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The neurotoxin  1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine  (MPTP)  induces
Parkinson’s disease-like symptoms following administration to mice, monkeys, and
humans. A common view is that MPTP is metabolized to 1-methyl-4-phenylpyridinium
ion (MPPT) to induce its neurodegenerative effects on dopaminergic neurons in the
substantia nigra (SN). Moreover, the hippocampus contains dopaminergic fibers, which
are projecting from the ventral tegmental area, SN and pars compacta and contain the
whole machinery required for dopamine synthesis making them sensitive to MPTP and
MPP*. Here, we present data showing that acute bath-application of MPP™* elicited
a dose-dependent facilitation followed by a depression of synaptic transmission of
hippocampal Schaffer collaterals-CA1 synapses in mice. The effects of MPPT were
not mediated by D1/D5- and D2-like receptor activation. Inhibition of the dopamine
transporters did not prevent but increased the depression of excitatory post-synaptic
field potentials. In the search for a possible mechanism, we observed that MPP™
reduced the appearance of polyspikes in population spikes recorded in str. pyramidale
and increased the frequency of miniature inhibitory post-synaptic currents. The acute
effect of MPPT on synaptic transmission was attenuated by co-application of a
GABA, receptor antagonist. Taking these data together, we suggest that MPPT affects
hippocampal synaptic transmission by enhancing some aspects of the hippocampal
GABAergic system.

Keywords: Parkinson’s disease, dopaminergic system, extrasynaptic GABAergic receptors, synaptic
transmission, tonic inhibition, limbic system

Introduction

Parkinson’s disease (PD) is characterized by movement-related motor dysfunctions (e.g.,
tremor, akinesia, and rigidity; Rodriguez-Oroz et al., 2009). In addition, some patients with
PD show an impairment of cognitive functions (Whittington et al., 2006; Lee et al., 2010;
Weiermann et al., 2010) and have mild cognitive impairment (MCI; Fernandez et al., 2005;
Goldman and Litvan, 2011) or dementia (Emre et al, 2007; Aarsland and Kurz, 2010)
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including impairments of declarative memory (Bondi and
Kaszniak, 1991).

Whereas the genesis of sporadic PD and PD with dementia is
still under debate, a correlation between PD cases and the extent
of the use of herbicides and pesticides has been described (Liou
et al.,, 1997; Stephenson, 2000; Sun et al., 2007; Tanner et al,
2011). In animal models, the herbicide paraquat causes death of
dopaminergic neurons within the substantia nigra (SN), ventral
tegmental area (VTA) and as well as the degeneration of the
dopaminergic fibers within the striatum (Ren et al., 2009) - a
hallmark of PD onset.

Compounds with a structure similar to the herbicide paraquat,
have been reported to induce severe motor dysfunction that
closely resembles an advanced stage of PD (Przedborski et al.,
2001; Dauer and Przedborski, 2003). One such compound is
the neurotoxin 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine
(MPTP). Systemic administration of MPTP in primates and
mice causes motor dysfunctions, as well as cognitive deficits that
correlate with depletion of dopamine in the midbrain (Bove et al.,
2005) and hippocampus (Zhu et al., 2011) within several days
after its administration. In addition, dopaminergic denervation
was shown to potentiate GABAergic inhibition in the mouse
neostriatum (Schlosser et al., 1996). It is a common view that
MPTP has to be metabolized to 1-methyl-4-phenylpyridinium
ion (MPP1') via monoamine oxidase in glia cells and that
MPP™ in turn is transported into dopaminergic neurons via
the dopamine transporter (DAT). Since the expression of
monoamine oxidase in glia cells is not restricted to the SN or VTA
a metabolism of MPTP can take place in other brain areas such as
the hippocampus.

Cognitive abilities, such as formation of declarative memory
rely partially on the hippocampus (Manns and Eichenbaum,
2006; Morris, 2006) and are known to be modulated by
the dopaminergic system. Interference with hippocampal
neurotransmission (Bliss and Collingridge, 1993; Morris, 2006)
could therefore represent a putative mechanism for altering
memory performance in PD patients.

In addition, it is known that a major mesolimbic projection
toward the CAl area of the hippocampus contains dopaminergic
fibers originating from the VTA, SN, and pars compacta
(Gasbarri et al, 1994, 1997), and that these hippocampal
dopaminergic fibers contain the whole machinery required
for dopamine synthesis and recycling, including DAT (Lisman
and Grace, 2005). However, the putative effects of MPPT
on their afferents and subsequently on hippocampal synaptic
transmission are not well understood (Galvan et al., 1987). We
focused on the acute effects of MPPT on hippocampal excitatory
synaptic transmission, to differentiate from the chronic effects of
MPTP and MPP™.

Here, we looked into the effects of MPPT on synaptic
transmission at hippocampal Schaffer collateral (SC)-CAl
synapses using recordings of field excitatory post-synaptic
potentials (fEPSPs), polyspikes and miniature inhibitory post-
synaptic currents (mIPSCs). The data suggest that MPP™ dose-
dependently affects synaptic transmission in acute hippocampal
slices of C57BL/6 mice via modulation of some aspects of the
GABAergic system.

Materials and Methods

Animals

Young adult male C57BL/6 mice (8 weeks) were supplied
from the animal center of the Chinese Academy of Sciences
(CAS, Shanghai, China) and maintained in accordance with
the established standards of animal care and procedures of the
Institutes of Brain Science and State Key Laboratory of Medical
Neurobiology of Fudan University, Shanghai, China. Efforts were
made to minimize the number of animals used. Animals had free
access to food and water.

In addition, all studies and individual protocols were
conducted in accordance with the GSK Policy on the Care,
Welfare and Treatment of Laboratory Animals and were
reviewed by the Institutional Animal Care and Use Committee
either at GSK or by the ethical review process at the Institutes of
Brain Science and State Key Laboratory of Medical Neurobiology
of Fudan University, Shanghai, China.

Electrophysiology

Hippocampal Slice Preparation

Hippocampal slices were prepared as described previously
(Leutgeb et al., 2003; Cai et al., 2010; Zhu et al.,, 2011, 2012).
Briefly, after anesthesia with isoflurane, brains were removed
and immersed in pre-carbogenated (95% O,/5% CO;) ice-cold
ACSF (composition in mM: 119 Na(l, 2.5 KCl, 2.5 CaCl,-2H;0,
1.3 MgCl,-7H,0O, 1 NaH,POy, 11 glucose, 26.2 NaHCO3, pH
7.4). A piece of the entorhinal cortex was sliced off and the
two hemispheres glued with the midline surface on the slicing
platform of the sectioning system. Transverse hippocampal slices
(350 pwm) were cut and maintained in a submerged-incubation
chamber for at least 1 h at room temperature (25°C) and then
transferred to a submerged type recording chamber system and
further incubated for at least 30 min at 32°C under constant
perfusion (4 ml/min) with carbogenated ACSF.

Field Potential Recording

Field excitatory post-synaptic potentials were recorded in the
stratum radiatum (str. rad.) of the hippocampal CA1 area via
borosilicate micropipettes filled with ACSF. Bipolar stimulation
electrodes were used to stimulate SC fibers within the str. rad.
every minute. Recorded field potentials were amplified by StAmp
(Scientifica, UK) and then digitized at a sample frequency of
10 kHz and filtered (1 kHz low-pass, 1 Hz high-pass). The
stimulation strength was adjusted to ~40-50% of the maximum
fEPSP-slope value. Paired-pulse facilitation (PPF) of fEPSPs was
recorded at a 50 ms inter-stimuli interval.

Polyspike Recording

Repeated afferent stimulation of SCs for 30 s at 1 Hz evokes
multiple population spikes (PSs) in the CAl region due to
the reduction of GABAergic transmission (Luthi et al., 1997;
Saghatelyan et al.,, 2004). SCs were stimulated with a bipolar
platinum electrode placed in the str. rad. at a position ~400 pm
from the recording electrode. ACSF-filled glass pipettes had
a resistance of about 2 MOhm and were placed in the str.
pyramidale. The mono-phasic stimulation pulse width was 0.2 ms
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and the stimulation strength was adjusted to evoke a PS of
maximal amplitude. The CA3 region was sliced off from the
CA1 region to avoid bursts originating from recurrent excitation
of the CA3 region. The areas of the first and following PSs
were measured and compared to the area of the first spike.
To this end a line was drawn manually from the positive
peak after the first spike to the recovery of the last detectable
negative deflection. In Figures 4C,D such lines are indicated
with dotted lines. The upper limit of the first spike was defined
from the onset of the negative deflection to the first positive
maximum.

Whole-Cell Voltage-Clamp Recording

Miniature inhibitory post-synaptic currents of CAl neurons
were recorded using 3-5 MOhm pipettes filled with a solution
containing (in mM): Cs-gluconate 117, NaCl 2.8, EGTA-acid 0.4,
HEPES 20, tetraethylammonium chloride 5, ATP Mg 2, GTP Na,
0.2, glucose 10, pH 7.25. Tetrodotoxin (TTX; 1 wM) and CNQX
(25 wM) were added to the ACSF to prevent action potential
driven transmitter release and excitatory transmission. mIPSCs
were recorded by a Multiclamp 700B amplifier, digitalized with
Digidata 1440 and acquired by Clampex 10.2 software (Molecular
Devices, Silicon Valley, CA, USA). Membrane potentials were
held at —70 mV and currents were processed through 1 kHz
low-pass and 0.1 Hz high-pass filters. mIPSC amplitude and
frequency were analyzed using MiniAnalysis 6 (Synaptosoft Inc.,
Fort Lee, NJ, USA). mIPSCs were collected for intervals of three
min before (baseline), and 10 and 30 min after MPP* or vehicle
application. Statistical comparison of data was performed using
the Student’s or non-parametric tests for unpaired or paired
samples.

Statistical Analysis

Maximal fEPSP-slopes were determined and expressed in
percentages as mean =+ standard error of mean (SEM). The
values for different experimental conditions were compared
using t-test or non-parametric tests (Mann-Whitney U-test or
Wilcoxon signed-ranks test; SPSS). A p < 0.05 was considered
to indicate a statistically significant difference between two
groups. Brackets are used to indicate the range of significant
difference between groups for the corresponding time points
(p < 0.05). Drug experiments were interleaved with drug-free
controls.

Results

MPP* Modulates Excitatory Synaptic
Transmission of Schaffer Collateral-CA1
Synapses

To examine the effects of MPP™ on hippocampal synaptic
transmission in acute hippocampal slices from C57BL/6 mice,
fEPSPs were recorded in the str. rad. of the CAl region.
We observed that in response to the MPP* application an
enhancement of fEPSPs was induced within 15 min that was
followed by a depression of fEPSPs. We found that 10 uM
MPP™ decreased the fEPSP slope within 90 min of application to

78.6 & 4.7%, 30 WM to 69.9 % 8.3%, and 100 uM to 22.0 & 1.5%.
The averaged fEPSP slope 90 min after vehicle bath-application
was 102.3 £ 4.6% (N = 2, n = 4; Figure 1A).

We were interested to learn whether the acute MPP™ effect is
lasting after wash out.

The degree of recovery after MPP™ application was measured
20 min after MPP" wash-out (110th min). The fEPSP slope
values 20 min after MPP* wash-out were compared to 90th
min values (Figure 1B). fEPSPs recovered within 20 min of the
wash-out and the fEPSP slope increased from 94.6 £ 2.6% to
119.5 £ 6.1% and from 70.7 £ 4.6% to 97.7 + 8.1% at the
110th min in the 10 and 30 uM MPP™ (n = 4) experiments,
respectively. The fEPSP recovery after the wash-out of MPP™ was
significantly different for the 10 and 30 uM MPP™ experiments,
however, a restoration of fEPSP was not observed after 100 wM
MPP* (Figure 1B). These results imply a dose-dependent and
partially reversible acute modulation of hippocampal synaptic
transmission by MPP™.

The PPF of 30 and 100 pM MPP* groups decreased to
85.3 £ 4.4% and 91.4 & 2.6%, and was significantly different from
the PPF ratio 99.2 £ 3.2% of the control group. The PPF was
reduced significantly, however, to a similar degree at all tested
MPP™ concentration 30 min after its application (Figure 1C).

This shows that the PPF is highly sensitive toward MPP™
and already saturated at 10 WM. Whether the MPP™T effect
on PPF is linked to a reduction of presynaptic vesicle release
probability of the available vesicle storage pool as shown for
MPTP (Serulle et al., 2007) or to a disturbed interaction of parkin
and endocytosis regulating proteins (Trempe et al., 2009) remains
to be studied.

Inhibition of Monoamine Transporters does not
Alter MPP+ Mediated fEPSP Depression
Toxicological research has shown that MPPT enters
dopaminergic afferents through the DAT (Clarke and Reuben,
1995; Kitayama et al.,, 1998; Storch et al,, 2004). In addition,
monoamine transporters for norepinephrine and serotonin
also have affinities toward MPP* and are responsible to a
certain degree for its uptake (Pifl et al., 1996). There are several
publications showing that in the hippocampus, such monoamine
transporters are expressed in dopaminergic, norepinephrinergic,
and serotoninergic afferents (Borgkvist et al., 2012; Tang et al,,
2014). In order to examine whether the observed MPPt
effect on fEPSP depends on these transporters, we applied the
non-selective monoamine transporter inhibitor indatraline, or
co-applied this inhibitor with the norepinephrine/DAT inhibitor
nomifensine or together with the serotonin transporter inhibitor
fluoxetine. After pretreatment with the inhibitors for 30 min to
suppress the activity of monoamine transporters in hippocampal
slices, we observed that the MPP' mediated depression of fEPSP
became enhanced in comparison to control measurements.
In particular, co-application of 10 M indatraline (N = 3,
n = 9) and MPP* decreased fEPSPs to 39.7 4+ 11.8% within
the 100 min of recording (Figure 2A). In comparison to MPP*
alone (61.4 = 4.8%, N = 3, n = 8) this reduction was significantly
different. A similar effect on the MPP' mediated fEPSP decrease
was seen after co-application with 10 pM nomifensine and
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FIGURE 1 | Acute MPP* application alters excitatory synaptic wash-out. 10 and 30 pM MPP™ bath-application caused a depression of
transmission of Schaffer collateral-CA1 synapses. (A) MPP* modulates fEPSPs, which recovered within 20 min after MPP+ wash-out in comparison to
hippocampal synaptic transmission in a concentration-dependent manner. In the fEPSP slope values following 90 min of MPP application. (C) Paired-pulse
the CA1 region, application of 10, 30, and 100 uM MPP* caused a facilitation (PPF: 50 ms) of fEPSPs is reduced by MPP* within 30 min of MPP+
concentration dependent fEPSP enhancement followed by a fEPSP depression. application. The PPF was reduced significantly, however, to a similar degree at
The MPP* application started immediately after the sixth baseline recording all tested MPP* concentrations. Corresponding fEPSP traces are depicted
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10 wM fluoxetine (N = 3, n = 8) that caused a significantly larger
MPP* mediated fEPSP depression within 100 min (31.6 £ 9.6%;
Figure 2B).

Our results indicated that the suppression of monoamine
transporters does not attenuate the MPP™ effect on hippocampal
synaptic transmission, but facilitates the MPP* mediated fEPSP
depression. This observation might indicate that a reuptake
of MPP* by monoamine afferents is not required for the
MPP* mediated fEPSP depression. We could speculate here that
inhibition of monoamine transporters might enhance the MPP*
availability in the extracellular space.

MPP* Mediated fEPSP Depression does not
Depend on Dopamine Receptors

It has been shown that MPPT administration in the striatum
leads to an increase of extracellular dopamine concentration
(Obata, 2002; Faro et al., 2009). We could not find data in
the literature regarding MPP" induced dopamine release from
dopaminergic afferents in the hippocampus; however, it might
take place based on the similarities of their dopaminergic
pathway. Thus, we further investigated whether MPP™T affects
hippocampal synaptic transmission by activation of dopamine
receptors.
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FIGURE 2 | Effects of monoamine transporter antagonists on MPP*
mediated fEPSP depression. (A) Application of the dopamine transporter
(DAT) antagonist indatraline (Inda; 10 M, light gray filled triangle) 30 min before
MPP* application up to the end of recording did not prevent the enhancement
of fEPSPs, but increased the fEPSP depression. (B) Co-application of
nomifensine (Nomi) and fluoxetine (Fluo, light gray triangle) 30 min before MPP+
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Co-application of Nomi and Fluo (empty diamonds) did not alter fEPSPs in
baseline stability measurements. Baseline sample fEPSP traces and traces for
the 15-, and 90-min time points are shown above the graphs. The horizontal
scale bar indicates 10 ms and the vertical one 0.5 mV. The application period of
MPP*+ or monoamine transporter antagonists is shown with black or gray
horizontal lines, respectively. Brackets enclose all time points where the group
values are significant different from each other (*p < 0.05). The compared
groups are indicated with their corresponding symbols above the brackets.

Application of the dopamine D2-like receptor antagonist
haloperidol ~attenuated the MPP' induced fEPSP-slope
enhancement within the first 15~20 min to 103.3 + 3.1%
(N =5, n = 7) compared with the 115.6 & 2.8% in the MPP*
alone group (N = 3, n = 8). However, haloperidol did not
alter the MPP™ induced fEPSP depression within 120 min of
recording (Figures 3A,B).

The dopamine D2-like receptor antagonist sulpiride 40 uM
(N = 2, n = 7) did not affect the 30 pM MPP* induced
enhancement of synaptic transmission, and did not modulate
the corresponding fEPSP depression (20 min: 113.8 £ 9.3%;
Figure 3C).

At a concentration of 100 uM MPP™, 12 uM haloperidol co-
applied with dopamine D1-like receptor antagonist SCH23390
10 pM (N = 2, n = 4) did not antagonize the enhancement of
fEPSPs and did not alter the MPP™ mediated fEPSP depression
(Figure 3D).

Attenuation of Polyspike Appearance Indicates
Modulation of the Inhibitory System by MPP*
Previous experiments suggested that the MPP™ mediated fEPSP
modulation does not depend on monoamine transporters and
D1/D5- and D2-like dopamine receptors. Since it is known
that alteration of the GABAergic system can influence the
efficiency of synaptic transmission (Ault and Nadler, 1982; Davies
and Collingridge, 1996), we conducted experiments to study

the involvement of this inhibitory system in MPPT mediated
alteration of excitatory synaptic transmission.

A reduction of the strength of GABAergic inhibition can be
evoked by repetitive low-frequency stimulations, which cause
the appearance of additional PSs, referred to as “polyspikes”
(Saghatelyan et al., 2004). The effect of MPP™ on the appearance
of polyspikes was analyzed by measuring the area of the first and
second PS followed by normalization of the polyspike area to
the area of the first spike (Figures 4A,C,D). We observed that
after 30 min of 10 or 100 wM MPP™ application, the normalized
area of the second spike was 57.5 + 16.5% (N = 4, n = 8) and
50.6 £+ 20.4% (N = 3, n = 4). The value for the normalized
area before MPP* application was 178.1 & 14.4% (N = 5,
n = 9; Figures 4B,D). As shown in Figures 4A,B these values
are significantly different and demonstrate that MPP™ increases
the strength of the GABAergic system.

MPP™ Affects the Frequency of Miniature
Inhibitory Post-synaptic Currents (mIPSCs)

The previous experiments gave some hints that MPP' might
interfere with synaptic transmission by modulation of an
inhibitory system. To further expand this hypothesis, we
analyzed the effect of MPPT on mIPSCs using whole-cell
voltage clamp of CAl neurons. We found that 100 pM MPP™
increased the number of mIPSC events to a significant extent
in comparison to MPP™ free experiments (Figures 5A,B). The
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application period of MPP* or other compounds is shown with black or gray
horizontal lines, respectively. Brackets and asterisks indicate the significant
difference between groups (*p < 0.05). The compared groups are indicated
with their corresponding symbols used in the line graph.

mIPSC frequency increased to 171.6 & 24.4% of baseline after
10 min MPP™ treatment, which was significantly higher than
the 87.8 £ 11.2% of the control experiments (Figures 5D,F).
In contrast, the amplitude of the mIPSCs was not significantly
altered (Figures 5C,E). More specifically, after 10 min of
100 pM MPPT (N = 6, n = 6) the mIPSC amplitude
increased to 150.0 £ 37.1% of baseline values, whereas in
control measurements the amplitude was 86.9 & 17.5% (N = 2,
n = 4). 30 min after 100 pM MPP™' the mIPSC amplitude
increased further to 180.9 & 45.6% of baseline values (N = 4,
n = 6), whereas in control measurements the amplitude was
127.3 £ 21.4% (Figure 5E). The frequency after 100 uM MPP™ at
30 min was 255.6 £ 34.7% compared to 138.7 £ 36.0% in control
group (Figure 5F).

The holding current (HC) at 10 and 30 min was normalized
to the baseline holding (B) current [(HC;-HCg)/HCg*100%].
MPPT increased the HC by about 100% within 10 and 30 min.
This increase was significantly different to the 10 min value of the
control group (N = 2, n = 4). The HC after 10 and 30 min MPP*
application was also significantly different to their baseline values
(Figure 5G).

Role of GABA¢4ic Receptors in MPP*-Induced
Depression of Synaptic Transmission

To clarify if the MPP* induced fEPSP depression was mediated
by activation of GABAergic receptors; we co-applied MPP™
together with a GABAs or GABAp receptor antagonist. We
observed that the GABAj receptor antagonist bicuculline
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(10 pM; N = 5, n 12) significantly attenuated the
decrease of the fEPSP slope value within 45 min of MPP™
(Figure 6A). The normalized fEPSP slope value at the 90th
min was, with 64.6 £ 9.8%, significantly larger than the
19.6 £ 2.0% of the 100 uM MPP* group (N = 4, n = 8).
However, the GABA, receptor antagonist did not prevent
the initial fEPSP enhancement by MPPT. Application of the
GABAg receptor specific antagonist CGP52432 (CGP) did
not prevent fEPSP depression, but amplified and prolonged
the initial fEPSP enhancement induced by 30 pM MPP™
(Figure 6B).

Thus, we suggest that bicuculline-sensitive GABA 5 receptors
play a key role in the MPP* induced fEPSP depression and that
an inhibitory effect of MPP* on GABAp receptors might be the
cause for the initial fEPSP enhancement.

Discussion

The initial design of the experiments was based on the
assumption that MPPT might affect hippocampal synaptic
transmission of the dopaminergic system by modulation of
dopamine release from nerve terminals and/or effects at
dopamine receptors. This assumption was based on data showing
that MPP™ is actively transported into dopaminergic neurons of

the SN by the dopamine transporter complex (DAT) reducing
ATP production and loss of mitochondrial membrane potential
leading to the damage of the mitochondrial respiratory chain
complex. Since hippocampal dopaminergic afferents also contain
DAT (Lisman and Grace, 2005) it was reasonable to presume
that MPP™ induces axonopathy of hippocampal dopaminergic
afferents by entering the fibers through DAT. However, in
our experiments, none of the tested monoamine transporter
inhibitors attenuated the MPP* effect on fEPSPs, but on the
contrary, facilitated MPPT induced fEPSP depression. Since
application of the inhibitors alone did not affect fEPSPs in a
similar manner to MPP™T, we can exclude interference of MPP™*
with monoamine transporters as a cause of MPP* induced fEPSP
depression.

MPPT is known to induce dopamine release in the striatum by
modulation of voltage-dependent calcium channels and reversal
of DAT in striatal neurons (Inazu et al., 2001). In addition,
in other brain regions with dopaminergic neurons increases
of extracellular dopamine in response to the acute MPPT
application have been shown (Faro et al., 2009). As mentioned
before, hippocampal dopaminergic afferents express the majority
of transporters and channels similar to the soma, thus it was
assumed that an enhanced dopamine release might contribute
to the described MPP™ effects. In addition, dopamine D1/D5-
and D2-like receptors are expressed on pre- and post-synaptic
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compartments of hippocampal excitatory neurons (Goldsmith
and Joyce, 1994). In contrast to this assumption we did not notice
significant effects of D1/D5- and D2-like receptor antagonists on
MPP™ mediated fEPSP depression. Only the initial enhancement
of the fEPSPs was antagonized by blocking D2-like dopamine

receptors using the antagonist haloperidol, but not by sulpiride.
Since haloperidol is known to antagonize other receptors, such
as sigma, 5-HT2 and muscarinic receptors, it might be prudent
to suggest that D2-like receptors are not involved in MPP™
mediate effects on fEPSPs. In addition, co-application of D2-like
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FIGURE 6 | Effects of GABA, and GABAg receptor antagonists on
MPP+-mediated fEPSP depression. (A) Application of the GABAa
receptor antagonist bicuculline (Bic 10 puM, light gray filled triangles)

30 min before MPP* 100 pM application up to the end of the recording
significantly reduced the fEPSP-slope depression significantly in
comparison to MPP* 100 puM application only (black circles). Bicuculline
did not alter the fEPSP’s baseline stability. (B) Application of the GABAg
receptor antagonist CGP52432 (CGP) prolonged the MPP* mediated
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fEPSP enhancement but did not alter the degree of fEPSP depression.
Baseline fEPSP sample traces and traces for the 15- and 60-min time
points are shown above the graphs. The horizontal scale bar indicates
10 ms and the vertical one 0.5 mV. The application period of MPP* or
GABA receptor antagonists is shown with black or gray horizontal lines,
respectively. Brackets enclose the time points with a significant difference
between groups (*p < 0.05). The compared groups are indicated with
their corresponding symbols above the brackets.

and D1/D5-like dopamine receptor antagonists did not alter the
dynamic of fEPSP modulation by 100 uM MPP™*.

Since the present experiments indicated that the hippocampal
dopaminergic system is not required in the MPPY induced
fEPSP modulation we analyzed whether MPP*' causes
alteration of the hippocampal inhibitory system. The GABAergic
system is involved in regulation of synaptic transmission by
activation of GABAergic autoreceptors localized on presynaptic
compartments of inhibitory and excitatory neurons (Ault
and Nadler, 1982; Davies and Collingridge, 1996). These
autoreceptors have been shown to regulate the homeostatic
activity of the GABAergic system by feedback inhibition
(Axmacher and Draguhn, 2004) and are able to induce post-
synaptic shunt effects (Draguhn et al., 2008) by retardation and
suppression of the presynaptic vesicle release in excitatory nerve
terminals. The down regulation of excitatory vesicle release has
been shown for the GABAg receptor agonist baclofen, which
activates autoreceptors to enhance feed-forward inhibition and
reduces synaptic transmission in CA1l neurons (Davies and
Collingridge, 1996). In addition, a study of Ault and Nadler
(1982) indicated that 20 WM (%) baclofen can reduce the fEPSP
to 20 £ 7% of baseline in the hippocampus SC-CA1 pathway,

a level of fEPSP depression similar to our observation. Baclofen
is also known for its presynaptic effects in CAl neurons, for
reducing the mEPSC frequency without modulation of mEPSC
amplitude. This effect is thought to be mediated by direct
binding of baclofen to GABAp receptors and consequently does
not alter mIPSC frequency and amplitude (Scanziani et al.,
1992).

One way to analyze the strength of the inhibitory circuits
in the hippocampus is based on the appearances of polyspikes
in response to repeated stimulations and loss of inhibition
(Saghatelyan et al., 2004). We found that MPP™ attenuates the
appearance of polyspikes, which indicates that MPP* enhances
some aspects of the GABAergic system. In a further effort to
characterize the effects of MPP™ on the GABAergic system the
amplitude and frequency of mIPSCs were studied. Here MPP*
increased the mIPSC frequency without significant alteration of
their amplitude. Application of a GABAg receptor antagonist did
not prevent MPP™ mediated fEPSP depression, but increased the
MPP* induced fEPSP enhancement. Thus, the involvement of
autoreceptors, mainly mediated by GABAp receptor activation,
seems not to be responsible for the MPP' induced fEPSP
depression.
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However, our experiments with MPP* indicated an alteration
of the GABAergic system by other mechanisms, because
MPP* enhanced mIPSC frequency and the MPP* induced
fEPSP depression was only attenuated by a GABA, receptor
antagonist. That enhanced activity of GABAj receptors is
able to alter neuronal activity was shown, for instance, for
ethanol, which increases tonic inhibition through activation
of GABA, receptors, leading to a reduction of fEPSPs in
the DG region (Wei et al., 2004). In addition, an increased
extracellular GABA concentration was found to enhance tonic
inhibition of neuronal circuits with an overall impact on the
excitatory activity of neurons (Caraiscos et al., 2004). One of the
differences between GABAgp and GABA, receptors is that they
are prone to desensitization, which might contribute to the low
impact of GABAg receptors in tonic inhibition (Kanaide et al,,
2007). In addition, the GABA4 receptors that are involved in
tonic inhibition are based on a different subunit composition
and therefore distinguishable from GABAj, receptors that are
participating in phasic inhibition. The GABA, receptors that
mediate tonic inhibition require alpha5 subunits and respond
to low, ambient GABA concentration and have an extrasynaptic
localization (Caraiscos et al., 2004). The involvement of these
alpha5 subunits containing GABA4 receptors in a learning
task was indicated by an enhanced memory performance of
alpha5-null mutant mice (Collinson et al., 2002; Martin et al,,
2010) and by memory impairments due to an increase in
alpha5 GABAj, receptor function (Zurek et al, 2014). In
addition, ethanol induced impairments in discriminative tasks
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