
ORIGINAL RESEARCH
published: 12 October 2015

doi: 10.3389/fncel.2015.00386

Regulatory domain or CpG site
variation in SLC12A5, encoding the
chloride transporter KCC2, in human
autism and schizophrenia
Nancy D. Merner 1,2, Madison R. Chandler 1, Cynthia Bourassa 2, Bo Liang 3,
Arjun R. Khanna 4, Patrick Dion 2, Guy A. Rouleau 2* and Kristopher T. Kahle 4,5* †

1 Harrison School of Pharmacy, Department of Drug Discovery and Development, Auburn University, Auburn, AL, USA,
2 Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, McGill University, Montréal, QC,
Canada, 3 Department of Biological Chemistry and Molecular Pharmacology (BCMP), Harvard Medical School, Boston, MA,
USA, 4 Department of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA, 5 Manton
Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA, USA

Edited by:
Ludovic MARTIN,

Université de Paris V, France

Reviewed by:
Melanie A Woodin,

University of Toronto, Canada
Wen-Jun Gao,

Drexel University College of Medicine,
USA

*Correspondence:
Guy A. Rouleau,

Department of Neurology and
Neurosurgery, Montreal Neurological

Hospital and Institute, Montréal,
QC, Canada

guy.rouleau@mcgill.ca;
Kristopher T. Kahle,

Department of Neurosurgery, Boston
Children’s Hospital, Harvard Medical

School, 1309 Enders Research
Building, 320 Longwood Avenue,

Boston, MA 02115, USA
kkahle@enders.tch.harvard.edu

†Present address:
Kristopher T. Kahle,

Department of Neurosurgery and
Pediatrics, Yale School of Medicine,

Yale Program on Neurogenetics,
New Haven, CT, USA

Received: 12 July 2015
Accepted: 16 September 2015
Published: 12 October 2015

Citation:
Merner ND, Chandler MR,

Bourassa C, Liang B, Khanna AR,
Dion P, Rouleau GA and Kahle KT
(2015) Regulatory domain or CpG

site variation in SLC12A5, encoding
the chloride transporter KCC2, in
human autism and schizophrenia.

Front. Cell. Neurosci. 9:386.
doi: 10.3389/fncel.2015.00386

Many encoded gene products responsible for neurodevelopmental disorders (NDs) like
autism spectrum disorders (ASD), schizophrenia (SCZ), intellectual disability (ID), and
idiopathic generalized epilepsy (IGE) converge on networks controlling synaptic function.
An increase in KCC2 (SLC12A5) Cl− transporter activity drives the developmental
GABA excitatory-inhibitory sequence, but the role of KCC2 in human NDs is essentially
unknown. Here, we report two rare, non-synonymous (NS), functionally-impairing
variants in the KCC2 C-terminal regulatory domain (CTRD) in human ASD (R952H and
R1049C) and SCZ (R952H) previously linked with IGE and familial febrile seizures, and
another novel NS KCC2 variant in ASD (R1048W) with highly-predicted pathogenicity.
Exome data from 2517 simplex families in the ASD Simon Simplex Collection (SSC)
revealed significantly more KCC2 CTRD variants in ASD cases than controls, and
interestingly, these were more often synonymous and predicted to disrupt or introduce a
CpG site. Furthermore, full gene analysis showed ASD cases are more likely to contain
rare KCC2 variants affecting CpG sites than controls. These data suggest genetically-
encoded dysregulation of KCC2-dependent GABA signaling may contribute to multiple
human NDs.
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Introduction

Neurodevelopmental disorders (NDs) encompass a wide range of diseases, all of which feature
some element of impaired brain development, and are associated with cognitive, neurological,
and/or psychiatric dysfunction (Rubenstein, 2011). Common NDs include intellectual disability
(ID), autism spectrum disorder (ASD), schizophrenia (SCZ), and epilepsy (Guilmatre et al.,
2009; Bozzi et al., 2012), and although classified into distinct disease categories, these disorders
show phenotypic overlap and shared genetic risk factors (Mitchell, 2011; Coe et al., 2012).
The genetic architecture of NDs is complex, with oliogenic contributions converging on the
disruption of the structure, function, and/or plasticity of neuronal networks (Pescosolido
et al., 2012). Genomics has shed insight into mechanisms underlying the overlap among
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the NDs, with copy number variant, exome sequencing, and
genome-wide association study data suggesting a spectrum
of neurodevelopmental pathology indexed by mutational load
or severity (Krystal and State, 2014). Emerging evidence has
shown many of the encoded gene products responsible for
individual NDs converge on a relatively limited number of
protein-protein interaction networks that operate in the same
molecular processes, such as those controlling synaptic structure
and function (Gilman et al., 2011; Voineagu et al., 2011; O’Roak
et al., 2012; EPGP Collaborative et al., 2013; de Rubeis et al., 2014;
Krumm et al., 2014).

Small, diverse populations of inhibitory GABAergic
interneurons regulate the activity of excitatory neurons and
their involved circuits. If inhibition is impaired, disturbance
in excitatory/inhibitory balance can lead to the dysfunction
of cognitive processes (Braat and Kooy, 2015). A common
feature among different NDs is impaired GABAergic inhibition
(Hashimoto et al., 2008; Kang and Macdonald, 2009; Schmidt
and Mirnics, 2014), and neuronal hyperexcitability has been
implicated in the pathogenesis of ASD (Coghlan et al., 2012),
SCZ (Lewis et al., 2012), Rett syndrome (Medrihan et al.,
2008; Chao et al., 2010), Tourette syndrome (Kalanithi
et al., 2005), tuberous sclerosis (Talos et al., 2012), and
neurofibromatosis type I (Cui et al., 2008). The strong
bidirectional association between NDs and epilepsy suggests
impaired GABAergic inhibition as a potential pathogenic
mechanism of mutual susceptibility (Tuchman and Rapin,
2002; Brooks-Kayal, 2010; Chang et al., 2011; Deidda et al.,
2014).

Ionotropic GABAARs are ligand-gated Cl− channels,
and the post-synaptic response to GABAAR activation is
significantly modulated by the intraneuronal concentration
of Cl– ([Cl–]i). In immature neurons, [Cl−]i is sufficiently
high that GABAAR activation triggers giant depolarizing
potentials, which characterize early network activity and
stimulate Ca2+-dependent synaptogenesis (Ben-Ari et al.,
1989; Belhage et al., 1998). A post-natal increase in the
functional expression of KCC2 (SLC12A5), a cation-Cl−

cotransporter (CCC) mediating Cl- efflux, lowers [Cl−]i in
post-synaptic neurons such that GABAAR activation elicits
membrane hyperpolarization and fast synaptic inhibition
(Kaila et al., 2014). KCC2 is required for the normal
developmental GABA excitatory-inhibitory sequence, and
KCC2 deficiency disrupts normal brain development and results
in network hyperexcitability (Hubner et al., 2001; Hekmat-
Scafe et al., 2006, 2010; Tanis et al., 2009; Bellemer et al.,
2011).

Abnormal functional expression of KCC2 or its Cl−

importing cousin NKCC1, and associated impairment of GABA
inhibition, have been documented in rodent models of multiple
different NDs [see Table 1 in Deidda et al. (2014)]. For
example, in mouse models of Fragile X syndrome, the most
common genetic cause of human autism, there is a significantly
delayed developmental switch to GABAergic inhibition due
to prolonged elevation in neuronal [Cl−]i due in part to
decreased KCC2 expression (Lemonnier et al., 2013), and
blockade of up-regulated NKCC1-mediated Cl− import in this

context normalizes [Cl−]i, electrophysiological responses, and
autistic-like behaviors in these mice (Tyzio et al., 2014), and
improves autistic behaviors in humans (Lemonnier et al., 2012).
However, the role of KCC2 in the human nervous system and
in NDs is essentially unknown. Identification of such variants
could elucidate the molecular pathophysiology of these diseases
and identify therapeutic targets.

The KCC2 C-terminal regulatory domain (CTRD) is a
critical region of transporter function, and contains multiple
phosphorylated residues (such as Thr906/Thr1007 and Ser940
(reviewed in Blaesse et al., 2009; Chamma et al., 2012;
Kahle et al., 2013; Medina et al., 2014); and functional
domains (e.g., Acton et al., 2012) that establish context-
appropriate transport activity (de Los Heros et al., 2014; see
Figure 1). We recently identified an enrichment of KCC2 non-
synonymous (NS) alleles in French Canadian (FC) idiopathic
generalized epilepsy (IGE) cases compared to controls that
included two rare and functional IGE risk alleles (KCC2
R952H and R1049C; Kahle et al., 2014). Both of these
variants decrease KCC2-mediated Cl− extrusion and render
neuronal GABA activity more depolarized by decreasing the
amount of Ser940 stimulatory phosphorylation (Kahle et al.,
2014). KCC2 R952H was also identified as a cause of an
inherited form of febrile seizures in an Australian family, and
shown to impair dendritic spine formation (Puskarjov et al.,
2014).

Here, we sought to determine if risk alleles in the KCC2
CTRD (amino acids 894–1086; NP_065759) were present in
large FC cohorts of ASD, SCZ, or ID by utilizing a similar
targeted genetic sequencing approach we successfully utilized for
IGE (Kahle et al., 2014). We speculated that genetic mutations
and/or functionally impairing variants in the KCC2 CTRDmight
contribute to NDs.

Materials and Methods

Clinical Sampling
The three disease cohorts of ASD, SCZ, and ID, were established
as a part of the Synapse to Disease (S2D) project initiated
by Dr. Guy Rouleau at Montreal Neurological Institute and
McGill University in order to identify genes that cause or
predispose to numerous disorders of brain development. The
sample characteristics of these FC cohorts have previously been
described (Gauthier et al., 2005; Hamdan et al., 2009; Awadalla
et al., 2010).

KCC2 C-Terminus Targeted Screening
We implemented a targeted DNA Sanger sequencing approach
to screen the 3′ end of SLC12A5 that encodes the CTRD
of KCC2 (Kahle et al., 2014). Specifically, we targeted the
coding nucleotides in exons 21–25 of SLC12A5 [NM_020708.4
(NP_065759 amino acids 894–1086) or NM_001134771
(NP_001128243 amino acids 917–1110)] by following the same
protocol outlined in Kahle et al. (2014); a total of 427 ASD, 143
SCZ and 190 ID cases were screened. A total of 1214 matched
controls were previously screened for mutations in the targeted
region of KCC2 (Kahle et al., 2014).
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TABLE 1 | SLC12A5 variants detected in the FC ASD cohort through the targeted screening of the C-terminus.

Variants detected in the screened region Detection of variants in Quebec ASD cohort FC population controls (Total: 1214 controls)

NM_020708.4 NM_001134771.1 rs ID Number Number Allele Number Allele p-value Odds
NP_065759 NP_001128243 of probands of alleles frequency (%) of alleles frequency (%) ratio

c.2855 G > A c.2924 G > A rs142740233 2/427 2/854 0.23 5/2428 0.21 1.00 1.14
p.R952H p.R975H CI95[0.1–7.0]

c.2961 G > A c.3030 G > A rs550491448 1/427 1/854 0.12 0/2428 0.00 0.26 Inf
p.P987P p.P1010P CI95[0.1-Inf]

c.3142 C > T c.3211C > T rs369042030 1/427 1/854 0.12 0/2428 0.00 0.26 Inf
p.R1048W p.R1071W CI95[0.1-Inf]

c.3145 C > T c.3214 C > T – 1/427 1/854 0.12 1/2428 4.12 × 10−4 0.45 2.84
p.R1049C p.R1072C CI95[0.0–223.0]

Total number of variants detected 5 5 – 6 – 0.17 2.37
CI95[0.6–9.4]

Protein Sequence Alignment and In Silico
Prediction Programs
ClustalW (Larkin et al., 2007) and WebLogo (Crooks et al.,
2004) were used to align different orthologues of the KCC2
to determine the evolutionary conservation of the novel KCC2
variant, R1048W (Figures 1B,C). Conservation of KCC2 R952H
and R1049C were previously demonstrated (Kahle et al., 2014).

Conservation of the KCC2 protein was determined by aligning
the following orthologues: Homo sapiens (NP_065759), Macaca
mulatta (XM_001104494.2_prot), Bos Taurus (NP_001193309),
Rattus norvegicus (NP_599190), Mus musculus (NP_065066),
Tetraodon nigroviridis (ENSTNIT00000021299), andDanio rerio
(ENSDART00000009569). Regarding the WebLogo output, the
y-axis serves as a means of determining relative conservation

FIGURE 1 | KCC2 (SLC12A5) variants in human autism spectrum disorder (ASD) and schizophrenia (SCZ). (A) DNA chromatograms illustrating the
detection of KCC2 variants in ASD (c.2855 G > A [p.R952H]; c.3145 C > T [p.R1049C]; and c.3142 C > T [p.R1048W]); and SCZ (p.R952H) via Sanger
sequencing. (B,C) Evolutionary conservation of amino acid p.R1048; and conservation of amino acids p.R952 and p.R1049 shown in Kahle et al. (2014).
(D) Schematic representation of KCC2 (human). Orange dots indicate the positions of the known critical phospho-regulatory residues p.T906, p.S940, p.T1007, and
p.Y1087 (reviewed in Chamma et al., 2012; Kahle et al., 2013); Pink region denotes the KCC2 “ISO” domain, required for hyperpolarizing GABAergic transmission
(Acton et al., 2012). Red dots depict the identified IGE mutations, p.R952 and p.R1049; green dots depict the identified ASD variants, p.R952H, p.R1049C, and
p.R1048W; yellow dots indicate the identified SCZ variant p.R952H. (E) The modeled structure of the human KCC2 C-terminal domain (CTRD), based on homology
modeling by I-TASSER (Roy et al., 2010) using a prokaryotic member of the CCC family (PDB code 3g40) (for details, see “Materials and Methods” Section). Color
scheme same as in (D). Note the proximity of the novel p.R1048W ASD variant and the previously described KCC2 IGE variants, as well as their relation to important
regulatory residues and domains. (F) Venn diagram showing overlap of KCC2 variants in multiple neurodevelopmental phenotypes (IGE, ASD, and SCZ) that exhibit
dysfunctional GABA signaling (Deidda et al., 2014).
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and is not an actual measurement; the height of each
stack at each amino acid position is relative to the overall
conservation at that position, the height of the letters within
each stack indicate the relative frequencies for each amino
acid possibility, and the width of each stack corresponds to
the proportion of valid readings at that position (indicating
if sequence gaps exist between the shown amino acids).
The effects of amino acid substitutions on protein function
were predicted using MutationTaster (Schwarz et al., 2010),
Panther (Mi et al., 2005), and Polyphen-2 (Adzhubei et al.,
2010).

Exome Sequencing Analysis
Iossifov et al. (2014) recently reported the whole exome
sequencing of 2517 ASD simplex families from the Simon
Simplex Collection (SSC; Fischbach and Lord, 2010). They
carried out a de novo mutation analysis that generated an
extensive list of de novo variants and recurrently hit genes that
could be subdivided with different clinical phenotypes (Iossifov
et al., 2014). These exome sequencing data are now available
through the NDAR (National Database of Autism Research);
we were granted access to variant calling files to further assess
SLC12A5.

Our analysis involved filtering for sample type to include only
probands (.p1), accession number (NM_001134771) to include
only SLC12A5, and ‘‘_par-races_’’ (we either selected ‘‘white,
white’’ or ‘‘african-amer, african-amer’’) to include probands
with either two Caucasian parents (EAASD cases) or two African
American parents (AA ASD cases), respectively. According to
Supplementary Table 1 in Iossifov et al. (2014), there were 1892
EA ASD cases and 82 AA ASD cases. We carried out a rare
variant (<1% MAF) analysis; therefore, we filtered out SNPs
(single nucleotide polymorphisms) with a MAF >1% in each
ethnic group. This resulted in a list of rare coding variants for
the full gene and our targeted gene region. Furthermore, we
used the EA and AA Exome Variant Server (EVS) data (NHLBI
GO Exome Sequencing Project)1 as our ethnic controls; there
were a total of 4300 EA controls and 2203 AA controls exome
sequenced. We generated lists of rare variants that were detected
in each control cohort.

Statistical Analysis
All statistical genetic analysis was carried out using the program
R (version 2.15.1). Fisher tests or Mantel-Haenzel Chi Squared

1http://evs.gs.washington.edu/EVS/

tests were carried out to generate the p-values and odds ratios
where appropriate.

Results

Using Sanger sequencing, we examined the 3′ end of SLC12A5
that encodes the KCC2 CTRD (amino acids 894–1086;
NP_065759) in three large FC disease cohorts of ASD, SCZ, or ID
that were collected as part of the S2D project (see ‘‘Materials and
Methods’’ Section). In contrast to our previous analysis in IGE
which identified an enrichment of KCC2NS CTRD alleles in IGE
cases compared to controls (p-value = 7.50 × 10−3; Kahle et al.,
2014), analysis of our initial ASD, SCZ or ID sequencing results
did not show an enrichment of NS KCC2 CTRD alleles in cases
(Table 1). Interestingly, however, three different heterozygous
and NS KCC2 variants were detected in the ASD cohort; these
included the two previously-identified IGE risk variants, R952H
and R1049C (Kahle et al., 2014), and R1048W (Figure 1 and
Table 1).

R1048 in KCC2 is a highly conserved residue (Figure 1),
and a substitution for a tryptophan at this position is predicted
to be highly pathogenic using multiple in silico bioinformatics
programs (Table 2). This variant is extremely rare; it was not
detected in 2428 FC alleles, but this number of controls was too
small to generate a significant p-value (Table 1). Indeed, power
analysis determined that 50,000 control alleles would need to be
genotyped, assuming the allele frequencies remain the same and
a p-value of 0.0167 is significant (after a Bonferroni correction).
This limitation is common when identifying rare genetic risk
factors, and also relevant for the R1049C variant (Table 1),
where 100,000 control alleles would need to be genotyped
to reach significance. R952H was previously determined to
have an allele frequency of 0.66% in the FC IGE cohort
(Kahle et al., 2014) compared to 0.21% in FC controls and
0.23% in the FC ASD cohort (Table 1). One SCZ patient was
also determined to carry R925H, corresponding to an allele
frequency of 0.35% (Table 3). Two heterozygous synonymous
variants were also detected in our screening, including P987P
in an ASD patient (Table 1), and D935D in an SCZ patient
(Table 3).

From a functional standpoint, both R952H and R1049C
impair KCC2 transporter activity (Kahle et al., 2014); they
significantly decrease KCC2-mediated Cl− extrusion capacity
in neurons, render EGly less hyperpolarized compared to WT
KCC2, decrease the level of stimulatory phosphorylation of
Ser940, act in a dominant-negative manner consistent with

TABLE 2 | Predicted pathogenicity of the novel KCC2 (SLC12A5) variant.

Variant name Prediction programs

NM_020708.4 NM_001134771.1 Mutation taster Panther Polyphen
NP_065759 NP_001128243

c.3142 C > T c.3211C > T Disease P (probability): Pdeleterious = 0.80942 Possibly damaging
p.R1048W p.R1071W causing∗ 0.9999 (0.813)

∗Predicted specifically to disrupt the function of the last cytoplasmic domain.
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TABLE 3 | SLC12A5 variants detected in the SCZ cohort through the targeted screening of the C-terminus.

Variants detected in the screened region Detection of variants in SCZ cohort FC population controls (Total: 1214 controls)

NM_020708.4 NM_001134771.1 rs ID Number Number Allele Number Allele p-value Odds
NP_065759 NP_001128243 of probands of alleles frequency (%) of alleles frequency (%) ratio

c.2805 T > C c.2874 T > C rs151293924 1/143 1/286 0.35 0/2428 0.00 0.11 Inf
p.D935D p.D958D CI95[0.2-Inf]
c.2855 G > A c.2924 G > A rs142740233 1/143 1/286 0.35 5/2428 0.21 0.50 1.70
p.R952H p.R975H CI95[0.0–15.3]

Total number of variants detected 2 2 – 6∗ – 0.20 2.85
CI95[0.3–16.1]

∗A total of 6 variants were detected in FC control cohort [5 R975H and 1 R1072C (which is not shown in this table)].

the known oligomerization of KCC2 molecules, and decrease
transporter plasmalemmal expression (R952H) or lower the
intrinsic activity of transporters at the cell surface (R1049C)
(Kahle et al., 2014). We anticipate these variants function
similarly in ASD; however, the phenotypic outcomes of any effect
of these variants are likely dependent on the combination of
other risk alleles within each individual patient. Considering the
proximity of R1048 to R1049, and the fact that both variants
substitute an arginine, we assume the functional effects of
R1048W on KCC2 would be similar to that of R1049C (Kahle
et al., 2014).

Overall, the data generated from the targeted screening
of 3′ end of SLC12A5 in FC cases and controls did not
reach statistical significance, possibly due to the rare nature
of the variants and the size of the FC cohorts (Table 4).
However, when the SSC and EVS exome sequencing data
was considered, the combined analysis indicated there was an
enrichment of all coding KCC2 CTRD variants in ASD cases
compared to controls (p-value = 0.03; Table 4). In fact, when
subdividing the variants into various groups, we determined
that ASD cases actually had significantly more synonymous
variants compared to controls (p-value = 0.02), as well as

TABLE 4 | SLC12A5 variants detected in the FC and SSC EA and AA cohorts in the targeted region of the C-terminus.

Cohort Combined

Ethnicity Group Size Number of rare p value Odds ratio p value Odds ratio
Variant type variants transported

All FC ASD Cases 427 5 0.17 2.37 CI95[0.6–9.4] 0.03 2.00 CI95[1.1–3.6]
Controls 1214 6

EA ASD Cases 1892 12 0.09 1.95 CI95[0.8–4.5]
EVS Controls 4300 14

AA ASD Cases 82 2 0.35 1.67 CI95[0.2–6.8]
EVS Controls 2203 32

Non-synonymous FC ASD Cases 427 4 0.30 1.90 CI95[0.4–8.0] 0.31 1.53 CI95[0.8–3.1]
Controls 1214 6

EA ASD Cases 1892 9 0.37 1.46 CI95[0.6–3.6]
EVS Controls 4300 14

AA ASD Cases 82 0 1.00 0.00 CI95[0.0–29.7]
EVS Controls 2203 5

Synonymous FC ASD Cases 427 1 0.26 Inf CI95[0.1-Inf] 0.02 4.93 CI95[1.7–14.8]
Controls 1214 0

EA ASD Cases 1892 3 0.02 Inf CI95[0.9-Inf]
EVS Controls 4300 0

AA ASD Cases 82 2 0.28 2.00 CI95[0.2–8.1]
EVS Controls 2203 27

CpG site disrupted or gained FC ASD Cases 427 5 0.17 2.37 CI95[0.6–9.4] 6.8 × 10−3 2.5 CI95[1.3–4.7]
Controls 1214 6

EA ASD Cases 1892 11 0.02 2.78 CI95[1.0–7.6]
EVS Controls 4300 9

AA ASD Cases 82 2 0.31 1.85 CI95[0.2–7.5]
EVS Controls 2203 29

CpG site not disrupted or gained FC ASD Cases 427 0 1.00 0.00CI95[0.0-Inf] 0.71 0.42 CI95[0.0–3.6]
Controls 1214 0

EA ASD Cases 1892 1 0.67 0.45 CI95[0.0–4.1]
EVS Controls 4300 5

AA ASD Cases 82 0 1.00 0.00 CI95[0.0–65.6]
EVS Controls 2203 3
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TABLE 5 | Full gene rare variant (MAF < 1%) analysis of SLC12A5 using the SSC exome sequencing data.

Cohort Combined

Ethnicity Group Size Number of rare p value Odds ratio p value Odds ratio
Variant type variants transported

All EA ASD Cases 1892 50 1.00 1.00 CI95[0.7–1.4] 0.76 1.06 CI95[0.8–1.4]
EVS Controls 4300 114

AA ASD Cases 82 9 0.30 1.44 CI95[0.6–2.9]
EVS Controls 2203 168

Non-synonymous EA ASD Cases 1892 21 0.68 1.11 CI95[0.6–1.9] 0.98 1.04 CI95[0.6–1.8]
EVS Controls 4300 43

AA ASD Cases 82 0 1.00 0.00 CI95[0.0–4.8]
EVS Controls 2203 23

Synonymous EA ASD Cases 1892 29 0.73 1.08 CI95[0.7–1.7] 0.38 1.20 CI95[0.8–1.8]
EVS Controls 4300 61

AA ASD Cases 82 9 0.18 1.67 CI95[0.7–3.4]
EVS Controls 2203 145

CpG site disrupted or gained EA ASD Cases 1892 41 0.22 1.29 CI95[0.9–1.9] 0.09 1.37 CI95[1.0–1.9]
EVS Controls 4300 72

AA ASD Cases 82 8 0.15 1.76 CI95[0.7–3.7]
EVS Controls 2203 122

CpG site not disrupted or gained EA ASD Cases 1892 9 0.05 0.5 CI95[0.2–1.0] 0.06 0.50 CI95[0.3–1.0]
EVS Controls 4300 42

AA ASD Cases 82 1 1.00 0.58 CI95[0.0–3.5]
EVS Controls 2203 46

variants that either disrupted or introduced a CpG site (p-
value = 6.8 × 10−3; Table 4). Upon full gene analysis (using
solely exome sequencing data), ASD cases were determined to
have a higher percentage of rare SLC12A5 variants that affect
a CpG site compared to controls (Tables 5, 6), suggesting a
possible epigenetic effect on gene expression through variation
in methylation patterns.

Discussion

The identification of KCC2 NS genetic variants in ASD and SCZ
cases that involve evolutionary conserved residues, are predicted
to be pathogenic, and have either previously been shown
[KCC2 R952H and R1049C (Kahle et al., 2014; Puskarjov et al.,
2014)] or anticipated (KCC2 R1048W) to impact transporter
function, trafficking, and/or regulatory phosphorylation, suggest
that genetically-encoded impairment of KCC2 function may be
risk factors for, or contribute to the pathogenesis of, human ASD
and SCZ. Overall, these data are the first to describe functional
KCC2 genetic variants in human psychiatric disease, and suggest
a compelling genetic overlap among distinct NDs. Furthermore,
we show that CpG sites in the targeted-screened 3′ end of

SLC12A5, as well as in the entire gene, are more commonly
affected (i.e., disrupted or gained) in ASD cases compared to
controls.

Genetic links among the different NDs have been previously
shown. For example, chromosome 1q21.1 microdeletions exist
in both ID and SCZ, and, interestingly, are often inherited from
an unaffected or a mildly affected parent (Christiansen et al.,
2004; Brunetti-Pierri et al., 2008; International-Schizophrenia-
Consortium, 2008; Mefford et al., 2008; Stefansson et al., 2008).
Duplications of this region are also associated with mild to
moderate ID and ASD (Brunetti-Pierri et al., 2008; Mefford
et al., 2008). Deletions of chromosome 16p13.11 have been
associated with ID and ASD (Ullmann et al., 2007), and epilepsy
(Heinzen et al., 2010; de Kovel et al., 2010), and duplications
of this region have been documented in ID (Ullmann et al.,
2007; Mefford et al., 2009), ASD (Ullmann et al., 2007) and
SCZ (Kirov et al., 2009). In addition, mutations in MECP2
[OMIM 300005] (Lam et al., 2000) and SLC6A8 [OMIM
300036] (Salomons et al., 2001) have been found in both ID and
ASD; and, mutations in SHANK3 [OMIM 606230] have been
identified in ASD (Durand et al., 2007), SCZ (Gauthier et al.,
2010) and nonsyndromic ID cohorts (Hamdan et al., 2011). The

TABLE 6 | ASD case/control comparisons of the total number of variants that affect a CpG site vs. do not affect a CpG site from the full gene analysis.

Cohort Total number of rare Variants that disrupt Variants that do not disrupt
variants in SLC12A5 or gain a CpG site or gain a CpG site Combined

Number Percentage (%) Number Percentage (%) p value Odds ratio p value Odds ratio

EA ASD Cases 50 41 82 9 18 0.02 2.64 CI95[1.1–6.8] 0.01 2.71 CI95[1.3–5.8]
EVS Controls 114 72 63 42 37

AA ASD Cases 9 8 89 1 11 0.45 3.00 CI95[0.4–136.6]
EVS Controls 168 122 73 46 38
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impact of de novo SNVs (single nucleotide variants) on sporadic
forms of common NDs have also been increasingly appreciated
(Vissers et al., 2010; Girard et al., 2011; O’Roak et al., 2011, 2012;
Xu et al., 2011; Iossifov et al., 2012; Neale et al., 2012; Sanders
et al., 2012), and de novo ASD mutations have been identified
in genes previously associated with other NDs, such as FOXP1
[OMIM 605515], GRIN2B [OMIM 138252], SCN1A [OMIM
182389], and LAMC3 [OMIM 604349] (O’Roak et al., 2011). No
de novo variants were detected in this study.

Identifying rare variants that are associated with a complex
trait is most currently performed through whole-exome
sequencing since there is a potential to identify many genes
that underlie the trait at a substantially lower cost compared
to whole-genome sequencing; plus, exome variants offer a
clear-cut functional annotation that can be predicted through
many in silico bioinformatics programs with an accuracy of
∼80% (Kiezun et al., 2012). However, with exome sequencing, a
p-value of less than 2.5× 10−6 is required to reach genome-wide
significance; this value accounts for multiple testing by making
a Bonferroni correction for 20,000 independent tests (1 test for
each gene in the genome). Such a threshold is very conservative
and unless a study is extremely large, significant p-values will
not be reached. In fact, current exome sequencing studies of
complex traits are under-powered since, at minimum, 10,000
individuals with a distinct phenotype are needed in order to
achieve the necessary power (Kryukov et al., 2009; Kiezun et al.,
2012). Furthermore, rare variants should be combined in a gene
(or pathway) during association tests in order to reach sufficient
power (Purcell et al., 2003; Kiezun et al., 2012).

A true understanding of how risk alleles interact and
contribute to disease is yet to come. In a polygenic or oligogenic
disease model, causality cannot be assigned to any one variant,
but rather results from an individual’s variant pattern (Klassen
et al., 2011). A recent exome sequencing paper aimed to
demonstrate the polygenic burden of rare disruptive mutations
in SCZ by noting the disruptive mutations that were distributed
across many genes as well as enriched gene sets (Purcell et al.,
2014). The ultimate goal is to identify all risk variants and
to establish a computational modeling of biological networks
in order to improve risk predictions based on a combination
of alleles. Interestingly, Kiezun et al. (2012) noted that no
individual gene-based test achieved significance after correction
for multiple testing, again reiterating the need to increase sample
size and/or take more targeted screening approaches to minimize
multiple testing.

Here, we utilized a hypothesis-driven, targeted sequencing
approach to search for variation in the KCC2 CTRD in different
NDs given the known neurophysiological importance of this
gene (Gagnon and Delpire, 2013), and the demonstrated critical
role of our targeted region for the functional regulation of
synapses (Chamma et al., 2012; Kahle et al., 2013). This approach
previously enabled us to simplify the statistical analysis to
identify the enrichment of NS alleles in the KCC2 CTRD in IGE
cases vs. controls (p-value = 7.50 × 10−3; Kahle et al., 2014).
Rare variation is enriched for evolutionarily deleterious variants,
and we demonstrated that the KCC2 IGE variants (R952H and
R1049C) impaired KCC2 function (Kahle et al., 2014). The initial

targeted screening of the KCC2 CTRD in the FC cohort of
ASD, SCZ, and ID did not generate any significant associations;
however, it revealed that the functional variants overlap across
different NDs, suggesting a role in disease pathogenesis, and the
effects of these variants are likely dependent on the combination
of other alleles within each individual. After combining our
initial findings with the results of other exome sequencing
projects (Iossifov et al., 2014), we were able to generate improved
p-values due to the larger sample sets. It was after this analysis
that a statistically significant excess of KCC2 CTRD variants in
the targeted region was identified in ASD cases compared to
controls, as well as an increase of variants that affected CpG sites.
It should be noted that the authors recognize the disadvantages of
comparing different exome sequencing data sets (SSC and EVS)
that were analyzed using different pipelines; replication studies
are warranted.

What is the functional impact of the discovered KCC2
variants? The KCC2 R952H and R1049C variants significantly
decrease KCC2-mediated Cl− extrusion capacity in neurons,
render EGly less hyperpolarized compared toWTKCC2, decrease
the level of KCC2 Ser940 phosphorylation, act in a dominant-
negative manner, and decrease transporter plasmalemmal
expression (R952H) or lower the intrinsic activity of transporters
at the cell surface (R1049C). KCC2 R952H was also shown to
substantially decrease dendritic spine density and alter spine
morphology (Puskarjov et al., 2014). Given the evolutionary
conservation of KCC2 R1048, the predicted pathogenicity of the
R1048W substitution by multiple in silico algorithms, and the
proximity of this variation to R1049, we anticipate the R1048W
KCC2 variant detected in ASD, like R1049C, alters the intrinsic
activity of KCC2 transporters at the cell surface. The clustering
of the R1048 and R1049 variants suggests this region of KCC2
is particularly important for transporter regulation. Consistent
with this is the proximity of the KCC2 ‘‘ISO’’ domain, encoded
in amino acids 1022–1037, which is required for isotonic KCC2-
mediated hyperpolarizing GABAergic transmission (Acton et al.,
2012). These variants might change C-terminal protein structure
and alter the function of the ‘‘ISO’’ domain, perhaps by
disrupting the binding of key associated regulatory molecules.

From a pathophysiological standpoint, decreased KCC2-
mediated Cl− efflux in individuals carrying the KCC2 R952H,
R1048W, and R1049C variants would be anticipated to increase
intracellular [Cl−], raising the Cl− reversal potential (ECl) to
less hyperpolarized potentials, and compromising GABAAR-
mediated hyperpolarizing inhibition. In humans, KCC2 is
developmentally upregulated, with low expression in utero, a
rapid increase in expression around 40 postconceptional weeks,
and progressively increasing levels of expression into adulthood
(Dzhala et al., 2005). This pattern of expression drives the
developmental switch of GABAergic signaling from depolarizing
in early development to hyperpolarizing in adulthood, but the
precise role of KCC2 or its disruption in neurodevelopment
is unclear. The progressive developmental increase in KCC2
expression into adulthood might be expected to amplify the
functional effects of KCC2 variants on CNS function over time.
This may correlate with the age of onset of these neuropsychiatric
disorders, as clinical symptomatology might manifest only after
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years of neurodevelopment over which deficits in KCC2 activity
relative to normal become more pronounced. Further studies are
indicated to explore this hypothesis.

The effects of KCC2 variants identified in this study
might be similar, though less potent in magnitude given
their heterozygousity, to phenotypes observed in mice with
complete knockout or mild dysfunction of KCC2. Mice with
complete KCC2 knockout die at birth from profound motor
deficits that abolish respiratory function (Hekmat-Scafe et al.,
2006, 2010; Tanis et al., 2009; Bellemer et al., 2011), but,
interestingly, mice expressing hypomorphic alleles that reduce
but do not abolish KCC2 activity demonstrate anxiety-like
behavior, impaired spatial learning, and decreased seizure
threshold (Woo et al., 2002; Tornberg et al., 2005; Zhu et al.,
2008). Together, these data indicate that regulation of Cl−

homeostasis and GABAergic signaling by KCC2 plays a role in
multiple functional systems of the CNS. These studies have also
demonstrated that genetic KCC2 knockdown is not accompanied
by compensatory changes in the expression of NKCC1 or
other KCC isoforms, although post-translational compensatory
regulation (e.g., phosphorylation) cannot be ruled out (Hubner
et al., 2001; Woo et al., 2002; Tornberg et al., 2005).

Compellingly, CpG sites in the screened 3′ end of SLC12A5,
as well as in the entire gene, are more commonly affected
(i.e., disrupted or gained) in ASD cases compared to controls.
Generally, DNAmethylation occurs at CpG sites and plays a role
in gene expression by suppressing gene transcription. Therefore,
differences in methylation patterns between cases and controls
could result in different gene expression patterns that increase
risk to ASD. CpG islands, regions of CpG clusters that are
associated with genes, are generally involved in transcription
activation. Interestingly, there is a CpG island of ∼2000bp

at the 3′ end of SLC12A5 that partially overlaps with our
targeted-screened region. Furthermore, despite the fact that the
variants detected in our targeted-screened region are outside
that specific CpG island, most methylation differences between
tissues and, perhaps even between patients and controls, actually
occur at CpG sites at a short distance from the actual CpG island
(Irizarry et al., 2009). It would be interesting to screen the entire
SLC12A5 locus (coding and non-coding regions) to determine
if non-coding variants contribute towards a stronger association
in ASD cases and controls. Additionally, carrying out the same
analysis in an SCZ case/control cohort would be valuable.

Lastly, our results are interesting given the recent data from
the Fragile X and valproate mouse models of autism, which
demonstrate an abnormally prolonged elevation of [Cl−]i in
developing CNS neurons that delays the normal ontogenic switch
to GABA inhibition (He et al., 2014). Maternal oxytocin during
delivery normally mediates the hyperpolarization of EGABA,
but this effect is abolished in the these models (Tyzio et al.,
2014). Our data here suggest a compelling hypothesis that
abnormally delayed KCC2-mediated Cl− extrusion during the
developmental GABA excitatory-inhibitory sequence might be
a genetically programmed factor contributing to ASD. Further
investigation into the roles of KCC2 in ASD and SCZ, and
potentially other NDs, may offer new therapeutic strategies.
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