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Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative
stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative
stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a
key mediator for immune responses that induces microglial/macrophage activation
under inflammatory processes and neuronal injury/degeneration. Although cerebellum
is commonly associated to motor control, muscular tone, and balance. Its relation
with addiction is getting relevance, being associated to compulsive and perseverative
behaviors. Some reports indicate that cerebellar microglial activation induced by
cannabis or ethanol, promote cerebellar alterations and these alterations could be
associated to addictive-related behaviors. After considering the effects of some drugs
on cerebellum, the aim of the present work analyzes pro-inflammatory changes after
cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced
and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione
peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates.
NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity
and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant
increase of glutamate concentration is also observed. Interestingly, increased NF-κB
activity is also accompanied by an increased expression of the lysosomal mononuclear
phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are
focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar
changes described herein fit with previosus data showing cerebellar alterations on addict
subjects and support the proposed role of cerebelum in addiction.

Keywords: cerebellum, cocaine, nuclear factor kappa B, oxidative stress, mononuclear phagocyte

Abbreviations: GFAP, glial fibrillary acidic protein; GSH, glutathione; GSSG, oxidized glutathione; IκB, inhibitory kappa B;
MP, mononuclear phagocyte; NAc, nucleus accumbens; NF-κB, nuclear factor kappa B; ROS, reactive oxygen species; VTA,
ventral tegmental area.
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Introduction

Cocaine effects have been widely studied in neural areas
traditionally related with drug addiction e.g., frontal cortex, NAc,
and VTA among others. Cerebellum has been typically involved
in functions related to motor control, from balance to fine motor
tuning. However, some studies indicate that cerebellum could be
involved in higher cognitive processes (Ramnani, 2006; Izawa
et al., 2012). Even more, there are evidences supporting the
idea that cerebellum is also involved with cocaine addiction
(Anderson et al., 2006; Sim et al., 2007; Vazquez-Sanroman et al.,
2015).

Much of the interest in the role of the cerebellum in cognition
is based on the presence of anatomical pathways connecting the
cerebellum and dorsolateral prefrontal cortex (Middleton and
Strick, 1994). In addition, cerebellar lesions lead to behavioral
changes characterized by executive function impairments such
as motor planning, verbal fluency, and changes in personality
among others. Moreover, it has been suggested that some of
these changes implicate altered functional connections between
cerebellum and prefrontal, posterior parietal, temporal, and
limbic cortices (Jiménez-Rivera et al., 2000).

Recent studies indicate that cocaine exposure promotes
molecular and structural cerebellar alterations (Palomino et al.,
2014; Moreno-López et al., 2015) and fitting with this, some
neuroimaging studies show how cocaine alters cerebellar
functions (Anderson et al., 2006; Sim et al., 2007).

There is a growing body of evidence implicating oxidative
stress in the pathogenesis and development of addiction to
cocaine and other substances (Uys et al., 2011; Sordi et al.,
2014). Despite oxygen is essential for aerobic life, and particularly
central nervous system exhibits the highest oxygen consumption
rate (20% from total O2), excessive amounts of ROS derived
from cell activity can result deleterious for cells. As other
addictive substances, cocaine promotes oxidative stress in specific
areas closely implicated in the circuitry of addiction such as
NAc, frontal cortex, and hippocampus (Dietrich et al., 2005;
Muriach et al., 2010; Jang et al., 2014). Surprisingly there is
no literature about how cocaine modulates oxidative stress in
cerebellum.

As occurs during inflammatory processes, ROS recruit
inflammatory responses and microglia/macrophage, referred as
MP, represents one of the most relevant actors during this
process (Aguzzi et al., 2013). During pathological processes, MP
releases cytokines, trophic factors, and even ROS (Krasnova
and Cadet, 2009), and as reviewed by McNally et al. (2008)
these pro-inflammatory factors, such as ROS and cytokines,
impair astrocytic glutamate reuptake, resulting neurotoxic for
cells. Stressing this hypothesis, cocaine exposure leads to up-
regulation of pro-inflammatory mediators such as cytokines and
chemokines, or astroglia/microglia activation (Renthal et al.,
2009; Piechota et al., 2010; Blanco-Calvo et al., 2014).

In addition, one of the most relevant roles of MP is that
related to phagocytosis of pathogens, degenerating cells and
debris (Schafer et al., 2013). Apart from this defense rol, resident
microglia is also involved in other physiological processes such as
neuronal activity modulation, synaptic regulation, learning, and

memory (Wake et al., 2009; Tremblay et al., 2011; Pascual et al.,
2012; Blank and Prinz, 2013). Microglia has been also implicated
in the development of cocaine addiction (Del Olmo et al., 2007;
Porter et al., 2011). Despite of there are controversial results
about MP activation during cocaine exposure (Little et al., 2009;
Narendran et al., 2014), psychostimulant drugs activate specific
components of the response, following both acute and chronic
psychostimulant exposure (Yamamoto et al., 2010). Several
researchers state that methamphetamine induces microglial
activation in the brain (Thomas et al., 2004). Moreover, reactive
microgliosis (estimated as microglia/macrophage activation) has
been detected in several brain regions of methamphetamine
addicts even after years of abstinence (Sekine et al., 2008). On
this line, some reports indicate that cerebellar MP activation
induced by cannabis or ethanol could be associated to cerebellar
impairments (Cutando et al., 2013; Drew et al., 2015). These
alterations fit with the proposed implication of cerebellum in the
development of addictive-related behaviors.

Nuclear factor kappa B is a central mediator of human
immune response (Pahl, 1999), and acts as sensor of oxidative
stress situations (Schreck et al., 1992). In addition, NF-κB-DNA
binding activity and transcription are regulated by various forms
of synaptic activity (Albensi and Mattson, 2000; Freudenthal
et al., 2004). In fact, O’Riordan et al. (2006) provide evidence
suggesting that hippocampal NF-κB is activated by metabotropic
glutamate receptors and Willard and Koochekpour (2013)
proposed that NF-κB-mediated glutamate signaling plays a role
in many neuronal processes where synaptic remodeling and
plasticity are critical, e.g., learning and memory. Moreover,
activation of group II mGluRs by glutamate promotes TNF
release and neurotoxicity by activating NF-κB signaling (Lee,
2013).

Nuclear factor kappa B has been proposed as target of drugs
such as ethanol or cocaine. Thus, increased NF-κB activity in
the NAc after cocaine exposure has been demonstrated (Ang
et al., 2001; Russo et al., 2009). Furthermore, ethanol exposure
induces NF-κB activity in the mouse brain, which in turn, induces
the transcription of pro-inflammatory immune genes, increasing
expression of cytokines, proteases, and oxidases (Qin et al., 2008;
Mayfield et al., 2013).

So, after considering that cocaine increases oxidative stress in
several brain areas and the relevant role of NF-κB in oxidative
stress, inflammation, and addiction. This report is addressed to
investigate the oxidative cerebellar-related misbalance induced
by cocaine giving more support to the emerging hypothesis that
implicates cerebellum in addiction.

Materials and Methods

Experimental Design
Male Wistar rats weighing 300 g (Charles River Laboratories SA,
Barcelona, Spain) were used for the experiment (n = 20). Rats
were individually caged and maintained in a 12 h light/dark cycle
with controlled temperature (20–25◦C) and relative humidity
(60%). Animals had access to food and water ad libitum. All
the experimental procedures were carried out according to the
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European Union regulation (order 86/608/CEE) and approved by
the committee on animal care of the UCH-CEU with reference
number 11/022.

The experiment lasted 18 days. In this period, the animals were
separated into two groups, control and cocaine. Cocaine was daily
administered by intraperitoneal injection at a dose of 15 mg/Kg
in saline, and control animals received same saline volume (0.9%)
in the intraperitoneal cavity.

Rats were sacrificed on the last day by cervical dislocation
(previously anesthetized with pentobarbital). Brains were
removed and cerebellum was dissected and divided into two
parts. One part was used to measure oxidative stress markers and
glutamate concentration. Samples used to analyze the oxidative
stress were homogenized in 0.1 M PB (HK2O4P 0.1 M; H2KO4P
0.1 M) pH 7.0 at 4◦C.

Homogenates were centrifuged at 6,000 rpm 2 min and
the supernatant was stored at −20◦C until used for protein
determination and glutathione peroxidase (GPx) enzyme activity.
In the case of GSH, GSSG, and glutamate, immediately after
centrifugation, the supernatant was acidified with 20% of
perchloric acid (Panreac, Spain) and stored at –20◦C until the
determination of these parameters.

Protein content was measured by means of the Lowry method
(Lowry et al., 1951) to allow expression of the biochemical results
taken into account the protein content of each sample.

Samples for western blot analysis and NF-κB activity. Nuclear
fraction was separated from cytoplasmic fraction using the
following protocol. Cerebellar tissue was homogenized on
working solution A (Hepes 10 mM, KCl 5 mM, EDTA 0.1 mM,
EGTA 0.1 mM, Ditiotreitol 100 mM, IGEPAL 0.05%, Complete
1x, NaF 10 mM, Na3V04 200 mM). The samples were centrifuged
at 850g for 10 min at 4◦C. The supernatant was separated from
the pellet and stored. 400 μl of working solution A were mixed,
incubated 15 min at 4◦C and centrifuged at 10,000g for 30 s
at 4◦C. The supernatant was collected and stored (cytoplasmic
fraction). Hundred and fifty microliter of the working solution
C were added to the remaining pellet (Hepes 20 mM, NaCl
0.4 M, EDTA 1 mM, EGTA 1 mM, Ditiotreitol 100 mM,
Complete 1x, NaF 10 mM, Na3V04 200 mM) and incubated
again 15 min at 4◦C. The sample was centrifuged at 10,000g for
5 min at 4◦C. The collected supernatant was the nuclear fraction.
Both cytoplasmic (used for western blot analysis) and nuclear
fractions (used to measure NF-κB activity) were stored at −20
for later use.

Animals assigned for immunohistochemical procedures were
perfused with saline followed by 4% paraformaldehyde solution
in 0.1 M phosphate buffer (PB), pH 7.4. Brains were post-fixed
in paraformaldehyde solution for 24 h and then placed in a 30%
sucrose solution for 24 h. Thirty micrometer thick sections were
obtained using cryostat.

Oxidative Stress
Reduced GSH, GSSG, and glutamate concentrations were
quantified following the method of Reed et al. (1980), based in
the reaction of iodoacetic acid with the thiol groups followed by
a chromophore derivatization of the amino groups with Sanger
reactant (1-fluoro-2,4-dinitrobencene), giving rise to derivates

which are quickly separated bymeans of high-performance liquid
chromatography (HPLC).

Glutathione peroxidase activity, which catalyzes the oxidation
by H2O2 of GSH to its disulfide (GSSG), was assayed
spectrophotometrically as reported by Lawrence et al. (1978)
toward hydrogen peroxide, by monitoring the oxidation of
NADPH at 340 nm. The reaction mixture consisted of
240 mU/mL of GSH disulfide reductase, 1 mM GSH, 0.15 mM
NADPH in 0.1M potassium phosphate buffer, pH 7.0, containing
1 mM EDTA and 1 mM sodium azide; a 50 μL sample was
added to this mixture and allowed to equilibrate at 37◦C
for 3 min. Reaction was started by the addition of hydrogen
peroxide to adjust the final volume of the assay mixture to
1 mL.

Western Blot Analysis
Samples were resolved on 10% SDS polyacrylamide gels
and transferred to nitrocellulose membrane. Membranes were
blocked in 5% skim milk in T-TBS buffer and 0.1% Tween
20, for 1 h and were incubated thereafter with the primary
antibody overnight at 4◦C. Primary antibodies used were ED1 (a
lysosomal protein which is overexpressed during inflammatory
challenge, and is used as a marker to confirm microglial
activation), peroxidase β-Actin (Sigma–Aldrich, Alcobendas,
Spain) caspase 3 (a pro-apoptotic protein; Cell Signaling,
Barcelona, Spain) and GFAP one of the major intermediate
filament proteins of mature astrocytes (Dako, Denmark).
Peroxidase-coupled secondary antibodies were used for primary
antibody detection by incubating membranes 1 h at room
temperature. (anti-mouse Thermo Fisher Scientific, Madrid,
Spain; anti-rabbit, Santa Cruz, California, EEUU) Finally, the
signal was detected with ECL developing kit (Amersham
Biosciences, UK). Blots were quantified by densitometry using
Quantity One software and the results were represented in
density units.

Ba/F3 cells (murine interleukin-3 dependent pro-B cell line)
were used as positive control for caspase-3 activation.

CD68 (ED1) Immunohistochemistry
Cerebellar CD68 expression was examined by
immunohistochemistry. Sections were rinsed with 0.01M
PBS, pH 7.0 and blocked with 30% H2O2 for 20 min followed
by incubation overnight with a primary rabbit anti-CD68 (ED1)
(Abcam, Cambridge, UK; dilution 1:500 in PBS with 0.3% Triton
X-100 and 5% normal goat serum). Sections were rinsed in
PBS and incubated at room temperature shaking for 1 h in
0.4% biotinylated anti-rabbit IgG. Finally, sections were rinsed
and re-incubated with avidin-biotin complex and reaction was
developed with DAB.

Images were captured with a CCD camera (Coolsnap FX
Color; Roper Scientific).

Nuclear Factor Kappa B Activity
To determine NF-κB activity in the nuclear fraction, an ELISA-
based kit to detect and quantify transcription factor activation
was used, TransAM NF-κB (Active Motif, Rixensart, Belgium).
Results were represented as arbitrary units.
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Terminal Deoxynucleotidyl Transferase
Biotin-dUTP Nick end Labeling
Transferase biotin-dUTP nick end labelling (TUNEL)
assay was performed by an in situ cell death detection kit
(Roche Diagnostics, Mannheim, Germany), according to the
manufacturer’s instructions. DNAase reaction was used for
positive control labeling.

Statistical Analysis
Results are presented as mean values± SE. Statistical significance
was assessed by Students t-test. The level of significance was set at
p < 0.05.

Results

Antioxidant Defenses are Decreased in the
Cerebellum After 18 days of Cocaine
Administration in Rats
Cerebellar homogenates were processed for HPLC
determination. Cerebellar GSH levels remained unaltered
(data not shown) whereas GSSG levels presented a statistically
significant increase compare to control GSSG levels (Figure 1A).
Interestingly, the GSH/GSSG ratio was statistically significant
lower in cerebella from cocaine treated animals compared to
control animals (Figure 1B). GPx is the enzyme that converts
GSH to GSSG by reducing hydrogen peroxide (H2O2) to water.
Cocaine treated group presented statistically significant lower
cerebellar levels of GPx than control groups (Figure 1C).

Astrocytic and Microglial/Macrophage
Response
ED1 antigen or CD68 is a lysosomal protein expressed during
inflammatory processes by both microglia and macrophages.
Cerebellar CD68 expression was determined by western blot. As
shown in Figure 2A, ED1 expression was statistically significant
increased in cocaine treated rats when compared to control
group.

Fitting with this result, ED1-IHC technique shows almost
unappreciable rounded ED1 positive cells sparse and randomly
located in the cerebellar cortex of control animals. However,
cerebella from cocaine treated animals presentmore and rounded
ED1 positive cells with evident perivascular location (Figure 2B).

In order to investigate the possibility of a pro-inflammatory
response, glial fibrilary acidic protein (GFAP) was analyzed
by western blot. This astrocytic protein is over expressed
under inflammatory-related responses. Surprisingly no GFAP
differences could be set between groups (Figure 2C).

Glutamate Concentration
Total glutamate (extra-cellular + intra-cellular) was measured
by HPLC from cerebellar homogenates. As shown in Figure 3,
18 days of cocaine administration induced a statistically
significant increase on cerebellar glutamate concentration
compared to control rats.

Nuclear Factor Kappa B Activity
Cytoplasmic IκB factor inhibits NF-κB. NF-κB inducing stimuli
activate the IκB kinase complex that phosphorylates IκB. IκB
degradation exposes the NF-κB DNA-binding domain allowing
its nuclear translocation regulating NF-κB target genes.

NF-κB activity from the nuclear fraction was statistically
significant increased in cerebella of cocaine treated rats when
compared to control rats (Figure 4).

Apoptotic Cell Death: Caspase 3 Expression
and TUNEL
No signal of pro-apoptotic protein caspase-3 was observed in
cerebellum after 18 days of cocaine exposure (Figure 5A).

FIGURE 1 | Effect of cocaine administration on cerebellar antioxidant
defenses. (A) GSSG concentration (nmol/mg prot) ∗p < 0.05 vs. control
group. (B) GSH/GSSG ratio ∗p < 0.05 vs. control group. (C) GPx activity
(nmol/mg.min) ∗p < 0.05 vs. control group.
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FIGURE 2 | ED1 (68 kDa) and β-Actin (42 kDa) western blot dots
in rat cerebellum. Representation of ED1 (density units) in cerebellum
showing a significant ED1 increase in cerebellar samples of
cocaine-treated rats (∗p < 0.05 vs. control group; A). ED1
immunohistochemistry from control and cocaine-treated cerebellar
samples. Little or null ED1 positive cells can be observed in control

samples, whereas noticeable ED1 positive cells can be found around
cerebellar vessels (B). GFAP (50 kDa) and β-Actin (42 kDa) western blot
dots in control and cocaine-treated cerebellar samples, with GFAP
representation (as density units). No differences can be set between
control and cocaine-treated rats suggesting a lack of astrocytic response
after cocaine exposure (C).

However, because caspase-3 is activated after its cleavage, TUNEL
determination was conducted in cerebellar samples in order to
find apoptotic cell death. As observed in TUNEL positive control
sample (DNAase reaction) profuse TUNEL positive labeled cells
can be found. Little or null TNEL positive labeling could be
demonstrated in control or cocaine treated groups (Figure 5B).

Discussion

Mononuclear Phagocyte Activation and
Glutamate Concentration
Mononuclear phagocyte activation has been related with
psychiatric diseases (Holstege et al., 2008; Chen et al., 2010).

Addiction is included as a mental disorder and therefore
several studies are currently focusing on the structural and
molecular CNS alterations during drug consumption and
addiction. In this sense, large evidence indicates that different
drugs from ethanol to psychostimulants (e.g., cocaine) promote
microglial activation (Thomas et al., 2004; Little et al.,
2009; Yamamoto et al., 2010; Raineri et al., 2012; Cutando
et al., 2013; Drew et al., 2015). It is well documented that
cocaine exposure affects microglia (Hayashi and Su, 2003), up-
regulating pro-inflammatory mediators such as cytokines with
astroglia/microglia activation (Renthal et al., 2009; Piechota et al.,
2010; Blanco-Calvo et al., 2014).

Cocaine challenge resulted in a marked increase of cerebellar
ED1. Fitting with this, ED1 is overexpressed during inflammatory
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FIGURE 3 | Microglial-macrophage activation is closely related to
extracellular glutamate over-drive. HPLC cerebellar glutamate levels
(nmol/mg of total protein) in control and cocaine-treated rats. Total cerebellar
glutamate levels are increased after cocaine administration. (∗p < 0.05 vs.
control group).

FIGURE 4 | Nuclear factor kappa B is a redox-sensitive nuclear factor
involved in the control of immune-inflammatory responses. Cerebellar
NF-κB activity assay (arbitrary units) from control and cocaine- treated animals
(18 days) showing a significant increase of NF-κB activity in cocaine-treated
rats (∗p < 0.05 vs. control group).

challenge, and it is used as marker to confirm MP activation
(Graeber et al., 1990). Furthermore, ED1 seems to correlate
with the capacity of postnatal microglia to engulf synapses
(Schafer et al., 2013). After consider the typical phagocytic role
of microglia during inflammation-related processes and the role
of microglia in remodeling neural contacts during learning and
memory processes (Felger and Miller, 2012; Blank and Prinz,
2013), it seems plausible that cocaine-induced cerebellar MP
activation might be related to these aforementioned cerebellar
changes after cocaine exposure.

Fitting with the increased cerebellar glutamate levels found,
cerebellar glutamatergic activation has been also described after
cocaine exposure (McFarland et al., 2003; Palomino et al., 2014).
Although synaptic glutamate results of high interest for addiction

and learning-memory processes, the present report focus
attention on extra-synaptic glutamate, in view of its relevance on
inflammation and its implication with mental disorders (Müller
and Schwarz, 2007). In this sense, MP activation is closely related
to extracellular glutamate over-drive leading to neurotoxicity
and neural remodeling. So, the finding of increased cerebellar
glutamate levels fits with CD68 over expression and lends support
to previous reports on cocaine-related cerebellar alterations in
overt behavior and cognition (Jiménez-Rivera et al., 2000). One
relevant observation is that related to cerebellar function after
cocaine exposure. As previously reported, no differences could
be found on targeting-directionality in the Morris water maze
test after the same cocaine challenge (Muriach et al., 2010). So
there are not evidences of cocaine-related cerebellar alterations
after this experimental paradigm in terms of motor-related
functions.

Antioxidant Defenses and Apoptotic Markers
Some reports indicate redox status misbalance after cocaine
treatment in several brain areas (Dietrich et al., 2005; Muriach
et al., 2010; Uys et al., 2011). Interestingly and as novelty,
this is the first report showing cerebellar oxidative alterations
after cocaine challenge. It is well known that oxidative stress
causes cellular damage and eventually cell death (Calabrese
et al., 2007). Because caspase-3 levels were undetectable after
cocaine challenge and caspase-3 is active after its cleavage,
TUNEL assay was developed. The lack of TUNEL labeling
indicates a lack of apoptotic cell death, suggesting that apoptosis
is not promoted after cocaine exposure in cerebellum. Fitting
with this, other reports show the absence of apoptosis after
cocaine exposure in brain (Dominguez-Escriba et al., 2006;
Muriach et al., 2010). Controversially, some reports indicate that
cocaine exposure induces apoptosis in different tissues (Cerretani
et al., 2012; Blanco-Calvo et al., 2014). The discussion about
what dose or duration can promote cell death (apoptotic or
not) is so far from the goal of this work and probably the
aforementioned differences could be explained depending on the
tissue, cocaine concentration/duration, animalmodel, etc. In fact,
diverse published data are conducted with different cocaine doses
and duration. For this work, cocaine dose and duration was
chosen from previous published works (Ishikawa et al., 2009;
Schroeder et al., 2009; Muriach et al., 2010).

Dopamine auto-oxidation (Numa et al., 2008) has been
typically accepted as cocaine-induced ROS source. However,
dopamine is not the main neurotransmitter in cerebellum,
particularly present in vermis (Melchitzky and Lewis, 2000).
Therefore, the observed antioxidant defense decrease could be
due to other origins. Cocaine-induced vasoconstriction may
decreases cerebellar blood flow, leading to hypoxia increasing
ROS (Kaufman et al., 1998; Gottschalk and Kosten, 2002; Pae
et al., 2005). Additionally, it has been described that cocaine
increases brain temperature, which is a reliable indicator of
metabolic neural activation (Kiyatkin and Brown, 2004) and
thus, cocaine-enhanced metabolism can increase ROS (Brookes
et al., 2004). Finally and fitting with the results shown herein,
the decrease of antioxidant defenses could be due to MP
activation, since activated microglia and macrophages can
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FIGURE 5 | Caspase-3 (17/19 kDa) and β-Actin (42 kDa) western blot
analysis in cerebellum (A; Ba/F3 cells were used as positive control of
caspase 3 activation). TUNEL assay on cerebellum: +DNA ase reaction (used

as positive control of TUNEL) exhibits profuse TUNEL-positive cell labeling (red
dye). Minimal or null TUNEL-positive labeled cells could be demonstrated in
control or cocaine-treated cerebellar samples (B).

produce ROS after LPS stimulus (Marín-Teva et al., 2004; Di
Penta et al., 2013). In conclusion, despite there are multiple
ways by which cocaine potentially promotes oxidative stress. The
findings shown herein indicate that cocaine-induced cerebellar
MP activation is accompanied by antioxidant defense decay,
suggesting an unusual pro-inflammatory response since GFAP
is unaltered. Future studies must be addressed to resolve this
issue.

NF-κB is Activated After Cocaine Exposure
Nuclear factor kappa B is a redox-sensitive nuclear factor
involved in the control of immune-inflammatory responses,
developmental processes, and apoptosis. NF-κB is a key regulator
of inflammation and secondary injury processes. In fact, several
members of the NF-κB family are considered essential regulators
of cellular activities associated with inflammation/chemokine
production (Ghosh andHayden, 2008). Stimuli such as cytokines,
free radicals, ultraviolet irradiation, bacterial or viral antigens and
glutamate increase NF-κB-DNA binding promoting chemokine-
cytokine gene transcription (Schreck et al., 1992; Meffert and

Baltimore, 2005). Although NF-κB is expressed in many cells,
NF-κB is transcriptionally active primarily in glia (Mao et al.,
2009). Astrocytes, monocytes, and microglia express high levels
of NF-κB under pathological situations, this transcription factor
is the key one involved in induction of innate immune
genes in microglia and other monocyte-like cells (Mattson and
Camandola, 2001; Crews et al., 2011). The lack of GFAP over
expression may suggest that astrocytes are not directly involved
in this NF-κB activation.

Nuclear factor kappa B activation seems to mediate some
processes in cocaine addiction, particularly in the NAc,
hippocampus, or frontal cortex (Ang et al., 2001; Russo et al.,
2009), but nothing is known regarding other brain areas, such as
the cerebellum. Cerebellar cocaine-induced NF-κB activation is
accompanied by a significant decrease of the antioxidant defense
and by increased microglial/macrophage ED1 expression. In line
with this, increased p65 NF-κB activity accompanied by ROS
production and cytokine expression has been also demonstrated
in cocaine-treated microglia (Yao et al., 2010). Moreover, ROS
promotes microglial NF-κB activation (Block et al., 2007).
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Relationship between NF-κB, Glutamate
Concentration and Antioxidant Defenses
It is well known that NMDA receptors activate NF-κB (Lipsky
et al., 2001;Munhoz et al., 2008). Therefore, the increase observed
in NF-κB activity, could be due to the enhanced glutamate
concentration observed after cocaine administration. Moreover,
Barger et al. (2007) reported that the glutamate release from
activated microglia is an indirect consequence of GSH depletion.
Thus, it seems that if cocaine increases cerebellar glutamate
concentration, it could be associated to GSH depletion. On
the other hand, the activation of NMDA and AMPA receptor
subtypes causes the mobilization of free cytosolic calcium, and
the excess of intracellular calcium results in ROS generation
(Carriedo et al., 1998).

Cocaine promotes oxidative cerebellar misbalance with
increased ED1 expression, as estimation of mononuclear
phagocytic activity. In addition, NF-κB activation and increased
glutamate levels strongly suggest a pro-inflammatory process
underlying mechanism after cocaine exposure. Future studies
would be addressed to investigate the role and meaning
of this cocaine-induced cerebellar ED1 over expression
and whether these molecular and cellular modifications

may lead to perpetuate neural circuitries involved in
addiction.
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