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A frequency-dependent decoding
mechanism for axonal length sensing
Paul C. Bressloff * and Bhargav R. Karamched
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We have recently developed a mathematical model of axonal length sensing in which

a system of delay differential equations describe a chemical signaling network. We

showed that chemical oscillations emerge due to delayed negative feedback via a

Hopf bifurcation, resulting in a frequency that is a monotonically decreasing function

of axonal length. In this paper, we explore how frequency-encoding of axonal length

can be decoded by a frequency-modulated gene network. If the protein output were

thresholded, then this could provide a mechanism for axonal length control. We analyze

the robustness of such a mechanism in the presence of intrinsic noise due to finite copy

numbers within the gene network.

Keywords: axonal length control, biochemical oscillations, frequency decoding, gene network, protein thresholds,

intrinsic noise

1. Introduction

Size homeostasis is fundamental to cell biology. The ability of a cell to assess its own size or length
allows for proper regulation of biochemical processes to meet physiological requirements. Several
mechanisms by which cells determine the sizes of subcellular structures have been identified. Some
examples include molecular rulers, quantal synthesis, and dynamic balance (Marshall, 2004). The
roles that such mechanisms play for relatively small cells in sensing size have been delineated, but
it is largely unclear how large cells are able to accomplish this. The problem is particularly acute
for neurons, which, in addition to being large cells, exhibit the most variety in cellular size, ranging
from a micron to a meter in length in humans.

It is likely that different growth mechanisms act as the underlying length sensors for axons
at different stages of development. The initial growth rate of an axon is determined by pre-
programmed transcription factor levels (Lallemend and Ernfors, 2012), whereas the interstitial
growth rates of axons that have connected to their targets are driven by by the stretching of the
organism (Smith, 2009). A central question is whether or not there exists an intrinsic length sensing
mechanism in axons that can coordinate between the output of transcriptional and metabolic
processes controlled by the nucleus and the differential growth and maintenance needs of axons
of different sizes. Theoretical analysis and in vitro experimental studies of axonal growth in a
variety of neuronal types support the existence of intrinsic length sensors (Goslin and Banker, 1989;
Samsonovich and Ascoli, 2006; Brown et al., 2008; O’Toole et al., 2008; Kam et al., 2009), but the
underlyingmechanisms are largely unknown. Initially, it was hypothesized that molecular diffusion
was the fundamental mechanism for sensing length, but given the lengths involved, it is unlikely
that diffusion is the underlying mechanism. A more tenable early hypothesis for a length sensor in
axons involved the use of molecular rulers. This idea certainly solves the problem of a mechanism
accounting for large amounts of growth in relatively small amounts of time; however, the sheer
variability in the lengths of axons renders a molecular ruler based length sensing mechanism
unfeasible.
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Recently, a mechanism for axonal length sensing based on
bidirectional motor transport was proposed by Rishal et al.
(2012), which is distinct from the aforementioned mechanisms.
A schematic illustration of the motor-based model is shown in
Figure 1. A signal is produced at the cell body and is subsequently
carried by kinesin motors to the tip of the growing axon,
where it activates the production of another chemical signal. The
latter is transported by dynein motors back to the cell body,
where it inhibits the production of the original chemical signal
via negative feedback. Once the axon grows past some critical
length, the amount of inhibitory chemical signal located at the
cell body begins to oscillate with a frequency that decreases
as axonal length increases. If axonal growth is correlated with
this frequency, then spatial information regarding length of the
axon can be communicated to the cell body, where frequency-
dependent activation of transcription factors could regulate
axonal growth (Cai et al., 2008). Computer simulations of
this mechanism provided results that are consistent with what
was proposed in Rishal et al. (2012). An important prediction
of these simulations is that reducing either anterograde or
retrograde signals by partial knockdown of kinesin or dynein
motor activity should increase axonal length. This prediction has
been confirmed experimentally in peripheral sensory neurons
(Rishal et al., 2012). Note that a previous model of Kam et al.
(2009) is inconsistent with the experimental data. The earlier
model assumes that the unidirectional transport of a retrograde
signal by dynein motors maintains axonal growth until the signal
at the cell body becomes too weak due to a constant rate of
signal loss en route. In this case, the partial knockdown of motor
activity would lead to shorter axons. Hence the experimental
results provide circumstantial evidence for frequency-encoded
axonal length.

Such cellular behavior has been shown to exist in the context
of protein production in response to the gonadotropic releasing

FIGURE 1 | Schematic diagram of the bidirectional motor-transport

mechanism for axonal length sensing hypothesized by Rishal et al.

(2012). A kinesin-based anterograde signal activates a dynein-based

retrograde signal that itself represses the anterograde signal via negative

feedback. The frequency of the resulting oscillatory retrograde signal

decreases with axonal growth.

hormone (GnRH), which pulses at various frequencies over time
(Krakauer et al., 2002). Distinct frequencies have been observed
to induce the production of disparate proteins. This phenomenon
was mathematically analyzed in Krakauer et al. (2002). The
results suggest that cellular decoding of frequency-encoded
information is possible due to the difference in time scales for
gene activity and protein lifetime. Even more interestingly, it
has been shown that cells are able to keep protein levels with
less variability in response to a pulsatile signal as opposed to a
constant signal (Tostevin et al., 2012).

We have recently developed a mathematical version of
the computational model given by Rishal et al. (2012),
which provides analytical insights into the proposed dynamical
mechanism underlying the frequency-encoding of axonal length
(Karamched and Bressloff, 2015). The simplest version of the
model consists of a pair of delay-differential equations that keeps
track of the chemical signals at the somatic and distal ends of
the axon. The dynamics of kinesin and dynein motors are not
modeled explicitly; instead, their active transport is assumed
to introduce a discrete delay that varies linearly with axonal
length. We showed how oscillations arise at a critical axonal
length via a Hopf bifurcation, and obtained a length-dependent
frequency consistent with the previous computational model.
In this paper we explore another major aspect of the proposed
axonal length-sensing mechanism, namely, how the frequency-
based information about axonal length could be decoded at
the cell body. As briefly suggested by Rishal et al. (2012), one
possibility is that that the frequency-dependent signal could
modulate the nuclear import of a transcription factor and thus
coordinate the regulation of gene expression. Although the
frequency-dependent modulation of gene expression has been
observed in yeast (Cai et al., 2008), for example, the role of such
a mechanism in axonal length-sensing is currently unknown.
Indeed, there is only indirect evidence for the frequency-
encoding mechanism itself (Rishal et al., 2012). However, this
is precisely a situation where mathematical modeling can play
a role, namely, in exploring the consequences of a hypothesized
model. Indeed, in our previous work we showed that when
the stochastic nature of motor transport is taken into account,
there may be a deterioration in the accuracy of the length-
encoding mechanism in the case of long axons. In this paper
we show that an analogous problem may occur for the length-
decoding mechanism when the intrinsic noise of a gene network
is included.

In order to develop the basic theory, we feed the oscillating
retrograde signal from the delayed feedback model into a
simple feedforward gene network. Following along similar lines
to Krakauer et al. (2002), we show how even a simple gene
network can convert a frequency code to an amplitude code,
resulting in a mean protein output that is a monotonically
decreasing function of axonal length. If the protein output were
thresholded, then this could provide a mechanism for axonal
length control, under the assumption that when the protein
output falls below threshold, this activates or inactivates another
gene circuit that plays a crucial role in axonal growth. Analogous
thresholding mechanisms have been investigated within the
context of intracellular protein concentration gradients, which
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are used to determine spatial position within a cell so that, for
example, cell division occurs at the appropriate time and location
(Tostevin et al., 2007; Tostevin, 2011). Similarly, developmental
morphogen gradients control patterns of gene expression so
that each stage of cell differentiation occurs at the correct
spatial location within an embryo. For biological effectiveness,
these gradient-based mechanisms must be robust to intrinsic
and extrinsic cellular noise (Tostevin, 2011; Howard, 2012).
The main aim of our paper is to demonstrate how the issue
of robustness to noise carries over to the proposed frequency
decoding mechanism and, hence, that it can be analyzed along
similar lines to protein concentration gradients. The structure
of the paper is as follows. In Section 2 we briefly review
our previous delayed-feedback model for the frequency-based
encoding of axonal length and then show how the frequency can
be decoded by a simple feedforward gene network. In Section
3 we consider a stochastic version of the gene network and
estimate the variance in the protein output concentration along
the lines of Tostevin et al. (2012). For completeness, we fill in the
details of the calculations whose results were quoted in Tostevin
et al. (2012). It should also be noted that these authors focused
on comparing the variance in protein output when the input
signal is oscillatory with the corresponding variance for constant
inputs, establishing that the former is smaller. Here we are
interested in the effects of intrinsic noise on frequency decoding
itself.

2. Model

2.1. Delayed Feedback Model of Frequency
Encoding
We begin by briefly reviewing the delayed feedback model
presented in Karamched and Bressloff (2015). Consider an axon
of length L with x = 0 corresponding to the proximal end
(adjacent to the cell body or soma) and x = L corresponding
to the distal end (axonal tip). Let uE(t) represent the anterograde
chemical signal at x = L at time t. This is the excitatory chemical
from the mechanism proposed by Rishal et al. (2012), which is
produced at the proximal end and carried by kinesin motors to
the distal end. Similarly, let uI(t) represent the retrograde signal
at x = 0 at time t, which is transported from the distal end
by dynein motors. We assume the simplest possible model of
active transport, where both types of motors travel at a constant
speed v along the axon. (Elsewhere we explicitly model the
stochastic dynamics of molecular motor transport using a system
of advection-diffusion equations, see Karamched and Bressloff,
2015). This assumption means that for a given axonal length L,
there is a delay τ ≡ L/v between the production of a chemical
signal at one end and its arrival at the opposite end. Finally,
exploiting the fact that axonal growth occurs on a much slower
time scale than that of motor transport, we treat L as fixed and
investigate the occurrence of chemical oscillations for a given
delay. This then determines a relationship between the frequency
of the retrograde signal’s oscillation and axonal length. More
explicitly, the delayed feedback model takes the form Karamched
and Bressloff (2015).

duE

dt
= I0 − γuE −WI f [uI(t − τ )], (1)

duI

dt
= −γuI +WEf [uE(t − τ )], (2)

with γ decay rate. For simplicity, we take γ to be equal for both
chemical signals. The weightsWE andWI represent the strengths
of the positive and negative feedback terms, respectively, based
on some form of Michaelis-Menten kinetics. The function f can
therefore be anymonotonically increasing function that saturates
to some finite value at infinity. For concreteness, we take f to be
a Hill function

f [u] =
un

Kn + un
, (3)

with dissociation constant K and Hill coefficient n. The input
I0 represents the constant rate at which the proximal chemical
signal is produced in the absence of any negative feedback (WI =
0). In Karamched and Bressloff (2015) we took n = 4 and fixed
the scale of the weights WE,WI and input I0 by setting K = 2.
In order to coincide with the results of Rishal et al. (2012) we
also set γ−1 = 100 sec. Since motor velocities are of order 1µm/s,
it follows that setting τγ = 1 corresponds to an axonal length
of 100µm. (In the following we fix the units of time by setting
γ = 1).

In Karamched and Bressloff (2015) we carried out a linear
stability analysis of Equations (1) and (2) and derived the
following Hopf bifurcation conditions (Karamched and Bressloff,
2015):

ω = cot (ωτ ),
√

αEαI sin (ωτ ) = 1, (4)

where ω denotes the frequency of the periodic solution and
αP ≡ WPf

′[u∗P] for P = E, I and u∗P the steady state of the
corresponding chemical signal. We immediately notice two facts
from Equation (4). First, if τ = 0, then the bifurcation conditions
cannot be satisfied, suggesting that there exists a critical delay
τc past which Equations (1) and (2) have periodic solutions.
This corresponds with the existence of some critical axonal
length Lc past which signals will oscillate. Second, the bifurcation
conditions can only be satisfied if

√
αEαI > 1. It follows that

the feedback strengths WP must be sufficiently large and/or the
Hill function must be sufficiently steep. The latter implies that
oscillations are facilitated if the chemical signal interactions are
cooperative in nature, as reflected by the value of n in the delayed
feedback model. The existence of the Hopf bifurcation point does
not in itself guarantee the onset of stable limit cycles for τ > τc.
However, this can be verified numerically, and one finds that
the frequency of the oscillation beyond the bifurcation point is
a monotonically decreasing function of L, see Figure 2.

In conclusion, the above delayed feedback model makes
explicit the role of negative feedback in the frequency
encoding mechanism for axonal length sensing. (The same basic
mechanism also holds for our more detailed advection-diffusion
model, Karamched and Bressloff, 2015). We now turn to a
possible mechanism for decoding the frequency of the oscillatory
retrograde signal, and thus recovering the axonal length. To that
end, we will feed the retrograde signal from our model into a
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FIGURE 2 | Frequency of periodic solutions plotted against

axonal length. [Plot was obtained by looking at the power

spectrum of the retrograde signal and taking the frequency of the

signal to be where the sharp peak of the spectrum occurred.] Insets

show time series plots at specific values of the delay generated

using the dde23 program in MATLAB: (A) τ = 1, (B) τ = 2, (C)

τ = 10. Other parameter values are n = 4, I0 = 10, WE = WI = 9.5

such that τc ≈ 1.5.

simple gene network with a feedforward network topology. Note
that from this perspective, the details of the particularmechanism
for generating the oscillatory signal are not important, so we will
focus on the simple delayed feedback model given by Equations
(1) and (2).

2.2. Frequency Decoding by a Feedforward Gene
Network
Suppose that the oscillating retrograde signal from the delayed
feedback model triggers a signaling cascade via the action of
certain kinases that ultimately leads to the translocation of a
transcription factor into the nucleus of a given neuron and causes
the rapid activation of some gene and subsequent production of
some protein C

uI(t) −→ phosphorylation and translocation

fast
−−→ Active Gene

fast
−−→ C

λ−→ ∅

with λ decay rate. This motivates the following model for the
dynamics of protein C (Krakauer et al., 2002):

dc

dt
= h[uI(t)]− λc, (5)

where c denotes the concentration of protein C and h[u] is a
monotonically increasing function satisfying h → h∗ ∈ (0,∞) as
u → ∞. This is introduced to reflect the fact that the retrograde

signal does not directly activate the gene. Define g(t) ≡ h[u(t)].
Then g is T-periodic, where T is the period of uI(t). Following
Krakauer et al. (2002), we obtain the time-dependent solution for
c(t) and show that this simple feedforward network can act as a
frequency decoder. Introduce the integrating factor eλt . Then,

d

dt
(eλtc(t)) = g(t)eλt

⇒ c(t) = c(t0)e
−λ(t−t0) +

∫ t

t0

g(s)e−λ(t−s)ds.

We integrate over a period of uI(t) so that, form ∈ N,

c((m+ 1)T) = c(mT)e−λT +
∫ (m+ 1)T

mT
g(s)e−λ((m+1)T−s)ds

= c(mT)e−λT + e−λT

∫ T

0
g(s)eλsds. (6)

Equation (6) gives a recursive finite difference equation for c at
integer multiples of the period of uI(t). For largem, we thus have

c(mT) =
e−λT

1− e−λT

∫ T

0
g(s)eλsds. (7)

Hence, c(t) converges to a T-periodic solution following any
transient dynamics, as shown in Figure 3. More significantly,

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 July 2015 | Volume 9 | Article 281

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Cellular_Neuroscience/archive


Bressloff and Karamched Model of axonal length-sensing

there is now a strong DC component to the signal so that the
relative amplitude of the oscillatory part has been suppressed.
Indeed it is possible to find parameter values for which c(t) ≈ c̄,
where c̄ is the time-averaged protein output (Krakauer et al.,
2002). Therefore, in order to characterize the protein output in
terms of the frequency ω of uI(t), we find the time average of c(t)
post transience. This can be done by simply integrating Equation
(5) over a period of uI(t):

c̄ =
1

λT

∫ T

0
g(s)ds ≡

ḡ

λ
. (8)

Equation (8) is an intuitive result. It says that the average protein
output from the feedforward serial network is equal to the ratio
of the average protein activation rate to the protein decay rate.

To make the relationship between c̄ and T more explicit, we
perform the following. Assume that in the post-transient time
regime, the maximum value of uI(t) is given by UM and that
the minimum value is given by Um, and that the uI transitions
from UM to Um occur very quickly compared to other temporal
dynamics. Further assume that h[u] is a Hill function with a
large Hill coefficient, so that h[UM] = A and that h[Um] ≈ 0.
Let η < T denote the amount of time for which uI(t) is at its
maximum value in a given period, η = κT for 0 < κ < 1. Then,
ḡ ≈ Aη/T and

c̄ ≈
Aη

λT
. (9)

Note that the assumptions made regarding uI(t) are consistent
with the behavior of the retrograde signal for sufficiently long
delays (see Figure 2).

Equation (9) suggests that if the protein decay rate λ, the rate
of protein activation A, and the pulse-width η are constant, then
the mean protein output c̄ is a monotonically decreasing function
of the period T of the pulsatile retrograde signal. In the context of
the delayed feedback model, this means that c̄ is a monotonically
decreasing function of axonal length L. Although the analytical
representation of c̄ was obtained by making assumptions that

simplified the analysis of Equation (5), and the pulse-width η

is not fixed (see Figure 2), one still finds numerically that c̄
decreases monotonically with L, see Figure 4. (As shown by
Krakauer et al. (2002), it is also possible to modify the simple
gene network so that the protein output becomes independent
of pulse width). Note that if UM is sufficiently large, then A ≈ h∗

due to the saturating nature of h. What is more, changing the
value of UM will not alter c̄ significantly unless it is reduced by
a considerable amount. Thus, the mean protein output of the
system is relatively insensitive to the amplitude of the input signal
and responds only to the frequency of the input signal, making
the feed forward serial network a plausible means by which a
neuron can decode the oscillating retrograde signal from the
delayed feedback model.

FIGURE 4 | Relationship of the mean protein output c̄ and axonal

length L, obtained by time averaging the solution to Equation (5) for

several values of τ . Function definitions and parameter values are as in

Figures 2, 4. The existence of a threshold protein output c0 could provide a

mechanism for determining a critical length L0.

FIGURE 3 | Simulation of the feed forward serial network Equation (5)

in response to a retrograde signal from Equation (2). (A) Retrograde

signal being fed into gene network, τ = 5. (B) Convergence of the solutions

of Equation (5) to a T-periodic solution post transience. h[u] is taken to be

the same function as f[u] defined in Equation (3) multiplied by a factor of

1000, and we set λ = 0.01. Other parameter values are as in Figure 2.
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The monotonic relationship between c̄ and L suggests that
the underlying intrinsic axonal length sensor could be based
on a threshold protein value. That is, suppose that a given
neuron is pre-programmed to grow until the mean protein
output reaches some threshold value, c0, see Figure 4. Based on
the mean protein output, the neuron would be able to sense
its critical length L0 and stop growing, for example. Analogous
thresholding mechanisms have been investigated within the
context of intracellular protein concentration gradients, which
are used to determine spatial position within a cell so that, for
example, cell division occurs at the appropriate time and location
(Tostevin et al., 2007; Tostevin, 2011). Similarly, developmental
morphogen gradients control patterns of gene expression so that
each stage of cell differentiation occurs at the correct spatial
location within an embryo. For biological effectiveness, these
gradient-based mechanisms must be robust to intrinsic and
extrinsic cellular noise (Tostevin, 2011; Howard, 2012). The issue
of robustness to noise carries over to the proposed axonal-length
sensing mechanism, and can be analyzed along similar lines to
protein concentration gradients. Therefore, we now investigate
the impact of intrinsic noise in a gene network arising from finite
copy numbers on the shape of the deterministic c̄ vs. L curve.

3. Effects of Intrinsic Noise on Axonal
Length Sensing

3.1. Stochastic Gene Network
In order to investigate the effects of intrinsic noise, we consider an
extended version of the network analyzed in Section 2.2 in which
we explicitly include the dynamics of gene activation. Suppose
that a gene promoter has two states: an inactive state Q and an
active state Q∗. In the active state, the gene produces the protein
C at a rate of µ, and the protein subsequently decays at a rate λ.
The promoter is activated in response to the pulsatile retrograde
signal uI(t) and deactivates at a constant rate of β , see Figure 5:

Q
uI (t)−−⇀↽−−

β
Q∗ µ−→ C

λ−→ ∅. (10)

Suppose there are N total gene promoters, each of which can
exist in an active state or an inactive state. If N is sufficiently

large, then the effects of intrinsic noise are negligible and one can
represent the deterministic dynamics using kinetic equations. Let
x(t) and c(t) denote, respectively, the fraction of active genes and
the concentration of proteins (number of proteins per gene) at
time t. Then

dx

dt
= s(t)(1− x)− βx,

dc

dt
= µx(t)− λc(t), (11)

where s(t) is the input to the gene network, which is taken to be
the concentration of promoters. The latter is itself controlled by
the oscillatory retrograde signal uI(t) coming from the delayed
feedback model. As in the previous model, we will take s(t) =
h[uI(t)]. Assume without loss of generality that x(0) = 0, so that
the solution for x(t) takes the form

x(t) =
∫ t

0
s(z)exp

(

β(z − t)+
∫ z

t
s(ξ )dξ

)

dz. (12)

We would like to calculate the time-averaged level of active genes
in the large-time limit. In order to simplify our calculations, we
proceed as in Section 2.2 and take the oscillatory signal s(t) to
consist of square pulses of unit height, width η and period T.
Setting t = MT, positive integerM, we can break up the integrals
on the right-hand side of Equation (12) into a sum of integrals
evaluated over a single period:

x(MT) =
M− 1
∑

n= 0

∫ (n+1)T

nT
s(z)exp

(

β(z −MT)+
∫ z

MT
s(ξ )dξ

)

dz

=
1

β + 1

[

exp
(

(β + 1)η
)

− 1
]

(

exp(−βMT −Mη)− 1)

1− exp(βT + η)

)

.

The second line comes from evaluating the various integrals and
summing the resulting geometric series. Taking the limit M →
∞ shows that x(MT) → Ŵ with

Ŵ ≡
1

β + 1

[

1− exp
(

(β + 1)η
)] 1

1− exp(βT + η)
.

For t ∈ [0, η], we have x(t) = x0(t) with

dx0

dt
= 1−(1+β)x0 ⇒ x0(t) =

1

1+ β

(

1−e−(β+1)t
)

+Ŵe−(β+1)t,

FIGURE 5 | A gene promoter driven by the oscillatory retrograde signal uI(t). Adapted and redrawn from Tostevin et al. (2012).
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whereas for t ∈ (η,T], we have x(t) = x1(t) with

dx1

dt
= −βx1 ⇒ x1(t) = x0(η)e

−β(t−η).

We have imposed continuity of the solution at t = η. Finally, x̄ is
obtained by averaging the resulting periodic function over [0,T].

x̄ =
1

T

[

∫ η

0
x0dt +

∫ T

η

x1dt
]

=
1

β + 1

[ η

T
+

1

Tβ(β + 1)

1− eβ(T−η)

1− eβT+η
(eη(β+1) − 1)

]

. (13)

The formula for x̄ given above can be intuited in the following
way. The fraction η/T corresponds to the fraction of time that s(t)
is “on”. The latter term in the bracketed sum is a correction for
the alterations in the time-scale of the gene promoter reaction to
s(t). When s(t) = 1, the time-scale of the gene promoter response
is given by (β + 1)−1, whereas when s(t) = 0, the time-scale is
given by β−1. Finally, the time-averaged protein output is

c̄ =
µ

λ
x̄.

As in the simpler gene network of Section 2.2, we find that
the time-averaged protein output is a monotonically decreasing
function of T even though the pulse-width η also changes with T
as in Figure 2.

Now suppose that N is sufficiently small so that fluctuations
due to low copy numbers cannot be ignored. In order to calculate
the size of fluctuations, we have to consider the chemical master
equation of the reaction scheme (Equation 10). Let n1 denote the
total number of activated genes and let n2 denote the number
of proteins that are present. Let P ≡ P(n1, n2, t) denote the
probability that at a given time t there are n1 active genes and
n2 proteins available. The master equation is then given by

dP

dt
= s(t)(N − n1 + 1)P(n1 − 1, n2, t)

+β(n1 + 1)P(n1 + 1, n2, t)

+µn1P(n1, n2 − 1, t)+ λ(n2 + 1)P(n1, n2 + 1, t)

− (s(t)(N − n1)+ βn1 + µn1 + λn2)P(n1, n2, t). (14)

The first two terms correspond to the activation or the
deactivation of a gene that results in having n1 active genes and
n2 proteins. The second two terms correspond to the production
or the degradation of a protein that results in having n1 active
genes and n2 proteins. The last terms correspond to the ways that
the system can leave the state of having n1 active genes and n2
proteins. It is difficult to solve the master equation explicitly, so
we carry out a system size expansion with respect to N. That is,
set n1 = Nx, n2 = Nc and rewrite Equation (14) as

dP

dt
= N[s(t)

(

1− x+
1

N

)

P(n1 − 1, n2, t)

+β

(

x+
1

N

)

P(n1 + 1, n2, t)

+µxP(n1, n2 − 1, t)+ λ

(

c+
1

N

)

P(n1, n2 + 1, t)

−(s(t)(1− x)+ βx+ µc+ λc)P(n1, n2, t)].

The master equation is now just a sum of terms of the
form f (n/N)P(n, t), where n ≡ (n1, n2) and f is the
corresponding propensity function. Performing the change of
variables f (n/N)P(n, t) = f (x)p(x, t), where x ≡ (x, c), and
Taylor expanding in powers of N−1 to second order leads to the
Fokker-Planck equation

dp

dt
=−

∂

∂x

(

[s(t)(1− x)− βx]p
)

−
∂

∂c

(

[µx− λc]p
)

+
1

2N

∂2

∂x2

(

[s(t)(1− x)+ βx]p
)

+
1

2N

∂2

∂c2

(

[µx+ λc]p
)

.

In the case of a constant input s(t) = α, the deterministic kinetic
Equation (11) have the unique fixed point solution

x∗ =
α

α + β
, c∗ =

µ

λ
x∗.

In this case, neglecting transients, the Fokker-Planck equation
describes a stochastic process characterized by Gaussian
fluctuation about the fixed point (x∗, c∗). It is then relatively
straightforward to calculate the stationary variance 1c of the
protein output, given the mean 〈c〉 = c∗:

1c =
1

γ

[ µ2αβ

(α + β + λ)(α + β)2
+

αµ

α + β

]

=
µ

λ

α

α + β

[

1+
µβ

(α + β + λ)(α + β)

]

= 〈c〉
[

1+
µβ

(α + β + λ)(α + β)

]

.

The expression for the variance in the case of constant input
consists of an intrinsic Poissonian term due to random protein
production and an extrinsic term due to fluctuations in the gene
promoters themselves. The calculation of the variance in the case
of an oscillatory input s(t) is considerably more involved, even
when it takes the form of square pulses. However, stochastic
simulations show that the protein variance in response to an
oscillatory signal is less than the protein variance in response to a
constant input, assuming that time-averaged means are the same
(Tostevin et al., 2012). Let αeff be the effective constant input for
which the time-averaged and noise-averaged protein output 〈c̄〉
can be written as

〈c̄〉 =
µ

λ

αeff

αeff + β
. (15)

It follows that for an oscillatory input

1c̄ ≤ 〈c̄〉
[

1+
µβ

(αeff + β + λ)(αeff + β)

]

, (16)
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FIGURE 6 | Plot of mean protein output c̄ vs. axonal length L. Results are

based on simulations of the chemical master Equation (14) using the Gillespie

algorithm with input s(t) = h[uI (t)]. Parameter values used to generate

retrograde signal uI (t) are the same as in Figure 2. Other parameter values are

β = 1, µ = 0.1, λ = 0.01, and N = 1000.

where

1c̄(L) = 〈[c̄(L)− 〈c̄(L)〉]2〉.

The dependence of c̄ on axonal length L in the presence
of intrinsic noise is shown in Figure 6. The general inverse
relationship is still prevalent in this situation, but fluctuates due
to the stochasticity in the gene switching.

3.2. Errors in Axonal Length-Sensing
By analogy with the effects of intrinsic noise in protein
concentration gradients (Howard, 2012), the presence of noise
in the protein output leads to an uncertainty 1L in the critical
axonal length L0 at which the threshold c0 is crossed. This
is illustrated schematically in Figure 7. Although the time-
averaged protein output c̄ is still approximately a monotonically
decreasing function of axonal length L on large length-scales,
fluctuations due to intrinsic noise mean that it is non-monotonic
on smaller length scales. It follows that the protein output can
cross threshold several times over small changes in L resulting
in an uncertainty 1L with regards to the critical axonal length.
The uncertainty 1L can be estimated as follows: Suppose that in
the absence of noise c̄(L0) = c0. Denoting the variance in the
concentration due to intrinsic noise by 1c̄(L0), we then have the
approximation

c0 = c̄(L0 + 1L/2)+
1

2

√

1c̄(L0) ≈ c̄(L0)−
1L

2
|c̄′(L0)|

+
1

2

√

1c̄(L0),

which yields the result

1L|〈c̄′(L0)〉| =
√

1c̄(L0)). (17)

FIGURE 7 | Schematic diagram illustrating how the presence of noise

in the protein output leads to an uncertainty 1L in the critical axonal

length L0 at which the threshold is crossed. An analogous result applies

to decoding of protein concentration gradients.

If we ignore the correction factor in Equation (16) and
approximate the stochastic process by a Poisson process, then
1c̄ ≈ c̄ and

1L ∼
√

〈c̄(L0)〉
|〈c̄′(L0)〉|

.

As a further approximation, suppose that 〈c̄(L)〉 ∼ 1/T, where
T is the period of oscillations produced by an axon of length L,
so that |〈c̄′(L)〉| ∼ 1/(L′(T)T2) (using the fact that L increases
monotonically with T and L(T) is the inverse of the function
T(L)). It follows that

1L

L0
∼

T
3/2
0 L′(T0)

L(T0)
,

with T0 the oscillation period at the critical length L0, i.e.,
L(T0) = L0. Assuming that the length L increases at least
linearly with T, we see that the relative error grows with the
critical oscillation period T0 and, hence, the critical axonal length
L0. Although this is a crude estimate, we find that the same
qualitative behavior is observed in numerical simulations of the
full stochastic model. This is shown in Figure 8, where we plot
the relative error 1L/L0 vs. axonal length. Our analysis suggests
that the frequency-encoded protein threshold mechanism could
break down for long axons. An analogous result was shown to
hold in Karamched and Bressloff (2015), where the robustness of
the encoding of axonal length in the frequency of a pulsatile signal
was investigated. There we found that the encoding of axonal
length into frequency became less reliable at long axon lengths
due to accumulation of white noise signified by a high coefficient
of variation in the frequency of the retrograde signal. In this work,
the retrograde signal is deterministic, and the error in protein
output is accounted for strictly by the random variations in the
activities of independent gene promoters. Hence the error in
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FIGURE 8 | Plot of estimated errors in axonal length based on 100

simulations of the chemical master Equation (14) using the Gillespie

algorithm with input s(t) = h[uI(t)]. (A) Plot of uncertainty in axonal length

1L vs. threshold axonal lengths L0. (B) Relative error (1L/L0) vs. axonal

length. Same parameters as Figure 6. L0 was found by averaging over the

mean protein outputs and determining what length that protein value

corresponded to according to the curve shown in Figure 4. 1L was

determined by looking at what axonal length each individual mean protein

output realization corresponded to according to Equation (4) and then finding

the variance in this set of values.

length sensing could be more devastating in real life situations,
since noise would impact both the encoding and the decoding
processes. Thus, wherever the sources of noise may be, their
impact on this frequency-dependent mechanism is clear: large
neurons would have a more difficult time sensing their own
length when compared with smaller neurons.

4. Discussion

In this paper we extended the recent delayed-feedback model of
axonal length-sensing based on the frequency of an oscillating
retrograde signal (Rishal et al., 2012; Karamched and Bressloff,
2015) in order to investigate the issue of frequency decoding. In
particular, we showed that the mean protein output of a simple
feedforward gene network responding to the pulsatile retrograde
signal of the delayed feedback model varies inversely with axonal
length. Specifically, we derived approximate analytical results
which make explicit the inverse relationship, and introduced the
notion that frequency decoding could be done based on a protein
thresholdmechanism.We then investigated the reliability of such
a mechanism subject to intrinsic noise stemming from finite
copy numbers within a gene network by analyzing a chemical
master equation, which describes the random switching of genes
and production of protein. The results of these simulations
suggest that the accuracy in the information the neuron receives
regarding axonal length declines as axonal length itself grows.
The latter could have serious implications for the utility of
this mechanism in the context of axonal injury, where accurate
information regarding the locality of an affliction is necessary
for a neuron to set a regenerative process in motion. Of course,
the noise sensitivity could be a consequence of using a simple
feedforward gene network. Our work shows that there needs to
be some additional processing to increase the robustness to noise,
perhaps by including some form of feedback. Indeed, one can
view our simple gene network as the first stage in a more complex
network that carries out the thresholding of the protein output.

For example, one could consider a mutual repressor model,
which consists of two repressor proteins whose transcription
is mutually regulated, that is, the protein product of one gene
binds to the promoter of the other gene and represses its output
(Gardner et al., 2000). Such a network can act as a bistable switch.
If one of the genes were also driven by the retrograde signal
as outlined in Section 3, then the switch could be activated or
inactivated below a critical frequency. We hope to explore the
effects of noise in this more complex network elsewhere—here
we wanted to separate out the frequency decoding mechanism
from the thresholding mechanism.

There are several other issues we hope to explore in the future.
First, we would like to feed the retrograde signal arising from
a model that more accurately describes motor dynamics into
the feedforward serial gene network. For example, an advection-
diffusion equation could be used to model motor dynamics
(Karamched and Bressloff, 2015), and the aforementioned
chemical signal network could be coupled to these dynamics to
generate a pulsatile retrograde signal. It would be interesting to
take this idea to a higher level and perform a fully stochastic
simulation of motor dynamics, where we allow for binding and
unbinding of motors to microtubular tracks. Such a simulation
would allow us to characterize noise in the system better, and
provide more accurate representations of errors inherent in the
axon length sensing mechanism. Finally, Equation (9) indicates
that mean protein output is sensitive to the frequency of the
incoming pulse signal, but that it is also sensitive to the fraction of
time for which the incoming signal is at its peak value. Hence the
feedforward serial network does not generate a frequency filter in
the strictest sense. We would be interested in seeing the result of
feeding the retrograde signal into a network that allows for more
acute frequency sensitivity.

Finally, we note that an alternative axonal length-sensing
mechanism has been proposed by Roossien et al. (2013).
These authors studied axonal growth in Drosophila neurons. In
particular, they tracked the movement of docked mitochondria
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in order to establish that the physical mechanism of growth
cone advance in Drosophila is similar to vertebrate neurons.
That is, the bulk forward translocation of microtubules along
the axon underlies the advance of the growth cone C-domain.
They also compared the length of axons grown on two different
substrates, either poly-ornithine or Drosophila ExtraCellular
Matrix (DECM). They found that axons grown on the faster
substrate DECM ended up being longer than the other substrate.
The authors suggested that if a length sensor were the sole
regulator of the cessation of elongation, then neurons grown
on poly-ornithine would be expected to sustain elongation for a
longer time than neurons grown on DECM so that they end up
having similar lengths. Since this was not observed, it suggests

that there may be some internal clock that is independent of
axonal length and terminates elongation after a set period of
growth.
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