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Mechanical force plays a fundamental role in neuronal development, physiology, and
regeneration. In particular, research has shown that force is involved in growth cone-
mediated axonal growth and guidance as well as stretch-induced elongation when
an organism increases in size after forming initial synaptic connections. However,
much of the details about the exact role of force in these fundamental processes
remain unknown. In this review, we highlight: (1) standing questions concerning
the role of mechanical force in axonal growth and guidance; and (2) different
experimental techniques used to quantify forces in axons and growth cones. We
believe that satisfying answers to these questions will require quantitative information
about the relationship between elongation, forces, cytoskeletal dynamics, axonal
transport, signaling, substrate adhesion, and stiffness contributing to directional
growth advance. Furthermore, we address why a wide range of force values
have been reported in the literature, and what these values mean in the context
of neuronal mechanics. We hope that this review will provide a guide for those
interested in studying the role of force in development and regeneration of neuronal
networks.

Keywords: growth cone biomechanics, axon elongation, mechanotransduction, cytoskeleton, biophysics, traction
force

Introduction

The role mechanical forces play in the development and maintenance of neuronal networks
has been increasingly recognized and addressed (Bray, 1979; Lamoureux et al, 1989; Suter
and Miller, 2011; Franze et al., 2013). Many aspects of axonal growth and development have
been examined in the context of mechanical force including cytoskeletal dynamics (Lee and
Suter, 2008; Schaefer et al., 2008), axonal transport (Loverde et al., 2011; O’Toole and Miller,
2011; Ahmed and Saif, 2014), growth cone guidance (Suter et al., 1998; Suter and Forscher,
2001; Moore et al., 2009), and molecular motor activity (Bridgman et al., 2001). It has been
shown that growth cones generate traction force (Lamoureux et al., 1989; Heidemann et al.,
1990) and respond to mechanical stress (Franze et al, 2009) or change in substrate rigidity
(Chan and Odde, 2008; Koch et al.,, 2012). Furthermore, it has been found that mechanical
tension induces axonal growth (Bray, 1984; Zheng et al, 1991; Pfister et al, 2004) and
that axonal tension is tightly regulated (Lamoureux et al, 1989; Rajagopalan et al., 2010;
Hyland et al., 2014). Despite significant advances, many aspects of the mechanical control
of axonal growth and guidance as well as maintenance of axons after synapse formation remain
unclear.
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Standing Questions Pertaining to the Role
of Force in Neuronal Processes

There is ample evidence that axonal elongation is influenced
by both biochemical and biomechanical factors. The neuronal
growth cone controls the direction and rate of axonal growth
by navigating the surrounding environment searching for
molecular, mechanical, and topographical cues. The machinery
responsible for sensing stiffness of the extracellular matrix
(ECM) as well as of neighboring cellular surfaces is primarily
powered by the actin cytoskeleton, which is highly dynamic
and is constantly turning over in the peripheral (P) domain
and transition (T) zone (Figure 1). Actin polymerizes at the
leading edge and is pulled backward by myosin motors, resulting
in retrograde F-actin flow (Lin et al, 1996; Medeiros et al.,
2006). Traction force is generated as a result of coupling
of the F-actin flow to cellular and ECM substrates through
adhesion receptors, such as immunoglobulin superfamily cell
adhesion molecules, N-cadherin, and integrins (Suter et al., 1998;
Bard et al., 2008; Shimada et al., 2008). Several reviews have
discussed this substrate-cytoskeletal coupling model including
what is known about the role of the cytoskeleton, molecular
motors as well as signaling pathways involved (Suter and
Forscher, 2000; Suter and Miller, 2011; Gomez and Letourneau,
2014).

How Does Substrate Stiffness Affect
Axonal Growth?

While it has been shown that the neuronal growth cone controls
the advance of axons in part by sensing and responding to the
substrate stiffness, little is known about the physical parameters
governing these mechanisms. According to the prevailing model,
the level of traction force is determined by the abundance
and strength of coupling between F-actin flow and cellular
surfaces or ECM. Coupling is influenced by the presence of
adhesion substrates as well as the stiffness of the environment.
The substrate must be compliant enough to allow adhesion to
mature and form strong coupling capable of bearing increasing
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FIGURE 1 | A simplified schematic of the cytoplasmic domains and
cytoskeletal structures in the growth cone. Traction force is generated as
a result of coupling of F-actin flow in the P domain to an extracellular adhesion
substrate.

tension. If the substrate is too stiff, newly formed adhesions
abruptly break as lack of compliance in the substrate results in
rapid building of tension. This “motor-clutch” model provides
a mechanism that inherently senses and responds to substrate
stiffness (Chan and Odde, 2008). Consistent with this model,
experiments have demonstrated the effect of substrate stiffness
on coupling and traction force development in growth cones,
but the consequences on neurite outgrowth are not fully clear
yet. Furthermore, different types of neuron responded differently
to substrate stiffness. For example, softer substrates were shown
to promote better neurite growth and branching in spinal cord
(Flanagan et al, 2002; Jiang et al., 2008) and hippocampal
neurons (Kostic et al., 2007), but not cortical neurons (Norman
and Aranda-Espinoza, 2010). Another study found that stiffer
substrates significantly increased neurite outgrowth in cortical
neurons (Stabenfeldt and LaPlaca, 2011). In a later study,
neurite outgrowth of dorsal root ganglion neurons from the
peripheral nervous system (PNS) were sensitive to changes
in substrate stiffness unlike hippocampal neurons from the
central nervous system (CNS; Koch et al., 2012), which seems
to contradict earlier observations (Franze et al.,, 2013). It is
important to note that the range of substrate stiffness employed
in these studies are not all the same, which makes a direct
comparison of the results more challenging, even for the same
type of neuron. The apparent discrepancies in the literature,
which indicate that different neurons may exhibit different
mechanosensitivity, have if anything kept alive the debate about
the effect of substrate stiffness on axonal growth, and certainly
challenged our understanding of the mechanisms underlying
mechanotransduction in neuronal growth cones.

Recently, it has been shown that compliance, necessary
to allow time for coupling to mature, is provided by elastic
micron-scale deformations in the actomyosin network and the
nascent adhesions themselves (Mejean et al., 2013). Adding to
the complexity is the observed biphasic dependence of traction
force on the substrate stiffness; i.e., traction force generated
by nonneuronal and neuronal cell has been shown to increase
linearly with the substrate stiffness but then plateau at sufficiently
higher substrate stiffness (Saez et al., 2005; Ghibaudo et al., 2008;
Koch et al., 2012; Trichet et al., 2012; Yip et al., 2013). This
biphasic behavior complicates comparative analysis amongst
studies using different experimental techniques or substrates of
different stiffness.

Do Growth Cones Respond to Mechanical
Force or Deformation?

The lack of understanding of the mechanisms underlying
mechanotransduction is manifested in the ongoing debate
whether cell respond to force (stress) or deformation (strain)
(Saez et al, 2005; Yip et al, 2013). In our lab, we have
shown that the absolute level of substrate deformation appears
to be a better predictor of adhesion-mediated growth cone
advance when compared to the level of traction force (Athamneh
et al, in press). We probed Aplysia growth cones with
microneedles (MNs) having stiffness ranging from 0.003 to
0.1 N/m, and found that the threshold deformation for a
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positive growth cone response was about 1 pm of MN
deflection regardless of how much force was exerted by the
growth cone (Athamneh et al, in press). Therefore, our data
highlight the fundamental role of strain vs. stress in controlling
the mechanical response during cell migration. Other studies
on mechanosensing have also shown evidence of micron-
scale deformations involved in sensing and responding to
substrate stiffness. For example, rat embryo fibroblasts cultured
on a micropillar array caused a constant deformation of
0.84 pm regardless of micropillar stiffness (Trichet et al., 2012).
Furthermore, it was found that the mechanical properties of
substrate-cytoskeleton linkages in Aplysia growth cones were
dominated by elastic structures that undergo micron-sized
reversible deformations (Mejean et al., 2013). It is not entirely
clear at this time what is the physiological significance of the
micron-scale deformation, or how can it be reconciled with
our understanding of mechanotransduction. However, these
micron-scale deformations imply that mechanotransduction
not only involves cell adhesion receptors and coupling
proteins (Suter et al., 1998; Bard et al, 2008; Shimada
et al, 2008), stretch-induced phosphorylation (Suter and
Forscher, 2001; Kostic et al., 2007) and activation of ionic
channels (Rajnicek and McCaig, 1997; Gomez et al, 2001;
Franze et al., 2009; Kerstein et al., 2013), but also involves
cytoskeletal reorganization spanning a significant micron-scale
spatial range. Clearly, more work is needed to understand
the relationship between events taking place at the nano-
scale molecular level and cytoskeletal and cytoplasmic domain
rearrangements at the micron-scale level in addition to
the signaling/feedback mechanisms spanning the two length
scales.

How Does the Growth Cone Build Up
Traction Force in Substrate-Mediated
Growth?

Related to feedback signaling transcending multiple length
scales is the question: how does the growth cone build up
traction force in substrate-mediated growth? We have shown that
traction force increases gradually over time as the growth cone
encounters a new adhesion substrate. The maximum level of the
force generated depends on the stiffness of the new substrate,
implying continuous strengthening of the clutch and/or active
recruitment of molecular motors (Athamneh et al., in press).
Similar results were reported for rat embryo fibroblasts cultured
on a micropillar array (Trichet et al., 2012). We also know from
previous studies that the growth cone response to a physically
restrained adhesion substrate includes adhesion formation, Src
tyrosine phosphorylation, slowing of retrograde F-actin flow,
increased actin assembly, advancing of microtubules, and leading
edge advance (Suter et al., 1998, 2004; Suter and Forscher,
2001; Lee and Suter, 2008; Schaefer et al., 2008). Despite
all this knowledge, the details of how the different events
are orchestrated to gradually build up traction force, up to
102 nN range (Athamneh et al, in press), and guide axonal
growth in the direction of the adhesion site are not entirely
clear.

What is the Actual Role of Molecular
Motors in Growth Cone Steering?

Experimental evidence suggests that in addition to actin and
microtubule assembly dynamics, a number of molecular motors
are involved in adhesion-mediated growth cone steering. Myosin
IT is essential for generating retrograde actin flow (Lin et al.,
1996; Bridgman et al., 2001), growth cone steering (Turney
and Bridgman, 2005), and actin-filament recycling in the
T zone (Medeiros et al, 2006). Dynein is important for
microtubule forward movement during growth cone steering
and axonal elongation (Myers et al., 2006; Grabham et al.,
2007; Roossien et al., 2014). Additionally, it has been suggested
that kinesin-5 is involved in growth cone steering by opposing
the action of cytoplasmic dynein to affect selective polarization
of microtubules in the P domain (Nadar et al, 2008).
Furthermore, kinesin-1-driven microtubule sliding promotes
initial axonal extension in developing Drosophila neurons (Lu
et al,, 2013). However, the details of motor activity during
adhesion-mediated growth, including what structures support
these motor activities in order to generate pushing/pulling
forces, are not known. Also not clear is how motor activity
in growth cones is influenced by different substrates (Lin
et al., 1996; Turney and Bridgman, 2005; Medeiros et al,
2006; Ketschek et al., 2007; Rosner et al., 2007; Kollins et al,,
2009).

What is the Role of Mechanical Force in
Regulating Axonal Transport?

On the axon level, it has been show that tension is tightly
regulated (Lamoureux et al, 1989; Rajagopalan et al., 2010;
Hyland et al., 2014) and induces axonal growth (Bray, 1984;
Zheng et al,, 1991; Chada et al., 1997; Pfister et al, 2004),
although the mechanism is not yet fully understood (Suter
and Miller, 2011). For axons to grow, components must
be transported. It follows that understanding the effect of
tension on axonal transport is key to understanding the
mechanisms of tension-induced growth, although very little
is known in this area (O’'Toole and Miller, 2011). Increased
tension has been shown to decrease fast mitochondria transport
in DRG neurons (Loverde et al., 2011), but increased fast
vesicles transport in Aplysia neurons (Ahmed and Saif,
2014). It was suggested that tension also influences motor
activity in the axon, although the details of what motors
are affected by tension are not known (Ahmed and Saif,
2014).

In summary, many questions related to the role of
force in axonal growth and guidance remain unanswered.
We believe that satisfying answers to these questions will
require quantitative information about the relationship
between elongation, forces, cytoskeletal dynamics, axonal
transport, signaling, substrate adhesion, and stiffness
contributing to axonal growth and guidance. In the following
section, we list experimental techniques used to quantify
forces in axons and growth cones and discuss relevant
findings.
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Techniques for Quantitative Force
Measurements in Axons and Growth
Cones

Force-Calibrated Microneedles

Bray (1984) was the first to use MNs to demonstrate that neurites
grow in response to mechanical tension. Earlier, Bray (1979)
used vectorial analysis of the outlines of individually isolated
sensory neurons to produce the first evidence that growth cones
pull neurites by generating traction force. First quantitative
force measurements in axons were performed using force-
calibrated MNs by the Heidemann group (Dennerll et al., 1988).
A permanent “rest tension” was identified in PC-12 neurites
ranging over three orders of magnitude (1072-10° nN) (Dennerll
et al., 1988). In these experiments, the MN was attached to the
neurite at a middle point between the soma and the growth
cone, and then moved rapidly perpendicular to the neurite’s long
axis causing tension in the neurite and needle deflection. The
same group later attached a MN to the soma of a cultured chick
sensory neuron and raised it so that the cell became attached
to the substrate at the growth cone only. Neurite tension was
found to be in the 10° nN range and strongly correlated with
growth cone advance (Lamoureux et al., 1989). Later, the same
group showed that axonal elongation correlated with applied
tension using a MN (Zheng et al., 1991). Recently, O'Toole et al.
(2015) developed a mathematical model to discern individual
subcellular forces within the axon and growth cone by relating
theses forces to the net axonal tension measured with a MN.
Determination of subcellular forces was enabled by labeling of
docked mitochondria to monitor subcellular strain. The mean
force generated by the rear of the growth cone and axon was
2.0 and 0.6 nN, respectively, suggesting that contractile forces are
generated in microtubule-rich regions at the rear of the growth
cone and along the axon. We have used MNs in our laboratory to
measure traction force in Aplysia growth cones as they respond
to an adhesion substrate (Athamneh et al., in press).

MNs provide a simple, direct, and effective method for
applying and measuring forces in neurons with sensitivity in the
1073 nN range, although the technique can be time-consuming.
It does not require specialized instruments or sophisticated
analysis procedures. However, the technique is very sensitive
to vibration and care must be taken not to cause damage to
the cell. Additionally, whereas MNs were effective in measuring
traction force in large Aplysia growth cones, they can be too
large for measurements in other cell types with smaller growth
cones. When cultured on poly-L-lysine, Aplysia growth cones on
average cover an area of approximately 1.25 x 10° pm? (Wu
et al., 2008), which is 5-10 times larger than growth cones from
other species.

Traction Force Microscopy

In traction force microscopy (TFM), cells are cultured on a
deformable substrate, which can be a hydrogel or a nanowire
array. Fluorescent beads are embedded as markers within the
substrate to facilitate optical detection of the deformation
caused by the cell. Force exerted by the cell is calculated using

measured deformations and the stiffness of the substrate. Due
to the popularity of TEM in the field of cell biomechanics,
numerous reviews and method articles have been published
describing the theory behind the techniques as well as methods
for substrate preparation and fabrication (Sabass et al., 2008;
Plotnikov et al.,, 2014; Style et al., 2014; Schwarz and Soiné,
2015). Bridgman et al. (2001) used the technique to study
the role of Myosin IIB in generation of filopodia-mediated
traction force in growth cones from mouse superior cervical
ganglion neurons. The traction force generated by a single
filopodium was found to be in the 10° nN range and partially
reduced in Myosin IIB knock-out neurons, suggesting that
Myosin IIB was acting in combination with other myosins
(Bridgman et al., 2001). Chan and Odde (2008) used TFM
to validate their “motor-clutch” model. They identified a 1
kPa threshold for substrate stiffness below which a single
filopodium of embryonic-chick—forebrain neurons exhibited
oscillatory load-and-fail dynamics, with slower retrograde flow
and higher traction forces. On substrates stiffer than 1 kPa,
filopodia showed frictional slippage, with fast retrograde flow
and low traction forces (Chan and Odde, 2008). Koch et al.
(2012) compared traction forces generated by growth cones of rat
dorsal root ganglion and hippocampal neurons and found that
the growth cones of PNS neurons produce higher traction forces
compared to CNS neurons (10° vs. 107! nN range). For both
neuron types, traction forced increased with increasing stiffness,
which is consistent with other studies. Toriyama et al. (2013)
observed that netrin-1 positively regulates traction force in the
growth cone of rat hippocampal neurons through Pak1-mediated
shootinl phosphorylation, which enhances F-actin-substrate
coupling leading to higher force generation. Traction force was
found to be highest in the actin-rich P domain of Aplysia growth
cones, and although traction force redistributes continuously,
the net resulting neurite tension was tightly regulated around
3.1 nN (Hyland et al., 2014). In NG108-15 neuroblastoma cells
neurite tension was measured as 0.6 nN (Betz et al., 2011),
which is consistent with earlier neurite tension measurements
in PC-12 cells using MNs (Dennerll et al., 1988). Finally, using
a microfabricated nanowire array TFM revealed a wide range
of traction forces (1072-10' nN) in the growth cones of rat
dorsal root ganglion neurons depending on nanowire stiffness
(Hallstrom et al., 2010).

While TFM provides high-resolution force measurements at
the growth cone and single filopodia levels, the uniformity of
the substrate stiffness does not mimic the complex environment
in vivo particularly well. The introduction of a stiffness gradient
or a defined stiffness micropattern for neurons to interact with
remains a technical challenge. Accordingly, force values reported
using conventional TFM on a uniform substrate may represent a
“quasi” steady state condition and not traction force generation
in response to a change in adhesion substrate.

Optical Tweezers

The optical tweezer (OT; or optical trap) setup consists of a
highly focused infrared laser beam that can physically hold (i.e.,
trap) a microbead. The tweezers can be calibrated to know how
much force (typically in 1073-10° nN range) is required to
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remove the trapped bead from its focal center. Because of its
high force sensitivity, this technique has been extensively used
to measure molecular forces produced by proteins, especially
molecular motors (Elting and Spudich, 2012). Using OTs, it
was shown that the forces generated by the filopodia in the
growth cones of CNS (hippocampal) neurons were larger when
compared with PNS (Dorsal Root Ganglia) neurons (5 x 1073
vs. 1-2 x 1072 nN) (Amin et al., 2013). The lamellipodia of both
CNS and PNS neurons generated similar lateral forces level up to
20 x 1073 nN, but exerted larger vertical force in PNS neurons
(4 x 1072 vs. 1-5 x 1072 nN) (Amin et al, 2013). Mejean
et al. (2013) used an optical trap to characterize the mechanics
of apCAM-mediated nascent adhesions in Aplysia growth cones
and found that for forces in the 1073 nN scale, nascent adhesions
were dominated by an elastic structure, which can be reversibly
deformed by up to 1 pm (Mejean et al., 2013). These results
suggested a substrate-cytoskeleton interface dominated by a
compliant cross-linked network and not a number of stiff
molecular springs in parallel. The compliance of the network
may provide more time for nascent adhesions to strengthen
before larger forces develop. Also using an optical trap, Bard
et al. (2008) studied N-cadherin-mediated substrate-cytoskeletal
coupling and found that at low forces (<16 x 1073 nN) slippage
of cadherin-cytoskeleton bonds occurred, while at high forces
actin accumulated strengthening nascent N-cadherin coupling.
Moore et al. (2009) showed that the advancing growth cones
of spinal commissural neurons generated traction force greater
than 63 x 107> nN when confronted with a restrained netrin-
1 bead (Moore et al., 2009). Without the bead, the same growth
cone generated 9 x 107 nN local traction force as determined
by TFM.

Using OTs for force measurements can be technically
involved. However, once established, the technique can provide
superb resolution and spatial selectivity. It also overcomes the
issue of substrate uniformity suffered by TFM. A major limitation
of OTs is that the level of force that can be applied without
causing damage to the cells is in the 107° nN range. Thus,
OTs typically cannot sustain enough force to induce adhesion-
mediated growth cone advance or steering responses (Bard et al.,
2008; Shahapure et al., 2010; Amin et al., 2013; Mejean et al.,
2013), especially in neurons with large growth cones such as
Aplysia.

Atomic Force Microscopy

Atomic force microscopy (AFM) can be used both for
applying and measuring forces in neurons (Franze et al,
2009), although it has been mostly used for imaging and
measuring cell topography and elasticity (McNally and Borgens,
2004; Grzywa et al., 2006; Xiong et al., 2009; Spedden et al,
2012). Using AFM in the lateral force measurements mode,
Fuhs et al. (2013) measured the forward pushing forces of
mouse retinal ganglion cell and NG108-15 growth cones
and found them to be on the order of 107! nN. In the
same paper, the authors reported that the total traction force
generated by the NGI108-15 growth cones as measured by
TFM was two orders of magnitude higher. While AFM lateral
force measurements may appear to be an ideal solution

for measuring traction force in growth cones, significant
technical difficulties exist particularly related to calibrating the
torsional response of the AFM cantilever (Karhu et al., 2009).
Karhu et al. (2009) showed that frictional-force measurement
using AFM was possible in longitudinal imaging mode and
provided several advantages over lateral imaging mode. In
our lab, we have developed a new AFM-based method for
measuring retrograde traction force in growth cones that
does not require lateral force calibration by following the
approach developed by Karhu et al. (2009). We used the new
method with an apCAM-coated colloidal cantilever to measure
the temporal traction force profile in Aplysia growth cones
as they encounter a physically-restrained adhesion substrate
(Athamneh et al,, in press). In summary, commercially available
AFM systems provide high-resolution data over a large force
range from 1072 to 10?> nN. However, calibration and data
analysis require significant involvement. Additionally, care
must be taken to account for noise and instrumental drift,
especially in temporal measurements for an extended period
of time.

MEMS Force Sensors

Microelectromechanical system (MEMS)-based force sensors are
microfabricated from a single silicon crystal and can provide
high-resolution quantitative measurements over a large dynamic
range (Rajagopalan and Saif, 2011). Using a MEMS sensor, it
was found that axons of embryonic Drosophila neurons that
have formed neuromuscular junctions maintain a rest tension
of 1-13 nN (Siechen et al., 2009; Rajagopalan et al., 2010),
which is in good agreement with the in vitro studies determining
neurite rest tension with either TEM (Betz et al., 2011; Hyland
et al.,, 2014) or MNs (Dennerll et al., 1988). Axons responded to
perturbation of the rest tension by either relaxing or contracting
to restore original rest tension (Rajagopalan et al., 2010). The
advantages and limitations of MEMS-based force sensors for the
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FIGURE 2 | Reported literature values of force in neurons using
different experimental techniques (AFM, atomic force microscopy;
MEMS, microelectromechanical system-based force sensors; MN,
microneedle; OT, optical tweezers; TFM, traction force microscopy).

Frontiers in Cellular Neuroscience | www.frontiersin.org

September 2015 | Volume 9 | Article 359


http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

Athamneh and Suter

Quantifying mechanical force in neurons

TABLE 1 | Force measurements reported in the literature for different cell types and experimental techniques.

Cell type Part of the cell probed Reported force value (nN)

Lowest Highest Mean Method Reference
PC-12 Axon 0 10 0.244 MN Dennerll et al. (1988)
Embryonic chick sensory neurons Axon 0.46 6 MN Lamoureux et al. (1989)
Superior cervical ganglion neurons Filopodia 1.6 0.97 TFM Bridgman et al. (2001)
Aplysia Californica bag cell neurons Growth cones 0.5 8.5 3.1 TFM Hyland et al. (2014)
Rat dorsal root ganglion Growth cones 1.179 0.537 TFM Koch et al. (2012)
Rat central nervous systems neurons Growth cones 0.247 0.071 TFM Koch et al. (2012)
Rat dorsal root ganglion neurons Growth cones 0.015 0.08 TFM wire Hallstrém et al. (2010)
Rat hippocampal and dorsal root ganglia Filopodia 0.001 0.005 0.005 oT Amin et al. (2013)
Rat hippocampal and dorsal root ganglia Lamellipodia 0.001 0.02 0.02 oT Amin et al. (2013)
Aplysia Californica bag cell neurons Lamellipodia 0.0001 0.1 oT Mejean et al. (2013)
Spinal commissural neuron Growth cone 0.0683 oT Moore et al. (2009)
Spinal commissural neuron Growth cone 0.002 0.037 0.009 TFM Moore et al. (2009)
NG108-15 Axon 0.602 TFM Betz et al. (2011)
Chick sensory neurons Axon 0.4 4.8 1.3 MN O'Toole et al. (2015)
Drosophila motor neurons in vivo Axon 1 13 7 MEMS Rajagopalan et al. (2010)
NG108-15 Growth cone 0.15 0.102 AFM Fuhs et al. (2013)
Mouse retinal ganglion cell Growth cone 0.17 0.115 AFM Fuhs et al. (2013)
Aplysia Californica bag cell neurons Growth cone 82 158 120 AFM Athamneh et al. (in press)
Aplysia Californica bag cell neurons Growth cone 2.5 92.2 20.3 MN Athamneh et al. (in press)

AFM, atomic force microscopy; MEMS, microelectromechanical system-based force sensors; MN, microneedle; OT, optical tweezers; TFM, traction force microscopy.

study of cell biomechanics have been reviewed by Rajagopalan
and Saif (2011).

Summary and Conclusions

Figure 2 and Table 1 show force values reported in the
literature for different parts of the neuron using different
experimental techniques. The graph illustrates the wide range
of force values even for the same experimental technique or
the same part of the neuron. For example, values reported
for traction force generated by the growth cone ranged over
five orders of magnitude. Indeed, different force values can be
expected for different types of neurons and different sizes of
neuronal areas probed, which will result in different amounts
of cytoskeletal structures and motors that are engaged in the
process. Furthermore, different experimental techniques may
provide slightly different values for the same neuron and
area. However, it is possible that some of the variations in
force values could be due to calibration problems. If anything,
the discrepancy illustrated in Figure 2 suggests that extreme
caution must be taken when comparing force values reported
in different studies. Setting up standardized calibration methods
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