 1999; Garaschuk et al., 2000; Chiu and Weliky,
2001; Khazipov et al., 2001; Streit et al., 2001; Harris et al., 2002;
Leinekugel et al., 2002; Khazipov et al., 2004; Van Pelt et al.,
2004; Arnold et al., 2005; Wagenaar et al., 2005; Chiappalone
et al., 2006; McCabe et al., 2006; Wagenaar et al., 2006a; Allene
et al., 2008; Baltz et al., 2010, 2011). Phenomenologically, most
of the electrical activity observed in developing structures of the
central nervous system is confined in recurrent short bursts of
action potentials, which are accompanied by a large increase
of the intracellular calcium concentration. In cortical cultures,
periodic bursting emerges at about the end of the first week
in vitro (Wagenaar et al., 2006a; Baltz et al., 2011). With ongoing
development, the initial stereotyped activity changes and more
complex patterns evolve (Kamioka et al., 1996; Marom and

Shahaf, 2002), in part due to maturation of the GABAergic
system (Baltz et al., 2010).

Once generated, cortical neurons grown on MEAs allow non-
invasive, long-term measurements of the spontaneous activity
(Maeda et al., 1995; Morefield et al., 2000; Potter and DeMarse,
2001; Van Pelt et al., 2004; Wagenaar et al., 2005, 2006a; Baltz
et al., 2010; Gramowski et al., 2010; Weir et al., 2014) and
electrical stimulation of the same cells over extended periods
of time (Wagenaar et al., 2006b; Brewer et al., 2009; Bologna
et al., 2010; Ide et al., 2010; Weihberger et al., 2013; Keren and
Marom, 2014). Consequently, such a preparation has a variety of
applications as for example studying basic neuronal mechanisms
such as information processing, neuronal plasticity, neurotoxicity
screening, biocompatibility testing as well as understanding
sources of human disorders (Shahaf and Marom, 2001; Eytan
et al., 2003; Wagenaar et al., 2005; Bakkum et al., 2008; Kermany
et al., 2010; Wallach and Marom, 2012; Dranias et al., 2013;
Jantzen et al., 2013; Charkhkar et al., 2014; Frega et al., 2014;
Gullo et al., 2014a,b; Hedrich et al., 2014; Mack et al., 2014).

When probing cultured cortical networks by means of
extracellular electrical pulses typically an early and a late
component of post stimulus spike responses can be distinguished
(Jimbo et al., 2000; Marom and Shahaf, 2002; Wagenaar
et al., 2004). The early component has latencies up to 20 ms
and is thought to be mainly the result of direct antidromic
axonal stimulation (Wagenaar et al., 2004). These responses
are, therefore, independent of synaptic activity, occur with high
reliability and a relatively low temporal jitter a few milliseconds
after stimulation (Jimbo et al., 2000; Wagenaar et al., 2004).
Early postsynaptic spikes can also occur a few milliseconds after
stimulation, but they are characterized by a higher temporal jitter
and a lower reliability (Wagenaar et al., 2004). In contrast to
the early component of post stimulus spike responses, the late
component is purely synaptically mediated and characterized by
reverberating spike burst with highly variable latencies (Marom
and Shahaf, 2002; Wagenaar et al., 2004).

In cortical cultures a variety of stimulation protocols have been
used, for example, to control the oscillatory population activity
as a putative treatment for epilepsy (Wagenaar et al., 2005), to
study adaptation phenomena (Eytan et al., 2003; Wagenaar et al.,
2006b) or neuronal plasticity (Jimbo et al., 1998, 1999; Tateno
and Jimbo, 1999; Shahaf and Marom, 2001; Bakkum et al., 2008;
Chiappalone et al., 2008; Stegenga et al., 2009; Bologna et al.,
2010). The protocols used range from long-term low frequency
(Wagenaar et al., 2006b; Vajda et al., 2008; Bologna et al., 2010)
to high frequency ‘tetanic’ stimuli (Jimbo et al., 1998, 1999;
Wagenaar et al., 2006b; Chiappalone et al., 2008).

Relatively little emphasis has been put to systematically
investigate how the output properties in stimulation experiments
change with respect to the actual state of the network, the
frequency of applied stimuli and the developmental stage.
Finding adequate and reliable stimulation parameters to evoke
or induce a desired network output over the course of
network maturation can be difficult (Wagenaar et al., 2006b)
due to ongoing changes in synaptic coupling strength, the
neuritic outgrowth and the differentiation of neuronal subtypes
with its different firing properties (e.g., regular spiking, fast
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spiking, or bursting). In addition, the mode of action of
important neurotransmitters, particularly of GABA, undergo
developmental changes in many neuronal structures (Feller,
1999; Milner and Landmesser, 1999; O’Donovan, 1999; Ben-Ari
et al., 2007), including cortical cultures (Baltz et al., 2010). All
these developmental changes are expected to alter the input–
output relationship of neuronal networks and the implications of
these alterations may, if unknown, hamper the interpretation or
reproducibility of findings in stimulation experiments.

In the present study input–output relationships of cultured
cortical networks are systematically studied during the
first 3 weeks of their development in vitro. We focus on
developmental changes of the electrically evoked network
activity in cultures with intact and with impaired fast GABAergic
synaptic transmission to assess the contribution of the emerging
inhibitory GABA action. Furthermore, we apply several
protocols to characterize the general electrically evoked response
of ‘mature’ networks (i.e., cultures older than 3 weeks in vitro).

Materials and Methods

Cell culture
All experimental procedures were approved by local government
(Landesverwaltungsamt Halle, Germany, AZ 42502-3-616).
Pregnant rats were euthanized by intraperitoneal injection of
an overdose of choral hydrate (10% chloral hydrate, 1 ml/100 g
body weight). Embryonic, as well as P0–P3 rats were killed by
decapitation. For cultivation of cortical neurons plasma cleaned
(Harrick Plasma, Ithaca, NY, USA) microelectrode array (MEA,
Multi Channel Systems [MCS], Reutlingen, Germany) were
treated overnight with poly-D-lysine (0.1 mg/ml in borate buffer,
pH 8.5, 36◦C). To suppress cell proliferation and to support
neuronal survival (Schmalenbach and Müller, 1993; de Lima and
Voigt, 1999) a feeder layer of purified astroglial cells was prepared
from cerebral hemispheres of P0–P3 Sprague–Dawley rats as
reported in detail previously (de Lima and Voigt, 1999). The
astroglial cells were plated onto the MEA substrate with a density
of 500 cells/mm2 5 days before the neurons. Young neurons
were prepared from cerebral cortices of embryonic Sprague–
Dawley rats at embryonic day E16 (day after insemination was
E1; birth = E22). The cortical tissue was obtained from the
lateral parts of the telencephalic vesicles (excluding hippocampal
and basal telencephalic anlagen). The cells were dissociated with
trypsin/EDTA and seeded at a density of 1200 cells/mm2 onto
the feeder layer. All cultures were maintained in N2 medium
(75% DMEM, 25% Ham’s F12, and N2 supplement; Invitrogen,
Carlsbad, CA, USA) in a humidified 5%CO2/95% air atmosphere
at 36◦C. The culture chamber was sealed by a screw cap to
prevent infection and evaporation. Within the incubator, the cap
was loosened to allow gas circulation. Some MEA cultures were
raised and recorded in the presence of the specific GABAAR
blocker gabazine (20 µM), added 3 h after plating. We favored
gabazine for the chronic blockade, as in experiments where
we acutely blocked GABAARs with bicuculline (5 µM) the
network activity recovered from hyper synchronous activity to
more clustered and asynchronous activity after washing out

the substance, whereas washing out gabazine was more difficult
in our hands. Furthermore, when we applied gabazine acutely
for longer periods (>>1 h) with concentrations as low as
0.5 µM, the network activity remained stereotyped throughout
the recording period similar to acute blockade with bicuculline.
Thus, a breakdown of gabazine over the period of several days in
chronic experiments seemed to be unlikely.

Once to twice a week medium was replenished with fresh N2
mediumby changing half of the total medium volume, containing
gabazine in case chronically blocked cultures [for details of
culture techniques see (de Lima and Voigt, 1999; Baltz et al.,
2010)].

Drugs and Drug Application
All drugs were dissolved to 100–1000x stocks, stored
at –20◦C, and diluted to final concentration just before
application. We purchased (−)-bicuculline methiodide
(bicuculline) from RBI (RBI/Sigma, Deisenhofen, Germany),
and D-2-amino-5-phosphonopentanoic acid (D-AP5), 6-
imino-3-(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid
hydrobromide (gabazine), and 6-cyano-7-nitro-quinoxaline-
2,3-dione disodium (CNQX) from Tocris Cookson (Biotrend,
Cologne, Germany). Drugs were applied directly from the stocks
and cultures were allowed to equilibrate for at least 20 min before
the recording starts to avoid a putative interference of transient
changes in the network activity that might have been induced by
culture handling (Wagenaar et al., 2006a).

MEA Recordings and Data Processing
Recording of electrical activity was carried out using MEAs with
59 substrate-embedded titanium nitride recording electrodes,
arranged in a 10× 6 rectangular array with one electrode missing
in the first column (MCS). The electrodes, 30 µm in diameter,
had an inter-electrode distance (center to center) of 500 µm.
Signals were amplified 1100× and sampled at 25 kHz using a
preamplifier (MEA1060-Inv-BC) and data acquisition card (both
MCS). The activity of individual cultures was monitored at 36◦C
using MC_Rack software (MCS). Recordings for different culture
conditions were always age-matched. Spikes were detected on-
line on the band-pass filtered (0.15–3.5 kHz) signal, using a
threshold of –5× SD from background noise. Custom-written
MATLAB (version 2007b, Mathworks, Natnick, MA, USA)
programs were used for off-line analysis.

Stimulation Protocols and Data Analysis of
Electrically Evoked Activity
General Stimulation Properties
Charge-balanced, rectangular negative-first current pulses with
a total duration of 400 µs and maximum amplitude of 25 µA
were used. To minimize the detection of spurious spikes
after stimulation the electrodes were kept disconnected for an
additional 500 µs long period after each stimulation pulse
to reduce the stimulation artifact by a blanking circuit in
the amplifier. Additionally, supra-threshold peaks up to 2 ms
post stimulus were discarded in the analysis. Some stimulation
protocols were initially applied in preliminary experiments with
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an additional set of cultures; the obtained datasets were merged
with the rest of the data.

Direct Responses to 1 to 100 Hz Stimulation
To investigate the frequency dependence of direct responses, one
hundred 20 s long stimulation blocks with pulse frequency in the
range from 1 to 100 Hz were applied through a single electrode
in the presence of the glutamatergic and GABAergic synaptic
blockers CNQX (50 µM), D-AP5 (50 µM), and bicuculline
(10 µM). The stimulation blocks were pseudo randomized in
order to avoid putative adaptation effects, and intermittent by 15 s
long periods without stimulation. The choice of the stimulating
electrode was based on the SNR of evoked spikes and the
capability to evoke direct neuronal responses with low latency
(<10 ms) in response to low-frequency (1 Hz) T-Pulses. Principal
component analysis was performed on all spike waveforms
detected on a given electrode and were projected onto the first
two components. Data sets from stimulation-recording electrode
pairs were neglected when multiple or overlapping clusters were
observed. Furthermore, data sets were not considered in the
analysis if neurons fired spontaneously in the presence of synaptic
blockers.

Frequency response graphs (F–R graphs; Figure 1E) were
computed as follows. For each of the one hundred 20 s long
stimulation blocks the ISIs were determined and converted to
their corresponding frequencies in units of hertz. Histograms
were computed (bin size 1 Hz) and, hence, peaks in the
histograms give an estimate about the dominating frequencies,

specifically, the relative probability of ISIs that correspond to
a given spike frequency during a 20 s long stimulation block.
The resulting histograms were plotted as gray scale graphs and
vertically aligned at its corresponding stimulation frequency.
ISIs smaller than 10 ms (i.e., frequencies above 100 Hz) were
rarely observed with no systematic relationship to the stimulation
frequency (not shown). The ordinate in Figure 1E, therefore, was
truncated at 100 Hz.

Network Response to Pulses of Different Amplitudes
To test the efficacy of stimulus strength, to investigate the
network excitability during the development and to obtain pulse
amplitudes which can putatively lead to saturating responses,
20 current pulses of different amplitudes (µA): 5, 9, 13, 17, 21,
25 were applied to cultures at DIV: 7, 9, 12, 14, 16, 20, 22.
Stimulation frequency was 0.1 Hz. The order of pulse amplitudes
was randomized to avoid putative adaptation effects and to
minimize the impact of slow spontaneous changes in the network
excitability (see Results).

The amount of evoked activity is dependent on the site of
stimulation, since the position of a given stimulating electrode
relative to axons or cell bodies determines to which extend
the electrical pulse can entrain the network. The choice of the
stimulating electrode, therefore, was based on the SNR and
number of spontaneous spikes. In all cultures, the electrode
with the best SNR and maximum number of spontaneous
spikes at DIV 7 was chosen as stimulating electrode throughout
the development. In rare cases, the stimulating electrode was

FIGURE 1 | Synaptically independent spike responses to 1–100 Hz
stimulation. (A) The raster plot shows an example of the spike responses to
20 s long pulse trains applied at various stimulation frequencies. (B) All ≈20000
spike waveforms detected during the experiment in (A) (gray: single spike,
black: average). (C) R/S ratios and (D) mean spike frequency during the 20 s
long stimulation periods as a function of the stimulation frequency, averaged

over five experiments with four cultures (shaded areas indicate SEM). (E) The
graph shows an estimation of the evoked frequency spectrum below 100 Hz of
all stimulation blocks of the experiment shown in (A). At high stimulation rates
the neuron is not entrained by the stimulation pulses in a 1:1 manner anymore
and, consequently, the main diagonal weakens and lines below the main
diagonal become evident.
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changed if an initially silent electrode with significantly better
SNR and higher spontaneous spike rate appeared later during
the development. This approach assures a functioning interface
between the stimulating electrode and the network.

To investigate the impact of chronically absent fast GABAergic
synaptic transmission on the electrically evoked activity, these
experiments were performed with control cultures and age-
matched sister cultures with chronically blocked GABAA
receptors.

To obtain Figure 3, the number of evoked spikes detected
through all recording electrodes during the first 1000 ms
post stimulus were trial-averaged and pooled separately for
cultures with intact and with blocked fast GABAergic synaptic
transmission for each age, culture and pulse amplitude.

Stimulation Frequency Dependence of Evoked
Responses
To investigate the frequency dependence of the network response
during different stages of network development, trains of 50
pulses with different frequencies were applied at DIV: 8, 13, 15,
19, 21. Pulse trains of different frequencies were in randomized
order to avoid putative adaptation effects and the impact of
slow changes in the excitability (see Results). The trains were
intermittent by at least 60 s long periods of spontaneous network
activity (i.e., considerably longer than recovery periods). To
access the putative frequency dependence of the early responses,
inter-pulse intervals (�t) were set to (ms): 50, 100, 150, 500, 1000,
5000, 15000 and the evoked activity during the first 20 ms post
stimulus was analyzed.

Due to the bursting nature of the network activity, stimulation
pulses can fall inside a reverberating burst response evoked by a
previous pulse. In particular, in≈3 week in vitro old cultures with
blocked GABAA receptors, the fraction of pulses that fall into
reverberating bursts can be relatively high at short �t. Therefore,
trials were neglected in the analysis if spikes detected 30 ms
pre stimulus originated from more than three active electrodes,
indicative for a population burst. In this context, an electrode
was considered as active if two or more spikes were detected
30 ms pre stimulus. In cultures with blocked GABAA receptors,
the fraction of trials considered can be as low as ≈10–30% at
�t = 50 ms. On average, 64 and 97% of the trials were considered
in the analysis for �t = 50–150 ms and �t = 500–15000 ms,
respectively. In controls, on average 75% (minimum 35%) and
97% of the trials were considered in the analysis for �t = 50–
150 ms and �t = 500–15000 ms, respectively. To analyze the
late reverberating burst responses evoked by individual pulses,
�t of 1, 5, and 15 s were considered only, because the evoked
spike bursts can outlast 100s of milliseconds. Single pulses were
considered to evoke a reverberating burst response if at least 30
spikes originating from >3 electrodes occurred 21–1000 ms post
stimulus and if spikes detected 30 ms pre stimulus originated
from ≤3 electrodes.

Double-Pulse Experiments
To investigate the time range during which consecutive pulses
interact and to study network refractoriness, two consecutive
stimulation pulses (conditioning and T-Pulse; C- and T-pulse,

respectively), separated by various time intervals (ms): 1, 2, 4, 6,
8, 10, 20, 40, 60, 80, 100, 200, 400, 600, 800, 1000, 5000, 15000
were applied. Each pulse pair was applied 30 times in pseudo-
randomized order. Preliminary studies suggested that there is
little interaction of consecutive pulses if 10 s or more separate
them. Therefore, after each T-pulse there was a 15000 ms period
without stimulation before the next randomly chosen C–T pulse
pair was applied. After subtracting the average response elicited
by single pulses, the amount of evoked activity by the T-pulse
during the first 200 ms post stimulus was analyzed (Figure 6A).
During this time window, the network response of cultures with
intact GABAergic transmission and the first wave of activity in
cultures with blocked fast GABAergic synaptic transmission was
largely decayed (see Results).

Prolonged Low-Frequency Stimulation
To investigate response properties during ongoing changes of
the overall network activity, cultures were probed for 1 h with
electrical pulses at 1 Hz.

Statistics
The choice of the statistical test depended on whether the
data were normally distributed or not. Normality was assessed
using Lilliefors goodness-of-fit test. A data set that produced
a significant result at alpha = 0.05 was considered to be non-
normal. Statistical tests of the difference between a group mean
and 0 were performed with Student’s t-test for normal data
and Wilcoxon signed-rank test for non-normal data. Statistical
tests of differences between two groups of normal data were
performed using Student’s t-test. Tests between two groups of
non-normal data were performed using the Mann–Whitney U
test. If not stated otherwise, a group represents a set of either
control cultures or a set of cultures, where GABAA-receptors
were chronically blocked. Data are presented as means ± SEM.

Results

The input–output relationships of cultured cortical networks
were investigated during the first 3 weeks of their in vitro
development. We focused on the alterations of these input–
output relationships during the maturation as a result of
impaired GABAAergic synaptic transmission. Furthermore,
several protocols were applied to characterize the general
electrically evoked network response of ‘mature’ networks (i.e.,
cultures older than 3 weeks in vitro).

Spontaneous Activity and General Culture
Properties
All cultures with intact GABAergic synaptic transmission
underwent a typical development of spontaneous activity with
regular population bursting, starting at about the end of the
first week in vitro (for developmental course see for example
Figures 1A and 2A in Baltz et al. (2010) and also Wagenaar et al.
(2006a)). Network activity, then, became more heterogeneous
with periods of higher and lower burst activity after about
2 weeks in vitro (see also Figure 7A below, for an example
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of a “mature” activity pattern). On the contrary, cultures with
GABAAR blockade retain a stereotyped and much synchronized
bursting pattern (see Figures 7A and 2B in Baltz et al. (2010)
and also below). In both network types, GABAergic cells with
a large soma area and long, purely ramified dendrites dominate
the GABAergic population [see Figure 6A in Baltz et al. (2010)].
These parvalbumin expressing cells innervate their postsynaptic
cells in a basket-like fashion in vitro, are born early during the
embryonic development of the rat (around embryonic day 13)
and reside in the subplate at birth (Voigt et al., 2001).

Direct Responses
First, the range of frequencies during which extracellular
stimulation can reliably evoke direct neuronal responses under
the present experimental conditions was investigated. To this
end, neurons were pharmacologically isolated in cultures aged
between 23 and 36 DIV by applying the synaptic blockers CNQX
(50 µM), D-AP5 (50 µM) and bicuculline (10 µM) to block
AMPA, NMDA, and GABAARs, respectively. Twenty-second
long pulse trains were applied with pulse frequencies ranging
from 1 to 100 Hz through a single electrode in pseudo-random
order (see Materials and Methods).

The ratio of responses to the number of stimulus pulses (R/S
ratio) and the spike latency were strongly frequency-dependent.
At low stimulation rates (≈1–10 Hz), the R/S ratio was near
unity (Figures 1A,C). At stimulation rates significantly higher
than ≈10 Hz, however, evoked responses became increasingly
unreliable during the pulse trains, and the R/S ratio systematically
decreased to, on average, 3.11 ± 0.87% at 100 Hz (n = 5
experiments with 4 cultures) (Figure 1C).

During the first 10–20 pulses of a train the spike latency
typically increased (up to ≈1–2 ms). Considering the increase
in latency, two response types could be distinguished. The first
response type was observed in three out of five cases and was
characterized by a steady latency increase (Figure 2A). With
ongoing stimulation, the spike latency either remained relatively
stable (at stimulation rates <<100 Hz), or spikes were evoked
rarely with varying latency when pulse rates approached 100 Hz.
In the remaining two cases, the second response type was
characterized by latency increases which abruptly recovered and
increased again (Figure 2B). Recently, it was hypothesized that
the different behavior in response to extracellular stimulation
refers to distinct neuronal subtypes [e.g., fast spiking or bursting,
Gal et al. (2010)].

The amplitudes of the initial 20 spikes and the spike latency
were slightly negatively correlated (Figure 2C), with a correlation
coefficient significantly smaller than zero (–0.29 ± 0.11;
p < 0.05). Smaller spike amplitudes might indicate an incomplete
recovery of the sodium conductance from previous spiking (see
Discussion).

To estimate at which frequencies the neurons spike during
the 20 s long stimulation blocks, time-independent frequency–
response graphs (F–R graphs) were determined from the ISI
distributions (see Materials and Methods). In case a neuron
responds in a 1:1 manner to each electrical pulse, independent
from the stimulation frequency, a black main diagonal would be
present in F–R graphs only. On the other hand, subthreshold

FIGURE 2 | Latency and amplitude change of synaptically independent
spike responses to 1–100 Hz stimulation. (A) Spike latency as a function
of time during 20 s long stimulation blocks. The raster plots for the experiment
shown in Figure 1A indicate a change of the spike latency during different
periods of stimulation. Colors code stimulation frequency (see labeling on the
right). The change of the spike latency depends on the stimulation frequency.
Note that each raster plot was shifted in y-direction for clarity (i.e., first spike,
at time index zero, always occurs with a relatively short latency post stimulus;
≈6.3 ms; the latency of the first spike is shown as dashed line). (B) Another
experiment with abrupt changes of the spike latency at the stimulation
frequency of 25 Hz. (C) (Top) All 40 spike wave forms of the experiment
shown in Figure 1A during 2 Hz stimulation are stacked from left (spike
evoked by the first pulse) to the right (spike evoked by the last pulse). Insets
show an enlarged view of the first and twentieth spike. No major differences in
spike shape or amplitude become apparent. (Bottom) Same as above but
during a 100 Hz stimulation block. During ongoing stimulation, the spike
amplitude decreases and then recovers. Dotted line below the stacked spikes
indicates the amplitude of the first spike. The solid line indicates 40 spikes
(same scale as above).

membrane oscillations could lead to several spikes in responses
to a single stimulation pulse, when a neuron is excited at its
preferred frequency. The latter could be indicative above the
main diagonal in F–R graphs. Both cases were, however, not
observed under the present experimental conditions. In contrast,
F–R graphs revealed the tendency of neurons not to respond to
every single pulse at higher stimulation frequencies, but to every
second, third and so forth, which became evident by the second,
third and so forth lines below the main diagonal, respectively
(Figure 1E).

The average spike frequency during stimulation blocks was
determined and plotted as a function of the stimulation
frequency. The average spike frequency of the 20 s long pulse
trains did not exceeded 20 Hz, and reached its maximum at a
stimulation frequency of ≈20 Hz (Figure 1D).

In addition to earlier reports (Jimbo et al., 2000; Wagenaar
et al., 2004; Gal et al., 2010), these data show that the reliability
and the latency of direct responses systematically depend on the
frequency and duration of applied pulse trains at frequencies in
the range between 1 and 100 Hz.
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Dependency of Electrically Evoked Responses
on Pulse Amplitudes during the Development
Response properties of cortical networks depend on many
parameters, such as synaptic coupling strength, connectivity
and the differentiation of neuronal cell types, to name only
a few. These parameters considerably change during network
maturation. To determine changes in network excitability during
the development, cultures were probed with pulses of various
amplitudes (5–25 µA at 0.1 Hz) at different DIVs. The inhibitory
action of fast GABAergic synaptic transmission is expected to
develop gradually during the third week in culture [see Baltz
et al. (2010)]. To assess the contribution of fast GABAergic
synaptic transmission on the electrically evoked activity during
the development, similar experiments were performed with age-
matched sister cultures, in which GABAARs were chronically
blocked by 20 µM gabazine, added shortly after culture
preparation.

At the earliest age studied (DIV 7), extracellular electrical
stimulation evoked very few spikes, irrespective of the
stimulation amplitude or the presence or absence of GABAergic
synaptic transmission. With ongoing development, the amount
of evoked activity increased for both conditions and was highest
in about 3 week old cultures with blocked GABAARs (Figure 3).
After 12 DIV, the amount of evoked spikes in blocked and
unblocked cultures did not differ significantly (Figure 3C). In
older cultures, however, significantly more spikes were evoked
for tested stimulation amplitudes greater than 5 µA in cultures
with blocked GABAARs (Figure 3D). At 22 DIV, the maximum
tested pulse amplitude evoked 109.15 ± 23.31% more spikes in

gabazine-treated cultures compared with age-matched controls
(n = 4 cultures each group) (Figure 3D).

In summary, these results show a continuous increase of
the evoked activity during the first 3 weeks of development
for both, cultures with and without functional fast GABAergic
synaptic transmission. Differences in the total amount of evoked
spikes between cultures with intact and blocked fast GABAergic
synaptic transmission became apparent at the end of the second
week in vitro, when the amount of evoked activity in GABAARs
blocked cultures exceeded that of unblocked cultures.

Frequency Dependent Responses during
Development
During the experiments discussed in the previous section, the
cultures were stimulated with different pulse amplitudes, but at
a fixed low frequency. In this section, neuronal activity evoked
by pulse trains of a fixed amplitude (25 µA) is considered, but
applied at different frequencies. The cultures were stimulated
at different time points during the development and, similar
to the experiments above, the experiments were performed in
control cultures as well as with age-matched sister cultures, where
GABAARs were chronically blocked.

Generally, the number of evoked spikes increased with
development for all stimulation frequencies and was highest
in about 3 week old cultures. On average, the highest number
of spikes was evoked at lowest stimulation rates (i.e., inter-
pulse intervals of 15 s) in 19 DIV old cultures with blocked
GABAARs. In these cultures, on average, 180.43 ± 32.13%
more spikes were evoked compared with unblocked age-matched

FIGURE 3 | GABA-dependent differences in the amount of evoked
spikes to extracellular current pulses of different amplitudes. (A) The
graph shows the relative amount of evoked spikes to low-frequency (0.1 Hz)
electrical stimulation with different pulse amplitudes and at different DIV
(average of four cultures). The graph is normalized to its maximum at DIV 22
and 25 µA. (B) Same as (A) but for age-matched sister cultures with

chronically blocked GABAAergic transmission (n = 4). The graph is
normalized to the maximum of controls (DIV 22 and 25 µA in A).
(C) Differences between cultures with (filled circles) and without blocked
(empty circles) GABAAergic synaptic transmission were not significant at DIV
12. (D) After 22 DIV, differences were significant (n = 4 cultures each group;
asterisks indicate significance; ∗p < 0.05).
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controls (n = 4 cultures each group). The increase of the
overall evoked activity with development was mainly a result
of the emerging late network-wide burst response during the
development (Figure 4).

In cultures older than 2 weeks, the temporal evolution of
the evoked activity differed markedly between cultures with
and without GABAAR blockade. In control cultures, the burst
response typically decayed after an initial rising phase. The burst
response of cultures with GABAAR blockade, in contrast, often
had multiple rising and decay phases (compare Figure 4A with
Figure 4B at 21 DIV and �t = 15 s).

The early response to electrical stimulation (up to 20 ms post
stimulus) mainly reflects direct neuronal excitation (see above)
and early postsynaptic spikes (Jimbo et al., 2000; Marom and

Shahaf, 2002; Wagenaar et al., 2004), and the late response (21–
1000 ms) is dominated by synaptically mediated reverberating
network-wide bursts. Both aspects of the stimulus response are
considered separately in the next paragraphs.

The amount of spikes during the early phase generally
increased with development for all pulse frequencies. No
statistically significant differences were found in the amount of
evoked spikes during the early phase between cultures with and
without GABAAR blockade (not shown).

To analyze the late response for individual pulses separately,
inter-pulse intervals greater than 500 ms were considered (i.e.,
�t = 1, 5, and 15 s). The interaction of two consecutive pulses
for lower �t is discussed separately below. Generally, lowest
stimulation frequencies (�t = 5 and 15 s) regularly evoked strong

FIGURE 4 | Network responses to pulse trains of different frequencies
during the development. (A) The gray scale graphs show the network
responses to individual pulses applied at different inter-pulse intervals (�t = 1, 5,
or 15 seconds) and DIV (top labeling) for the same culture (bin size is 1 ms). The

line graph above each gray scale graph shows the trial-averaged responses.
Trials that fall in the burst responses of a previous pulse were omitted. The inset
shows the early response at higher time resolution. (B) Same as (A) except for a
culture with GABAAergic transmission being chronically blocked.
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network bursts in an all-or-none manner in cultures with blocked
GABAARs aged about 3 weeks in vitro (e.g., Figure 4 at DIV
21 and �t = 5 s), which typically contained more spikes than
an evoked network burst in age-matched cultures with intact
GABAergic transmission (Figures 4 and 5A). After about 3 weeks
in vitro, bursts were rarely evoked when �t was reduced to
1 s in cultures with blocked GABAARs (Figures 4B and 5B).
In contrast, bursts were evoked with high reliability in age-
matched cultures with intact GABAAergic synaptic transmission
(Figure 4A at 21 DIV and �t = 1 s, Figure 5B). These burst,
however, contained fewer spikes, compared with the all-or-none
bursts of blocked cultures. These differences between cultures
with and without intact fast GABAergic transmission already
became indicative in individual cultures at DIV 19 and became
statistically significant after 21 DIV (Figures 4 and 5B).

In some cases, a systematic latency increase of the
reverberating burst response was observed during ongoing
stimulation (e.g., Figure 4B at 19 DIV and �t = 5 s), which
might indicate an incomplete recovery from activity-dependent
resources (e.g., from synaptic depression; see Discussion).

Taken together, strongest responses were evoked in about
3 week old cortical cultures with low-frequency stimulation in
all cultures. The susceptibility to low-frequency stimulation is

FIGURE 5 | Summary graph for the development of the late responses.
(A) The bar plots show the amount of evoked spikes during 21–1000 ms post
stimulus in response to various pulse frequencies (light gray controls; dark
gray chronically blocked GABAARs) at different DIV (see labeling on the right in
B). The graphs are normalized to the maximum of control cultures (DIV 21;
�t = 15000 ms). (B) Same as (A), but for the probability of evoking a network
burst (n = 4 each group; asterisks indicate significance; ∗p < 0.05).

indicative of a network-wide refractory period as a result of
sustained bursts firing. Furthermore, fast GABAergic synaptic
transmission, if mature, enables the network to respond to stimuli
of higher rates, but with a reduced number of spikes compared to
the responses of cultures with blocked GABAARs. This issue is
investigated further in the next section.

Double-Pulse Experiments
To investigate the time range during which consecutive stimuli
interact, ‘mature’ (i.e., 21–26 DIV old) cortical cultures were
probed with two pulses, separated by various time intervals
(�t = 1 ms to 15 s; see also Materials and Methods). As before,
these experiments were performed in cultures with and without
intact fast GABAergic synaptic transmission.

The first pulse (conditioning, C-pulse) typically evoked a
strong reverberating synaptic network-wide burst response.
The response to the second pulse (test, T-pulse), then, varied
systematically with the inter-pulse interval. To estimate the
amount of activity evoked by the T-pulse, the average response
evoked by single pulses (i.e., pulses with �t = 15 s) was
subtracted, and the amount of evoked activity shortly after the
T-pulse was analyzed (Figure 6A).

Cultures with intact GABAergic synaptic transmission showed
a broad spectrum of responses evoked by the T-pulse. Generally,
the T-pulse evoked more spikes for various �t compared to
cultures where fast GABAergic transmission was chronically
blocked (Figures 6B,C). Particularly, for �t around 10 ms and
�t = 200–2000 ms, the spike number evoked by the T-pulse was
significantly higher compared to blocked cultures (Figure 6C).
Moreover, excitability gradually recovered on a relatively low
time scale, i.e., for �t greater than 10–100 ms in cultures with
intact GABAAergic transmission (Figures 6B,C). In contrast, in
cultures with blocked GABAAergic synaptic transmission, there
was a prolonged refractory period of at least 2 s (Figures 6B,C)
during which the T-pulse was almost ineffective. The evoked
activity, then, recovered for �t ≥ 5 s (Figures 6B,C).

These data indicate that cultures with and without functional
GABAergic transmission show prolonged periods of low
excitability after previous synaptic activity, but with different,
GABA-dependent, time ranges of recovery.

Slow Changes of the Network Excitability
Previous experiments have shown that in about 3 weeks in vitro
old cortical cultures, network dynamics can comprise recurring
minute long periods of lower and higher activity (Wagenaar et al.,
2006a,b; Baltz et al., 2010) which occur spontaneously and are
abolished when GABAergic transmission is blocked (Baltz et al.,
2010).

This observation was quantified in 20 min long recordings
of the spontaneous network activity of 23–28 DIV old cultures
(Figure 7). Periods of low activity occurred, on average, every
4.06 ± 0.27 min (≈0.004 Hz) under control conditions and were
abolished in all cultures in the presence of bicuculline (n = 5)
(Figure 7B).

To investigate the excitability during such spontaneous
changes of the network activity, cultures aged older than 3 weeks
were probed with electrical pulses applied at 1 Hz for one
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FIGURE 6 | Double-pulse experiments. (A) (Left) Shows an example of the
average responses before (black) and after (red) the subtraction of the average
response to single pulses for �t = 60 ms. The dotted line indicates the time
window of the first wave of activity post stimulus (200 ms) which was
considered for the analysis. (Right) Similar graph to the one on the left except
for �t = 800 ms. (B) The graph shows the spikes post stimulus the T-pulse,
after subtraction of spikes that were evoked by single pulses for one culture
without (left) and with (right) chronically blocked GABAARs. (C) The summary
graph shows the T-pulse responses. The graph is normalized to the average
responses of cultures with intact GABAAergic synaptic transmission at
�t = 15000 ms (n = 7 control cultures; n = 6 cultures with chronically
blocked GABAAergic synaptic transmission; 21–26 DIV; asterisks indicate
significant differences between control and blocked cultures; ∗p < 0.05).

hour (i.e., 3600 pulses in total). Again, similar experiments were
performed with cultures with and without functional GABAAR-
mediated synaptic transmission.

When stimulating cultures with chronically blocked
GABAARs at 1 Hz, the pulses either elicited a few spikes

shortly after each pulse or, infrequently, a strong reverberating
synaptically mediated burst response (Figure 8B) leading to
a bimodal distribution in the histograms of evoked spikes
(Figure 8D) and a relatively constant network response
(Figure 9). In contrast, cultures with intact GABAergic synaptic
transmission showed amuch broader spectrum of evoked activity
(Figure 8A). The distribution of the number of elicited spikes
was in some cases almost exponential (Figure 8C). However,
the amount of evoked spikes strongly varied with the very
slow oscillation of the overall network activity (Figure 10). The
systematic variation of the number of evoked spikes indicates that
periods of higher and lower spontaneous network activity reflect
periods of higher and lower network excitability. These slow
changes of the excitability, then, can provide “power-law-like”
response characteristics.

The number of periods with higher and lower network
activity was not altered markedly by electrical stimulation
(Figures 10A,D). Moreover, most of the network activity was
time-locked to the applied pulses (Figures 8A and 10B),
indicating that the pulses predominantly act as a trigger for the
otherwise spontaneously occurring spike bursts and that the slow
change of the excitability is not affected strongly by electrical
stimulation.

To investigate whether this is a result of chronic over-
excitation or acute absence of GABAAR mediated synaptic
transmission, we raised additional cultures for 3 weeks and
performed a similar experiment before and after acute application
of gabazine (100 µM). Similar to above results the slow variations
of the excitability were abolished (n = 3, not shown), suggesting
that slow variations of the network excitability are the result of
the interplay between glutamatergic excitation and GABAergic
inhibition.

It has been shown that sub-micromolar concentrations of
gabazine selectively block phasic inhibition while leaving tonic
GABA action unaffected (Semyanov et al., 2003; Farrant and
Nusser, 2005). To estimate whether tonic or phasic inhibition
dominates we performed again similar experiments before and
after application of 0.5 µM gabazine to the culture medium
(n = 2). Similar to all experiments in this set, slow variations of
the excitability were abolished, indicative for a stronger role of
phasic over tonic GABA action.

Taken together, most of the variations of responses to electrical
stimulation of cortical networks in vitro occur spontaneously
and seem to be a result of an underlying slow oscillation
of the network excitability induced phasic GABAAR-mediated
synaptic transmission and does not seem be induced by electrical
stimulation itself.

Discussion

To study the general output properties of cortical networks
in vitro in response to short extracellularly applied electrical
pulses, the networks were probed by various stimulation
protocols at different time points during the first 3 weeks of
their in vitro development. Special attention was paid to the
impact of absent fast GABAergic neurotransmission during the
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FIGURE 7 | Slow changes of the spontaneous network activity
are mediated by GABAAergic synaptic transmission.
(A) Spontaneous population activity of a 22 DIV old cortical culture
under control conditions. The line-graph indicates the global firing

rate, which is defined as the number of detected spikes through all
electrodes per time unit (second). The slow change of the overall
network activity was abolished by an (B) acute blockade of
GABAARs (bicuculline, 5 µM).

network maturation. The total amount of electrically evoked
activity increased during the first 3 weeks in vitro in cultures with
intact and with chronically blocked fast GABAergic transmission.
Under both conditions, the maximum output firing rate was
reached only with the lowest stimulation frequency tested [i.e.,
inter-pulse intervals (�t) of 15 s].

In ≥3 weeks in vitro old control cultures, the amount of
electrically evoked activity seems to be governed by at least
two, possibly mutually interacting, processes. First, all networks
show a reduced excitability in the range of a few seconds after
an evoked network-wide burst. Second, a slow and oscillatory
change of network excitability dramatically affected the number
of spikes, which could be evoked during a given stimulation
experiment. The slow change of the excitability spontaneously
emerged in cultures with intact, but not in cultures with absent
fast GABAergic synaptic transmission.

Direct Responses
It is assumed that direct neuronal responses mainly reflecting
antidromically activated soma through stimulated (Wagenaar
et al., 2004). Stimulation electrodes might, in turn, also excite
soma. In this case spikes, the extracellular correlates for
intracellular action potentials, are recorded from the axons.
Even stimulation of and recording from the same axon is
conceivable. These different possibilities cannot be distinguished
clearly by the shapes of recorded spike waveforms or by
microscopically inspection of the culture. A classification
of single neurons (i.e., determining whether a recorded
neuron is inhibitory or excitatory) on the basis of their
extracellular recorded firing properties is also not feasible (Weir
et al., 2014). These limitations impede the interpretation of

experimental data and should be kept in mind in stimulation
studies.

The present results indicate ranges of frequencies, which
reliably can evoke a neuronal response and ranges, which are
fairly ineffective (Figures 1 and 2). Direct neuronal responses
were evoked with little latency and with very high reliability (near
100%) for low stimulation frequencies (≈1–10 Hz), which is in
agreement with previous results (Jimbo et al., 2000; Wagenaar
et al., 2004). At higher stimulation rates, however, the reliability
strongly decreased. That is, the ratio of applied pulses to evoked
responses was initially almost 100% and decreased to ≈3%
when changing the pulse rate from 1 to 100 Hz. This low-pass
behavior might, in addition to the passive membrane properties,
be the result of calcium-activated potassium conductances as a
consequence of repetitive action potential firing at the beginning
of a pulse train (see Figures 1A and 2). Spikes with smaller
amplitudes, which occurred at higher stimulation rates, might
also indicate an incomplete recovery of the sodium conductance
from a previous action potential (Gal et al., 2010). The sodium
conductance, then, might recover partially during ongoing
stimulation, when single stimulation pulses fail to evoke an action
potential. At higher stimulation rates, however, stimulation
pulses might interrupt the recovery, which would account for
the inefficiency of high stimulation frequencies in entraining the
neurons. However, we cannot exclude the possibility that the
stimulation pulses occluded a number of spikes in our data.

Sustained electrical stimulation can effectively suppress
synchronized burst activity, which has potential applications for
the treatment of central nervous system disorders (Wagenaar
et al., 2005). Assuming that extracellular pulses interfere with
sodium conductances and/or calcium activated conductances
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FIGURE 8 | Responses to prolonged electrical stimulation. (A) The top
graph shows the trial average of the population responses to electrical
stimulation at 1 Hz. The early responses are cut off at 0.5. The gray scale
graph below shows the population responses for each stimulation pulse
(trials that fall within a network burst were not considered and were omitted).
Each gray dot reflects the number of evoked spikes for a 1-ms wide bin.
The graph is sorted by the number of evoked spikes. Note that virtually all

activity in the network is time-locked to the stimulation pulses. (B) Same as
(A) except for a culture with chronically blocked GABAARs. (C) Distribution
of the number of evoked spikes during prolonged electrical stimulation.
Cultures were stimulated for one hour at 1 Hz under control conditions and
(D) with chronically blocked GABAARs. Similar results were obtained in six
cultures per group aged between 22 and 36 DIV (see main text for details).
The bin width is five spikes.

of a neuron, which fires at moderate or high rates without
electrical stimulation, implies that stimulation pulses can reduce
the average firing rate, for example, by keeping the sodium
conductance inactivated. This interference, then, could be the
basis of a potent mechanism on the cellular level, which, together
with synaptic mechanisms, is accountable for burst suppression
by means of extracellular electrical stimulation. Whereas on
the network level, burst suppression could be attributed to a
depletion of activity depended synaptic reserves (Baltz et al.,
2011).

Dependency of the Evoked Responses on the
Stimulation Frequency
Spikes that were evoked within the first milliseconds post
stimulus reflect responses from the directly stimulated neuronal

tissue (see above) and the earliest responses of synaptically
activated neurons (Wagenaar et al., 2004). The developmental
increase of the number of early spikes, therefore, most likely
is attributable to the ongoing growth of the neurites and the
maturation of synaptic connections.

The strong increase of the overall evoked network activity
with development is related to the emerging burst response which
preferably occurred at low stimulation rates (Figure 4). This late
response showed marked differences in the temporal evolution
of the firing rate for cultures with and without functional
fast GABAergic synaptic transmission. Evoked reverberating
bursts in cultures with blocked GABAergic synaptic transmission
occurred in an all-or-none manner and often had multiple
discharges in cultures older than 3 weeks (Figure 4). On the
contrary, the firing frequency decayed after an initial discharge
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FIGURE 9 | Low variability in the network excitability during prolonged
stimulation in networks with chronical absence of GABAAR mediated
synaptic transmission. (A) (Top) A 21 DIV old culture during a 1 h stimulation
period, at 1 Hz. (Bottom) A 20-min long period is shown enlarged. The gray
scale graph shows the evoked responses ranging from 50 ms before up to

500 ms after each stimulation pulse, temporally aligned to the line graph above.
The arrow denotes the time point of stimulation. Trial-averaged population
response is shown on the right. (B) Trial-averaged population response of the
network during 2 min long time intervals (black: response during the indicated
interval; gray: all trials).

in unblocked controls, possibly as a result of the hyperpolarizing
or shunting GABA action (Baltz et al., 2010). The prolonged
discharges in cultures with blocked GABAARs may lead to
a deeper synaptic depression, which could potentially lead to
longer refractory periods (see below).

Network Refractoriness
In line with previous data (Opitz et al., 2002; Baljon et al.,
2009), double-pulse experiments showed second-long periods
of low excitability after evoked reverberating discharges. In
contrast to cultures with blocked GABAARs, in which the
recovery occurred between 2 and 15 s, a gradual recovery of
the excitability was found on a shorter time scale, starting at
about 10–100 ms after a previous stimulation pulse in unblocked
cultures. Moreover, in control cultures, as well in cultures with
blocked fast GABAergic synaptic transmission, the second pulse
did not evoke a significant amount of activity at inter-pulse
intervals in the range of a few milliseconds, which might relate
to axon refractoriness.

In juvenile rat cortex, synapses show an augmented synaptic
depression (Reyes and Sakmann, 1999). The reduced excitability
may, therefore, be mainly the result of the exhaustion of
activity-dependent reserves, such as transmitter depletion in

the readily releasable pool of the synapses, which leads to
synaptic depression (Zucker and Regehr, 2002; Baltz et al.,
2011).

A synaptic depression may be generally weaker in cultures
with intact GABAergic transmission due to inhibition of
neuronal activity. This would be in line with the observation
that strongest reverberating burst responses in cultures
with functional fast GABAergic synaptic transmission were
considerably weaker compared with reverberating responses
that occurred in an all-or-none manner in cultures with blocked
GABAARs. Hence, a stronger depression of more synapses
would be expected after stronger reverberating bursts in blocked
cultures, leading to longer recovery phases and, thus, longer
periods of low excitability.

Double-pulse experiments showed that, during a limited range
of inter-pulse intervals, around 10 ms, the responses to the
second pulse were enhanced in control cultures compared with
networks where fast GABAergic transmission was blocked. In
terms of synaptic depression, these additional spikes might
reflect the recruitment of synapses, which were, due to fast
synaptic inhibition, less affected by synaptic depression that
was induced by the first pulse. As a result of the activity
evoked by the first pulse, synaptic depression could gradually
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FIGURE 10 | The excitability undergoes slow changes in networks with
intact GABAergic synaptic transmission. (A) Spontaneous population
activity of a 22 DIV old cortical culture. The amount of spike activity undergoes
recurrent, spontaneous slow changes over time. (B) (Top) The same culture as
in (A) during a 1 h stimulation period, at 1 Hz. (Bottom) A 20-min long period is
shown enlarged. The gray scale graph shows the evoked responses ranging

from 50 ms before up to 500 ms after each stimulation pulse, temporally aligned
to the line graph above. The arrow denotes the time point of stimulation.
Trial-averaged population response is shown on the right. (C) Trial-averaged
population response of the network during 2 min long time intervals (black:
response during the indicated interval; gray: all trials). (D) Spontaneous activity
of the culture in (A–C) after the stimulation experiment.
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increase in time, which might explain the partial and transient
reduction of the excitability for inter-pulse intervals between
20 and100 ms in cultures with intact GABAergic synaptic
transmission (Figure 6C).

Slow Periodic Changes of the Network
Excitability
Prolonged low-frequency stimulation of ≈3–5 week old cultures
with intact fast GABAergic synaptic transmission revealed slow
and systematic GABA-dependent fluctuations of the network
excitability. An observation which was not described in depth
previously, but apparently is present under a variety of
experimental conditions [see for example Figure 5 in Eytan et al.
(2003); Figure 1D in Wagenaar et al. (2006b); Figure 1D in
Chiappalone et al. (2008); Figure 2B in Shahaf et al. (2008)].

The slow changes of the excitability closely matched temporal
fluctuations of the spontaneous network activity (Figure 10).
Furthermore, most of the activity in the network was triggered by
electrical pulses (Figures 8 and 10). These data strongly suggest
that the amount of electrically evoked activity is governed by an
underlying oscillation of the network excitability, which is largely
independent of extracellular stimulation itself.

The impact of such slow and oscillatory changes on the
experimental outcome might have been underestimated in
recent studies, potentially resulting in the conflicting evidence
concerning the amount of plastic changes that can be induced
by means of extracellular pulses in dense cortical cultures with
strongly synchronized burst activity (Jimbo et al., 1998; Jimbo
et al., 1999; Shahaf and Marom, 2001; Eytan et al., 2003;
Wagenaar et al., 2006b; Chiappalone et al., 2008; Dranias et al.,
2013).

Periods of higher excitability are potentially the result of
more depolarized membrane potentials in a significant fraction
of the neurons. Interestingly, recurring phases of high and
low network activity are reminiscent of slow potential shifts
in juvenile hippocampal slices (Jensen and Yaari, 1997). The
dynamics of the slow membrane potential changes appear to be
a result of feedback interactions between neuronal discharges
and the extracellular potassium concentration (Jensen and Yaari,
1997; Frohlich et al., 2006, 2008). Because the neuron specific
potassium chloride co-transporter (Blaesse et al., 2009) provides
a key link between the extracellular potassium concentration
and fast GABAergic synaptic transmission (Blaesse et al., 2009;
Viitanen et al., 2010), it is interesting to note that the occurrence
of the slow oscillatory changes in the spontaneous network
activity during the development is paralleled by the GABA
shift in cortical cultures (Baltz et al., 2010) and that the
GABA shift is associated with the developmental up-regulation
of KCC2 (Rivera et al., 1999; Ben-Ari, 2002; Yamada et al.,
2004; Ben-Ari et al., 2007). Indeed, KCC2 is strongly up-
regulated in the present culture model during the second
week in vitro (Westerholz et al., 2013). It might, therefore, be
tempting to speculate that slow GABAAR-dependent potassium
dynamics (Kaila et al., 1997; Rivera et al., 2005; Blaesse
et al., 2009; Viitanen et al., 2010) are involved in the slow
oscillating changes of the network excitability in cultured cortical
networks.

GABAergic synaptic transmission in cortical cultures seems
to be provided to a significant extend by the population of
early post-mitotic large GABAergic cells, which have distinctive
morphological and molecular features (de Lima and Voigt, 1997;
Voigt et al., 2001; de Lima et al., 2004; Baltz et al., 2010). With
respect to potassium dynamics, this might be of potential interest
regarding the ‘potassium accumulation hypothesis’ in models of
epilepsy [for review see Frohlich et al. (2008)], because distinct
subpopulations of GABAergic neurons could provide the strong
GABAergic drive that might preferentially induce potassium-
mediated epileptic bursts in more structured networks.

The distribution of evoked spikes in response to electrical
stimulation can convey a near linear relationship over several
time scales in logarithmic space (Figure 8C). This power-law-
like behavior is, however, the result of the very slow GABA-
dependent oscillatory changes of the network excitability. Even
a very clear exponential relationship between the number of
evoked spikes (or the duration of the evoked response) and the
frequency of occurrence would, therefore, give no information
about the underlying mechanisms [e.g., a “critical branching
process,” Pasquale et al. (2008)] or the network topology [e.g.,
scale free, Eytan and Marom (2006), Pasquale et al. (2008)].

Putative Implications of Absent GABAAergic
Synaptic Transmission
In the absence of GABAAR mediated synaptic transmission it
would be expected that homeostatic mechanisms counteract
lacking GABAAergic inhibition to prevent over-excitation. Such
homeostatic modifications on the synaptic or cellular level
(Turrigiano and Nelson, 2004; Turrigiano, 2007) in networks
with lacking GABAAergic transmission, if functionally relevant,
could lead to an overall reduced activity in comparison to
networks with intact inhibition. However, our data do not
implicate a general trend in this context. Networks lacking
GABAAergic transmission failed to down regulate excitatory
drive over the course of development to prevent the stereotyped
hyper-synchronous activity. Thus, the limits of homeostatic
regulation might be reached if the local circuitry is abnormally
constructed on the cellular (Baltz et al., 2010) or synaptic
level, in particular in the case of impaired GABAAR mediated
transmission. As the excitatory role of GABAergic synaptic
transmission seems to dominate in immature networks [for
review see Ben-Ari et al. (2007)], and GABA becomes inhibitory
roughly during the third week in vitro in cultured networks
(Baltz et al., 2010) structural changes might, therefore, develop
in different directions during the course of development in
networks with absent GABAAergic drive. Whether the pure
absence of the GABAergic drive or structural changes dominate
the response properties during different developmental stages
remains to be investigated.

Implications for Future Stimulation Studies
For pharmacologically isolated neurons we showed ranges of
frequencies, which reliable evoke a neuronal response, and
ranges, which were less effective. This should be taken into
account, as higher stimulation rates do not necessarily imply
higher neuronal firing rates. As discussed above, even a
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significant depression of neuronal activity must be considered.
On the network level, the amount and phenomenology of the
electrically evoked activity of cortical cultures in vitro depends
on the developmental stage and is modulated by an activity-
dependent process and very slow GABA-dependent periodic
changes of the network excitability. Both have to be taken into
account when investigating evoked activity of cortical networks
in vitro, since for example, very slow spontaneous changes of the
excitability may lead to spurious findings when trying to induce
plastic changes by means of extracellular pulses. Furthermore,
the impact of absent fast GABAergic synaptic transmission on
the evoked responses was shown throughout the development
of cortical networks in vitro, which may help to clarify whether
or not fast GABAergic synaptic transmission is involved in
future stimulation experiments. Since the observed response
properties can be explained in part by general cellular properties
or by the bursting nature of the network activity with an
underlying synaptic depression (Baltz et al., 2011), the latter
being hallmark feature of young rat cortex (Feller, 1999; Reyes

and Sakmann, 1999; Ben-Ari, 2001), some of the present results
should qualitatively extend to more structured networks.
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