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Schwann cells (SCs) are constituents of the peripheral nervous system. The
differentiation of SCs in injured peripheral nerves is critical for regeneration after injury.
Methylcobalamin (MeCbl) is a vitamin B12 analog that is necessary for the maintenance
of the peripheral nervous system. In this study, we estimated the effect of MeCbl on
SCs. We showed that MeCbl downregulated the activity of Erk1/2 and promoted the
expression of the myelin basic protein in SCs. In a dorsal root ganglion neuron–SC
coculture system, myelination was promoted by MeCbl. In a focal demyelination rat
model, MeCbl promoted remyelination and motor and sensory functional regeneration.
MeCbl promoted the in vitro differentiation of SCs and in vivo myelination in a rat
demyelination model and may be a novel therapy for several types of nervous disorders.

Keywords: methylcobalamin, peripheral nervous system, myelination, Erk signaling, cAMP, myelin basic protein,
demyelinating disease

Introduction

Schwann cells are glial cells to form myelin in the peripheral nervous system. In SCs the
differentiation process is precisely coordinated and differentiated SCs form a multispiraled
extension of the plasma membrane to allow saltatory conduction (Jessen and Mirsky, 2005).
Peripheral nerve injury may cause an axonal damage that may lead to Wallerian degeneration
around the lesion site. Subsequently, it triggers a cascade including glial cell responses such as
marked SC proliferation. SCs play an important role in the regeneration after peripheral nerve
injury.

Vitamin B12 is crucial to maintain the normal function of the nervous system, and its
deficiency leads to a systemic neuropathy called subacute combined degeneration of the spinal
cord (Scalabrino et al., 1990). Moreover, vitamin B12 deficiency causes severe brain atrophy with
symptoms of retarded myelination in a young child (Lovblad et al., 1997). MeCbl is an active form
of vitamin B12 that is essential to the biochemical metabolism and prerequisite for motor and

Abbreviations: Acly, ATP citrate lyase; db-cAMP, dibutyryl adenosine 3’,5’-cyclic monophosphate; DRG, dorsal root
ganglion; LPC, lysophosphatidylcholine; MAG, myelin associated glycoprotein; MBP, myelin basic protein; MeCbl,
methylcobalamin; NF200, neurofilament 200; P0, myelin protein zero; SCs, Schwann cells; TNF-α, tumor necrosis factor-α.
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sensory functions of the mammalian nervous system (Weir
and Scott, 1995; Izumi and Kaji, 2007). MeCbl is concerned
with the reaction for the transmethylation, which converts
from homocysteine to methionine, and has been shown to
have a stronger affinity for nervous tissues compared with
other analogs (Scalabrino and Peracchi, 2006). We previously
reported that MeCbl is the most effective vitamin B12 analog
for neurite outgrowth in cerebellar granule neurons and DRG
neurons in vitro (Okada et al., 2010), with via the activation
of Akt and the mammalian target of rapamycin (Okada et al.,
2011). MeCbl also promoted nerve regeneration in in vivo
nervous disorder models, such as streptozotocin-diabetic rats
(Sonobe et al., 1988), acrylamide neuropathy rats (Watanabe
et al., 1994), gracile axonal dystrophy mutant mice (Yamazaki
et al., 1994), and sciatic nerve injured rats (Okada et al.,
2010).

Furthermore, MeCbl can accelerate the myelination in the
peripheral nervous system as it promotes the synthesis of lecithin,
which is the chief ingredients of myelin sheath lipids, and
enhances the peripheral nerve regeneration after injury in rats
(Yamatsu et al., 1976; Watanabe et al., 1994; Reyes-Garcia et al.,
2004). However, the precise mechanisms to promote MeCbl-
mediated myelination are currently unknown.

In this study, we demonstrate a novel function of MeCbl,
i.e., the promotion of the in vitro differentiation of SCs and
remyelination in a LPC-induced local demyelination rat model.
Our findings suggest that MeCbl promotes regeneration after
peripheral nerve injury by promoting beneficial effects on not just
neurons but also SCs.

Materials and Methods

Animals
Wistar rats (postnatal days 1–3, embryonic day 15 and 200 g
adult; MF, Oriental Yeast, Osaka, Japan) were used. Animals
were housed under a 12/12 h light/dark cycle (lights on, 08:00–
20:00 h). All animals had free access to food (MF, Oriental Yeast,
Osaka, Japan) and tap water. All experiments were performed in
conformity to the guidelines of the Animal Care Committee of
the Graduate School for Medicine, Osaka University. We made a
maximum effort to minimize the number of animals used and to
limit any suffering.

Primary Culture of SCs
Primary rat SCs were isolated and cultured as previously
described (Ogata et al., 2004). SCs were collected from
the sciatic nerves of postnatal days 1–3 Wistar rats and
cultured in Dulbecco’s Modified Eagle’s Medium (DMEM;
GIBCO/BRL Life Technologies, Grand Island, NY, USA; not
including vitamin B12) containing 10% fetal bovine serum (FBS;
Sigma–Aldrich, St. Louis, MO, USA) and 1% penicillin and
streptomycin. The following day, 10 μM cytosine arabinoside
(Sigma–Aldrich) was added to the medium to eliminate
contaminating fibroblasts. After 48 h, the medium was replaced
with DMEM containing 3% FBS with 3 μM forskolin
(Merck, Darmstadt, Germany) and 20 ng/mL of neuregulin

(R&D Systems, Minneapolis, MN; growth medium) to expand
the cells. Cells were then detached from the dishes using
0.25% trypsin (GIBCO/BRL Life Technologies) treatment and
subculturing by replating at a 1:2 ratio onto poly-L-lysine-
coated (Sigma–Aldrich) plastic dishes before confluence. We
obtained a SC culture of >99% purity using these procedures.
In all the experiments, cells were used between passages
3 and 8.

Cell Proliferation Assay
Schwann cells were plated at a density of 1.4 × 104 cells
in 6-cm plates and maintained in the growth medium for
24 h prior to stimulation with MeCbl (100 μM; Sigma–
Aldrich). On days 1, 3, and 5 after the stimulation, cells
were trypsinized and resuspended. Cell counting was
performed in triplicate on separate 10 μl aliquots using a
hemacytometer.

Western Blotting
Cultured SCs were collected and homogenized with 100-μL
Kaplan buffer [150 mMNaCl, 50 mM Tris-HCl (pH 7.4), 1% NP-
40, 10% glycerol, and a protease inhibitor cocktail] and clarified
by centrifugation. Each sample included 18 μg of protein, was
separated by SDS–PAGE, and transferred onto polyvinylidene
difluoride membranes. After blocking non-specific binding
sites with a blocking buffer [5% skimmed milk/1% Tween
20 in 20 mM TBS (pH 7.6)] for 1 h, the membranes were
incubated overnight at 4◦C with primary antibodies against
p44/42 MAPK (1:1000; Cell Signaling Technology 4695, Beverly,
MA, USA), phospho-p44/42 MAPK (1:1000; Cell Signaling
Technology 9101), Akt (1:1000; Cell Signaling Technology
4691), phosphor-Akt (1:1000; Cell Signaling Technology 4056),
GAPDH (1:1000; Cell Signaling Technology 2118), cleaved
caspase-3 (Asp175; 1:1000; Cell Signaling Technology 9661),
cleaved caspase-9 (Asp353; 1:1000; Cell Signaling Technology
9507), MAG (1:1000; Chemicon MAB1567), P0 (1:1000;
Abcam ab31851, Cambridge, UK), MBP (1:1000; Sigma–Aldrich
M3821) and Acly (1:1000; Abcam ab40793). Subsequently,
the membranes were incubated with an anti-rabbit IgG,
horseradish peroxidase linked whole antibody from donkey
(1:1000; GE Healthcare Life Sciences NA934, Little Chalfont,
UK) and subjected to ECL reagent treatment. Protein expression
levels were determined using the MF-ChemiBIS 3.2 imaging
system (Berthold Technologies, Bad Wildbad, Germany). The
integrated optical densities of immunoreactive protein bands
were measured using ImageJ 1.45 s, which is a public-domain
image analysis program that was developed at the U.S. National
Institutes of Health.

Apoptosis Assay
Schwann cells were cultured on a poly-L-lysine-coated 35-
mm plastic dish until they reached subconfluency. For
the determination of apoptosis, cells were incubated with
recombinant rat TNF-α, (100 ng/mL; Sigma–Aldrich) in the
presence or absence of 100 μM MeCbl at 37◦C for 24 h
(Yuan et al., 2012). The effects of TNF-α on SCs apoptosis
after treatment were determined by western blotting using an

Frontiers in Cellular Neuroscience | www.frontiersin.org 2 August 2015 | Volume 9 | Article 298

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Nishimoto et al. Differentiation of Schwann cells by methylcobalamin

anti-cleaved caspase-3 antibody and anti-cleaved caspase-9
antibody.

Differentiation Assay In Vitro
For differentiation experiments, purified cells were cultured
in the growth medium for 24 h. They were induced to
differentiate by the addition of db-cAMP (1 mM; Sigma–Aldrich;
differentiation medium; (Yamauchi et al., 2011; Varela-Rey et al.,
2014) and cultured for 72 h in the differentiation medium in
the presence or absence of 100 μM MeCbl. The effects of the
differentiation of SC after treatment were determined by western
blotting using anti-MBP antibody and anti-Acly antibody.

DRGs and SCs Coculture
Rat DRG neurons were prepared as previously described (Callizot
et al., 2011), with some modifications. DRG neurons from
the spinal cord of 15-day-old Wistar Rat embryos (E15) were
sterilely extracted and treated with a trypsin solution (0.25%
Trypsin-EDTA, GIBCO) at 37◦C for 20 min; the reaction was
stopped by the addition of DMEM containing DNase I grade
2 (0.1 mg/mL, Roche) and 10% FBS. Cells were mechanically
dissociated by three forced passages through the tip of a 10-
mL pipette. They were then centrifuged at 500 × g for 10 min.
The supernatant was discarded and the pellet was resuspended
in a defined culture medium containing neurobasal medium
(Invitrogen, Carlsbad, CA, USA) supplemented with 2% B27
nutrient supplement (Invitrogen), L-glutamine (0.2 mmol/L;
Invitrogen), 1% penicillin and streptomycin (10 mg/mL), and
nerve growth factor (50 ng/mL; Millipore, Billerica, MA, USA).
Viable cells were counted in an Invitrogen Countess R©Automated
Cell Counter. They were seeded at a density of 31,250 cells/well in
an 8-well slide chamber that was precoated with poly-L-lysine and
coated with laminin (1.4 g/cm2; Sigma–Aldrich) for 2 h at 37◦C.
Half of the medium was then changed every day. Cultures were
maintained for 1 week to allow SCs to proliferate and unsheathe
the axons of DRG neurons. At day 7, the cocultures were induced
to form myelin via the addition of L-ascorbic acid (50 g/mL;
Sigma–Aldrich) with or without MeCbl (100μM), and half of the
medium was then changed every day.

Immunocytochemistry
Dorsal root ganglions/SCs cocultures on 8-well slide chambers
were fixed with 4% paraformaldehyde for 10 min and
permeabilized with 100% methanol for 30 min at −20◦C. After
blocking with PBS + 0.2% Triton X + 5% bovine serum
albumin (Sigma–Aldrich), the samples were incubated with
primary antibodies against MBP (1:1000; Calbiochem NE1018,
San Diego, CA, USA) and NF200 (1:1000; Sigma–Aldrich N4142)
overnight at 4◦C, followed by incubation with the appropriate
secondary antibodies including Alexa Fluor 488 goat anti-rabbit
IgG (Molecular Probes A11034, Eugene, OR, USA) and Alexa
Fluor 568 goat anti-mouse IgG (Molecular Probes A-11004).
DAPI (Wako Pure Chemical Industries, Osaka, Japan) was
included in the Permafluor (Thermo Fisher Scientific, Waltham,
MA, USA) mounting solution to visualize nuclei. The number of
MBP-positive segments was counted using the NIS Elements BR
software (Laboratory Imaging, Nikon).

Surgical Procedure
All animal experiments were approved by the Ethics Review
Committee for Animal Experimentation of the Osaka University.
Thirty-six male Wistar rats weighing 180–220 g were used
in this study. For all experimental procedures, animals were
deeply anesthetized using an intraperitoneal injection of a
mixture of midazolam (2 mg/kg), butorphanol (2.5 mg/kg), and
medetomidine (0.15 mg/kg). Under sterile conditions, the left
sciatic nerve was exposed at the level of the sciatic notch. Using
a Hamilton syringe, 5 μL of saline or 2% LPC (Sigma–Aldrich)
in saline was injected into the proximal sciatic nerve. Seven
days later, an osmotic minipump (Alzet, Cupertino, CA, USA)
was placed subcutaneously in the back (Okada et al., 2010) to
deliver continuous saline or MeCbl (1 mg/kg/day) for 1 week. All
surgeries were performed by the same surgeon.

Immunostaining of Sciatic Nerves
For histological evaluation of the lesions, animals were sacrificed
1 or 2 weeks after the LPC injection. They were deeply
anesthetized, and the sciatic nerve containing the area of LPC
application was excised for the evaluation of the extent of
demyelination and remyelination. Sciatic nerves were fixed in
4% paraformaldehyde for 24 h at room temperature and then
stored in 20% sucrose in 0.01 MPBS. The tissues were embedded
in Tissue Tek (Sakura Finetek Japan), snap frozen on liquid
nitrogen, sectioned axially at 5 μm, and mounted on a glass
slide. They were permeabilized with 100% methanol for 30 min
at −20◦C. After blocking with PBS + 0.2% TritonX + 5%
bovine serum albumin, they were incubated with primary
antibodies against MBP (1:1000; Calbiochem NE1018) and
NF200 (1:1000; Sigma–Aldrich N4142) overnight at 4◦C inside
a wet chamber, followed by incubation with the appropriate
secondary antibodies including Alexa Fluor 488 goat anti-rabbit
IgG, and Alexa Fluor 568 goat anti-mouse IgG. DAPI was
included in the Permafluor mounting solution to visualize the
nuclei. The number of myelinated axons was counted using the
NIS Elements BR software.

Sciatic Functional Index
Motor function was evaluated with the sciatic functional index
as previously described (Varejao et al., 2001; Pereira Lopes et al.,
2013; Goulart et al., 2014). Sciatic functional index was calculated
at 2 weeks after the LPC injection. Rats were made to walk across
a narrow track. The hind feet were dipped in block ink and
changes in footprints were recorded on white papers. For normal
footprints, a sciatic functional index value is near 0, whereas
a sciatic functional index value of approximately −100 reflects
complete loss of function (Bain et al., 1989).

Electrophysiological Analysis
Under anesthesia, the sciatic nerve was exposed. A bipolar
stimulating electrode was placed in the nerve trunk at its
proximal portion and a recording electrode was placed in the
anterior tibial muscle to record the compound muscle action
potential. Nerve conduction velocity values were calculated by
stimulating two different points of the sciatic nerve. Compound
muscle action potential was detected and measured using the
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PowerLab devices and software (AD Instruments, Bella Vista,
NSW, Australia).

Behavioral Test
Responses to thermal stimuli were assessed using a hot plate (Ugo
basile, Varese, Italy), at a temperature of 52.5◦C. The reaction
time (in seconds) until the first signs of a painful response
(hindpaw licking or escape) was recorded and the cut-off time
was 45 s (Guevara et al., 2015).Withdrawal thresholds of the hind
paw to mechanical stimulation were determined using von Frey
monofilaments (0.008–26 g; TouchTest, North CoastMedical Inc,
Gilroy, CA, USA). Each filament was applied from beneath the
mesh floor to the middle part of the plantar surface of each hind
paw until the individual filaments used started to bend (Pitcher
et al., 1999; Noda et al., 2014). Values are normalized to the
unaffected side.

Statistics
The JMP software, version 11 (SAS Institute, Cary, NC, USA)
was used to analyze the results and the data were expressed as
the mean ± SEM. The data were first analyzed for normality
with Shapiro–Wilk test. Those qualified were then analyzed
subsequently with one-way ANOVA followed by a post hoc
Student’s t-test, Dunnett test, and Tukey–Kramer HSD test.
Wilcoxon test and Steel test was only used when normality test
failed.

Results

MeCbl does not Stimulate the Proliferation of
SCs
After peripheral nerve injury, SCs located in the distal nerve
begin to dedifferentiate and proliferate; this reaction is a
prerequisite process for the regeneration of damaged peripheral
nerves. We focused on the effect of MeCbl on SC proliferation.
SCs were cultured with or without 100 μM MeCbl for 5 days
and the total cell number was then counted. The results indicate
that there was no significant difference between the control and
MeCbl groups on days 1, 3, and 5 (Figure 1). This finding suggests
that MeCbl does not stimulate SC proliferation.

MeCbl Reduces the Activity of Erk1/2 in SCs
Some studies identified the activation of the Erk1/2 pathway
for SC proliferation (Ogata et al., 2004; Monje et al., 2006). To
determine whether MeCbl influences Erk1/2 activity in SCs, we
detected the activity of Erk1/2 in SCs cultured for 1 h with MeCbl
at concentrations of 1 nM to 100 μM in the growth medium.
We observed that MeCbl suppressed Erk1/2 activities in SCs at
a concentration ≥10 μM (Figure 2A). Subsequently, SCs were
cultured with 100 μM MeCbl for 3 h in the growth medium.
MeCbl temporarily led to a 0.38 ± 0.04-fold weaker activation
of Erk1/2 than that observed in the control at 1 h after the
addition of the compound (Figure 2B). We next examined the
activation of the Akt pathway which plays an important role in
SCs differentiation (Ogata et al., 2004). We detected the activity
of Akt in SCs cultured for 1 h with MeCbl at concentrations

of 1 nM–100 μM (Figure 2C) and with 100 μM MeCbl for
3 h (Figure 2D) in the growth medium. The Akt activation was
not detected in neither conditions (Figures 2C,D). These results
clearly demonstrate that MeCbl suppresses the Erk1/2 activity in
SCs, albeit temporarily.

MeCbl does not Affect the TNF-α-Induced
Apoptosis of SCs
The activation of Erk1/2 has been reported to protect against
apoptosis in several cell types including neurons (Kolch, 2000;
Xifro et al., 2014). To determine the effect of MeCbl on SC
apoptosis, we cultured SCs with MeCbl (100 μM) in the presence
or absence of TNF-α in the growth medium. We added TNF-α
to the medium at a concentration of 100 ng/mL because TNF-α
at a low concentration of 0.001 ng/mL induces SC proliferation,
whereas TNF-α at a high concentration of 100 ng/mL induces
SC apoptosis (Yuan et al., 2012). We examined the activation
of cleaved caspase-3 and cleaved caspase-9, which were markers
of apoptosis. MeCbl did not cause SC apoptosis, and TNF-
α-induced apoptosis was not rescued by the administration of
MeCbl (Figures 3A,B).

MeCbl Upregulates the Expression of MBP and
Acly in SCs under Differentiation Conditions In
Vitro
Schwann cells are the main glial cells in the peripheral nervous
system. After peripheral nerve injury, SCs first dedifferentiate
and proliferate, and then redifferentiate and remyelinate newly
grown axons in response to axon-derived signals, thus triggering
a process of nerve regeneration (Harrisingh et al., 2004). cAMP
is one of the signals that can mimic axonal contact with SCs and
promotes the expression of the myelin marker galactocerebroside
(Sobue and Pleasure, 1984) and a myelin protein (Ji et al., 2010;
Yang et al., 2012) in SCs. First, we detected the expression of P0

FIGURE 1 | Methylcobalamin does not stimulate the proliferation of
SCs. SCs were cultured in the growth medium for 5 days with or without
100 μM MeCbl and the total number of SCs was counted at days 1, 3, and 5.
Values are means ± SEM of five independent experiments.

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 August 2015 | Volume 9 | Article 298

http://www.frontiersin.org/Cellular_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Nishimoto et al. Differentiation of Schwann cells by methylcobalamin

FIGURE 2 | Methylcobalamin reduces the activity of Erk1/2 in SCs.
(A,C) SCs were cultured with MeCbl at a concentration of
1 nM–100 μM for 1 h in the growth medium. Erk1/2 (A) and Akt
(C) activities were detected by western blotting. The quantification of
the normalized density of Erk1/2 (A) and Akt (C) is shown. (B,D) SCs

were cultured with MeCbl at a concentration of 100 μM for 3 h in
the growth medium. Erk1/2 (B) and Akt (D) activities were detected
by western blotting. The quantification of the normalized density of
Erk1/2 (B) and Akt (D) is shown. Values are means ± SEM of five
independent experiments. ∗p < 0.05 compared with the control group.

and MAG, markers of SCs in the promyelinating state (Ogata
et al., 2004). SCs were treated in the growth or the differentiation
medium containing db-cAMP. MeCbl did not promote the
expression of P0 (Figure 4A) and MAG (Figure 4B) in SCs in
neither conditions. In SCs culture, P0 is clearly detectable even
in the growth medium and the expression of MAG peaks at
48 h under the differentiation condition (Leitman et al., 2011).
We therefore assumed that it might be difficult to detect the
increasing expression of the markers in the promyelinating SCs
by MeCbl and focused on the markers in the myelinating state.
MBP is vital to the myelination process and is essential for

the appropriate formation of myelin thickness and compactness
in the central nervous system and peripheral nervous system
(Zhang et al., 2007; Ryu et al., 2008). Therefore, we focused on
the expression of MBP to evaluate the effect of MeCbl on SC
differentiation. In the growth medium, MeCbl did not promote
the expression of MBP in SCs (Figure 4C). On the other hand, the
expression of MBP in SCs cultured in the differentiation medium
was increased by the administration of MeCbl (Figure 4C).

Abundant lipid and cholesterol biosynthesis is necessary for
the SCs myelination of peripheral nerves. Recent experiments
using microarray analyses of the myelination process during
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FIGURE 3 | Methylcobalamin does not affect the TNF-α-induced
apoptosis of SCs. SCs were stimulated with TNF-α for 24 h in the growth
medium with or without 100 μM MeCbl. Cleaved caspase-3 (A) and cleaved
caspase-9 (B) expression was detected by western blotting. The
quantification of the normalized density of cleaved caspase-3 (A) and cleaved
caspase-9 (B) is shown. Values are means ± SEM of six independent
experiments. ∗p < 0.05.

development and the remyelination process after nerve injury
have revealed that cholesterol/lipid metabolism in peripheral
nerve myelination is also important (Nagarajan et al., 2002;
Verheijen et al., 2003). Next, we examined the activation of Acly,

which is a marker of lipid-synthesis enzymes. Together with the
expression of MBP, MeCbl promoted the expression of Acly in
SCs in the differentiation medium but not in the growth medium
(Figure 4D). In addition, to clarify the increasing expression of
MBP by MeCbl, we applied the following experiment.

MeCbl Accelerates the Myelination of
Cocultured DRGs/SCs
Early studies have shown that after the proliferation stage SCs
differentiate into myelination process and its initiation is the
stimulation by direct physical contact with axonal membranes
(Wood and Bunge, 1975; Salzer et al., 1980). To date, the culture
consisting SCs and primary DRGneurons is the unique and stable
in vitro system and it enables to support both active proliferation
and myelination by purified isolated populations of postnatal
rodent SCs (Eldridge et al., 1987). Therefore, we used a DRGs/SCs
coculture system to estimate MeCbl-mediated myelination.
DRGs/SCs cocultures were maintained for 21 days to examine the
effect of MeCbl on the differentiation of axon-related SCs. The
extent of myelination was quantified by measuring the number
of myelinated sections. No significant differences in the number
of myelin segments were observed on day 7 (Figures 5A–F,S).
On day 14 after the induction of differentiation, MeCbl increased
the number of MBP-positive segments by approximately twofold
compared with that observed by the control (Figures 5G–L,S).
In both groups, the differentiation of SC progressed for 21 days
and the number of MBP-positive segments in the MeCbl group
was approximately 1.5-fold compared with that observed in the
control group (Figures 5M–S). Collectively, these results provide
strong evidence that MeCbl promotes the differentiation and
myelination of SCs in vitro.

MeCbl Promotes Regeneration after
LPC-Induced Sciatic Nerve Demyelination In
Vivo
To make the focal demyelination model of the sciatic nerve,
we used LPC that dissolves myelin sheaths and leads to pure
demyelination lesions which spontaneously remyelinate over
time (Smith and Hall, 1980; Stoll et al., 1993; Wessig et al.,
2007; Zhang et al., 2010). To confirm the effect of LPC, cross-
sections of sciatic nerves were prepared and demyelination was
assessed by immunofluorescence for MBP (Figures 6A–D). On
7 days postoperatively, MBP positive axons were clearly visible
in saline injected LPC (−) group (Figures 6C,D), whereas it
was rarely observed in the LPC (+) group (Figures 6B,D).
Therefore, we confirmed that damages by needle insertion itself
were absent in the sciatic nerves (Figures 6A–D). Furthermore,
we confirmed that this demyelination model did not cause axonal
damages because many neurofilament positive axons in LPC
(+) group were detected (Figure 6B). Seven days after the
injection to the sciatic nerve, saline or MeCbl was systemically
administered with an osmotic pump. In the LPC (−) groups
with or without MeCbl, the numbers of MBP positive axons are
similar (Figures 6E–H,M) and same as that in normal sciatic
nerve (Figure 6A) 7 days after systemic administration (14 days
after the injection to the sciatic nerve). These results indicate that
MeCbl did not affect the myelin of the normal sciatic nerve. The
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FIGURE 4 | Methylcobalamin upregulates the expression of MBP and
Acly in SCs under differentiation conditions in vitro. SCs were cultured in
the growth medium for 24 h and in the differentiation medium including cAMP
for 72 h with or without MeCbl (100 μM). The expression of P0 (A), MAG (B),

MBP (C), and Acly (D) was detected by western blotting. The quantification of
the normalized density of P0 (A), MAG (B), MBP (C), and Acly (D) is shown.
Values are means ± SEM of more than three independent experiments.
∗p < 0.05, ∗∗p < 0.01.

number of MBP positive axons decreased to 7% compared with
the normal nerve 7 days after the LPC injection (Figures 6B,D),
but it spontaneously increased to 41% 14 days after the LPC
injection (Figures 6I,J,M). An administration ofMeCbl for 7 days
accelerated the recovery of remyelination and number of MBP
positive axons was approximately twofold compared with that
in LPC (+) group without MeCbl (Figures 6I–M). These results

demonstrate that MeCbl promotes the remyelination of LPC-
induced demyelination rat model.

To evaluate motor functional recovery, we administered a
sciatic functional index test to the rats. At 2 weeks after the
LPC injection, sciatic functional index values in the MeCbl (+)
group were significantly higher than those recorded in the MeCbl
(−) group (Figure 7A). For electrophysiological evaluation,
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FIGURE 5 | Methylcobalamin accelerates the myelination of DRGs/SCs
in coculture. We used cocultures of DRGs and SCs to evaluate the
differentiation of axon-related SCs in the presence or absence of 100 μM
MeCbl. Cocultures were visualized with an anti-MBP antibody red
(A,B,G,H,M,N) and an anti-NF200 antibody green (C,D,I,J,O,P) and merged

pictures (E,F,K,L,Q,R) were shown at 7 (A–F), 14 (G–L), and 21 days (M–R)
days after the induction of differentiation. (S) The extent of myelination was
quantified by measuring the number of MBP-positive segments. Values are
means ± SEM of five independent experiments. ∗p < 0.05, ∗∗p < 0.01
compared with the control group.

compound muscle action potential and nerve conduction velocity
were obtained by stimulating sites proximal and distal to
the injection. Regarding compound muscle action potential,
the amplitude was not lowered by the LPC injection and
MeCbl did not affect it (Figure 7B). This was presumably
because compound muscle action potential is affected by the
number of axons and LPC does not lower the number of
axons (Figure 6B). On the other hand, MeCbl treatment

kept nerve conduction velocity at a normal level, whereas
the LPC injection decreased nerve conduction velocity to
a value <20 m/s (Figure 7C). These functional evaluations
show that MeCbl promotes functional recovery in rat sciatic
nerve demyelination models. The response latency on hot
plate significantly increased by approximately 3.8 and 3.5-fold
(Figure 7D) in LPC (+) MeCbl (−) group compared to those in
LPC (−) MeCbl (−) and LPC (−) MeCbl (+) groups. Treatment
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FIGURE 6 | Methylcobalamin promotes remyelination after LPC-induced
sciatic nerve demyelination in vivo. (A–C) Fluorescence micrographs of
cross-sectional slices of sciatic nerves labeled for MBP (red), NF200 (green),
and DAPI (blue) 7 days after the LPC [b; LPC (+)] or saline [c; LPC (−)] injection.
Images taken at a higher magnification are shown in the insets.
(D) Quantification of MBP-positive axons per total axons (NF200-positive axons)
7 days after the LPC or saline injection. (E–L) MeCbl or saline was administered

systemically 7 days after the injection. Fluorescence micrographs of
cross-sectional slices of sciatic nerves labeled for MBP red (E–L), NF200 green
(F,H,J,L), and DAPI blue (F,H,J,L) 7 days after the administration of MeCbl or
saline. Images taken at a higher magnification are shown in the insets.
(M) Quantification of MBP-positive axons per total axons (NF200-positive
axons) 7 days after the administration of MeCbl or saline. ∗∗∗p < 0.001. Values
are means ± SEM of three independent experiments.

with administration of MeCbl for LPC injection significantly
improved of response latency in administration of saline
for LPC injection (Figure 7D). The von-Frey monofilament
test was employed to determine withdrawal thresholds to
mechanical stimuli applied on the hind paw. MeCbl treatment
for LPC injection significantly reduced compared with saline
treatment for LPC injection and was improved to control level
(Figure 7E). These results demonstrate that MeCbl promotes
motor and sensory functional recovery in a rat demyelination
model.

Discussion

In this study, the in vitro differentiation of SC and in
vivo remyelination were examined after MeCbl administration.
MeCbl suppressed Erk1/2 activities in SCs 30 min and 1 h
after the administration of the compound and promoted their
differentiation in the differentiation medium but not in the
growth medium. Moreover, MeCbl promoted the in vitro
myelination of SC and accelerated remyelination after LPC
induced demyelination in vivo.
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FIGURE 7 | Methylcobalamin improved the recovery of
demyelinated sciatic nerve function. To evaluate sciatic nerve motor
and sensory functions, sciatic functional index (A), electrophysiological
studies (B) compound muscle action potential: (C) nerve conduction

velocity, hot plate test (D) and von Frey monofilament test (E) were
performed at 2 weeks after the injection of the drug. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001. Values are means ± SEM of five
independent experiments.

Vitamin B plays a very critical role in the maintenance of
the nervous system. For a young child, vitamin B12 deficiency
brings about brain atrophy with retarded myelination (Lovblad
et al., 1997). For patients after gastrectomy, absorption of
vitamin B12 is impeded owing to lack of the intrinsic factor
and it causes subacute combined degeneration of the spinal
cord (Scalabrino et al., 1990). Niacin (vitamin B3) also plays an
important role to maintain the normal function of the nervous
system. 6-aminonicotinamide is a niacin antagonist and its
administration causes acute damage of the gray matter in the
brainstem (Penkowa et al., 2004) and the reactive astrocytes are
more sensitive to 6-aminonicotinamide induced neurotoxicity
than normal astrocytes (Politis, 1989). 6-aminonicotinamide also
causes demyelination of the peripheral nervous system while
bringing about slight effects on neurons (Friede and Bischhausen,
1978). In this study, SCs in the differentiation stage are more

susceptible to the effect of MeCbl than those in the proliferation
stage (Figures 1, 4, and 5). Judging from these points, vitamin
B may be influential especially in highly metabolic cells such as
reactive astrocytes and differentiated SCs.

The Ras/Raf/Erk signaling pathway can regulate
differentiation in several cell types. In SCs, sustained Ras/Raf/Erk
signaling blocks the transition from immature SCs to promyelin
SCs, acts as a dedifferentiation signal, and regulates myelination
negatively (Harrisingh et al., 2004). Regarding the Akt signaling,
its sustained activity is crucial for initiation of SCs myelination
(Ogata et al., 2004). Thus, inhibiting the activity of the Erk1/2
signaling pathway and/or promoting the activity of the Akt
signaling pathway is important for the in vitro differentiation
of SC. MeCbl inhibited the activation of Erk1/2 30 min and 1 h
after its addition (Figure 2B), while MeCbl did not promote
the activity of Akt for 3 h (Figure 2D). Although the reason
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why MeCbl does not affect SC proliferation (Figure 1) and
differentiation (Figure 4) in the growth medium is unknown,
the temporary inactivation of Erk1/2 and the unchanged activity
of Akt after the addition of MeCbl may have influenced the
results. On the other hand, in the differentiation mediumMeCbl
promoted the expression of MBP and Acly (Figures 4C,D),
whereas it did not affect the expression of P0 and MAG
(Figures 4A,B). Because the expression of P0 was observed even
in the growth medium and the expression of P0, MAG, and
MBP reaches the plateau at 36–48 h under the differentiation
medium (Leitman et al., 2011; Wu et al., 2011), it seemed to
be difficult to utilize our experimental method cultured without
axons as an estimation of the expression for promyelinating
markers such as P0 and MAG and we also presumed that
SCs culture without DRG axons for longer period such as 4
or 5 days is not appropriate for an estimation for the MBP
expression. MeCbl neither affect SCs under the growth medium
(proliferation in Figure 1; the Akt activity in Figures 2C,D; the
expression of myelination markers in Figure 4) nor promote the
expression of MBP at 7 days, earlier stage in the differentiation
process, in cocultured DRGs/SCs (Figures 5A–F). Therefore,
MeCbl would not be a trigger for the transition from proliferation
to differentiation stage of SCs and may affect SCs only in the
differentiation stage.

After peripheral nerve injury, Erk1/2-mediated signaling is
important for the normal SC response (Napoli et al., 2012),
and the activity of Erk1/2 is promoted in both the proximal
and distal nerve stumps (Harrisingh et al., 2004). SCs can
dedifferentiate and proliferate in response to nerve injury via
the activation of Erk1/2 as part of a process called Wallerian
degeneration. This phenomenon of SCs proliferation after
peripheral nerve injury had been recognized to be prerequisite
for regeneration. However, the report using mice lacking cyclin
D1 revealed that SCs proliferation was not necessary for
functional recovery after peripheral nerve injury (Yang et al.,
2008). Furthermore, in the wild type littermates, newly generated
SCs after peripheral nerve injury were culled by apoptosis
(Yang et al., 2008). Because MeCbl did not influence the
number (Figure 1) and apoptosis (Figure 3) of SCs under the
proliferation condition, MeCbl might regulate SCs condition
neither positively nor negatively in the SCs proliferation stage
during Wallerian degeneration. Only in the following stage of
SCs redifferentiation (remyelination), MeCbl might regulate SCs
condition positively as it promoted the differentiation of SCs in
vitro (Figures 4 and 5) and remyelination in vivo (Figure 6).
Moreover, the upregulation of the Erk signaling pathway was
observed in patients with neurofibromatosis type 1 with the loss
of neurofibromin in SCs (Parrinello et al., 2008) and in leprosy
patients with demyelination (Tapinos et al., 2006). Therefore, the
regulation of Erk1/2 activity may be essential for the maintenance
of normal peripheral nerve function and regeneration after
peripheral nerve injury. MeCbl may be a promising treatment
for peripheral nerve injury because it inhibited the Erk1/2
activity of SCs in the proliferation (Figure 2) and promoted the
differentiation of SCs in vitro (Figures 4 and 5) and in vivo
(Figure 6).

The peripheral nervous system consists of neurons (axons),
SCs, and muscles, if axons are of motoneurons. There are
some reports that MeCbl, which is an analog of vitamin B12,
brings about a favorable effect on the nervous system. In
in vivo studies, the administration of MeCbl promoted nerve
regeneration in streptozotocin-diabetic rats (Sonobe et al., 1988),
acrylamide neuropathy rats (Watanabe et al., 1994), gracile
axonal dystrophy mutant mice (Yamazaki et al., 1994), and sciatic
nerve injured rats (Okada et al., 2010). In a previous report,
we demonstrated that MeCbl promotes the activities of Erk1/2
and Akt in neurons (Okada et al., 2010). Furthermore, we found
that MeCbl promotes the proliferation and migration of C2C12
myoblast cells and inhibits apoptosis during the differentiation
process via the Erk1/2 signaling pathway (Okamoto et al.,
2014). Muscle tissue condition is very important for regeneration
after peripheral nerve injury because it is the final target of
motoneuron axons and its degeneration would be incurable
after a prolonged denervation. In this report, we found a novel
beneficial effect of MeCbl on SCs because it played important
roles in regeneration after peripheral nerve injury. Previously
we have already showed the promotion of myelination of the
severed sciatic nerve in rats (Okada et al., 2010). During the
Wallerian degeneration, injured axons regenerate first and as the
next step dedifferentiated SCs go toward the redifferentiated stage
in contact with regenerated axons. In the previous rat model,
the regeneration of myelination seemed to be the secondary
effect after the axonal regeneration. In this in vivo study,
we therefore used an LPC-induced demyelination model to
examine simply the effect of MeCbl on SCs without damages
to the axons (Figure 6B). In this model, MeCbl promoted
remyelination after demyelination (Figure 6). Furthermore, we
analyzed the efficacy of MeCbl treatment regarding motor and
sensory functional recovery in sciatic nerve demyelination rat
models (Figure 7). LPC is a main plasma component that is
synthesized after tissue injury and converted to lysophosphatidic
acid by autotaxin, subsequent causing nerve demyelination
and neuropathic pain via an identified mechanism (Wallace
et al., 2003; Inoue et al., 2008; Nagai et al., 2010). These
findings led us to conclude that MeCbl may be effective in
the treatment of LPC-induced neuropathic pain. Thus, the
administration of MeCbl may be one of the treatments for
peripheral nerve injury, neuropathic pain, and demyelinating
diseases.
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