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Given the well-documented involvement of estrogens in the modulation of hippocampal
functions in both physiological and pathological conditions, the present study
investigates the effects of 17-beta estradiol (E2) administration in the rat model of
hippocampal neurodegeneration induced by trimethyltin (TMT) administration (8 mg/kg),
characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields,
associated with astroglial and microglial activation, seizures and cognitive impairment.
After TMT/saline treatment, ovariectomized animals received two doses of E2
(0.2 mg/kg intra-peritoneal) or vehicle, and were sacrificed 48 h or 7 days after TMT-
treatment. Our results indicate that in TMT-treated animals E2 administration induces
the early (48 h) upregulation of genes involved in neuroprotection and synaptogenesis,
namely Bcl2, trkB, cadherin 2 and cyclin-dependent-kinase-5. Increased expression
levels of glutamic acid decarboxylase (gad) 67, neuropeptide Y (Npy), parvalbumin,
Pgc-1α and Sirtuin 1 genes, the latter involved in parvalbumin (PV) synthesis, were
also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT
treatment showed that although E2 does not significantly influence the extent of
TMT-induced neuronal death, significantly enhances the TMT-induced modulation of
GABAergic interneuron population size in selected hippocampal subfields. In particular,
E2 administration causes, in TMT-treated rats, a significant increase in the number of
GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and
dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially
in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results
add information concerning the role of in vivo E2 administration on mechanisms involved
in cellular plasticity in the adult brain.

Keywords: trimethyltin, estrogen, hippocampal neurodegeneration, glutamic acid decarboxylase, parvalbumin,
neuropeptide Y (NPY)

Abbreviations: CTRL, control; DG, Dentate gyrus; E2, 17β-estradiol; i.p., intra-peritoneal; IR, immunoreactive;
PV, parvalbumin; TMT, trimethyltin.
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INTRODUCTION

Many findings support the modulatory role of estrogens, whose
effects are mediated mainly by 17-beta estradiol (E2), on brain
functions, in particular at the hippocampal level (Spencer et al.,
2008), where they are responsible for the enhancement of
glutamate transmission, the induction of long-term potentiation
and the modulation of inhibitory activity (Brann et al., 2007;
Spencer et al., 2008). In addition to their well-documented
neuroregulatory effects, both epidemiological observations in
humans and experimental data support the efficacy of estrogens
as neuroprotective agents in a variety of neurologic diseases,
including neurodegenerative diseases (for review, see Garcia-
Segura et al., 2001; Amantea et al., 2005; Brann et al., 2007;
Arevalo et al., 2015), ischemia (Dai et al., 2007; Inagaki and
Etgen, 2013), and experimental models of temporal lobe epilepsy
(Azcoitia et al., 1998, 1999a,b; Picazo et al., 2003; Melcangi
and Panzica, 2006; Velísková, 2006; Velisek et al., 2013). E2
exerts neuroprotection through multiple mechanisms, including
the enhancement of antiapoptotic and/or anti-inflammatory
pathways and the modulation of neuronal plasticity (Amantea
et al., 2005; Brann et al., 2007). The latter includes the E2-
mediated regulation of dendritic spine formation and density
and/or modulation of the excitatory/inhibitory synaptic balance
(Brinton, 2009).

In this respect, special attention has been focused on the
effects mediated by E2 administration on different GABAergic
hippocampal subpopulations (Spencer et al., 2008), namely
neuropeptide Y (NPY) (Nakamura andMcEwen, 2005; Velísková
and Velísek, 2007; Ledoux et al., 2009) and parvalbumin (PV)-
expressing cells (Sotonyi et al., 2010; Koh, 2014). NPY-positive
interneurons are known to play a relevant role in the inhibition
of hippocampal circuitry, where they modulate excitatory
neurotransmission, regulate hyperexcitability (Baraban et al.,
1997; Vezzani et al., 1999), and are also involved in the
modulation of dentate neurogenesis (Gray, 2008; Decressac and
Barker, 2012; Geloso et al., 2015). PV-expressing interneurons
play a crucial role in the functional properties of the
hippocampus: they participate in the synchronization of
oscillations in the hippocampal network (Klausberger et al., 2005;
Donato et al., 2013), and their functional/structural impairment
has been associated with severe neurologic disorders, including
autism (Lawrence et al., 2010; Cellot and Cherubini, 2014),
schizophrenia (Cabungcal et al., 2013; Jiang et al., 2013), epilepsy
(Andrioli et al., 2007), and Huntington’s disease (Cicchetti et al.,
2000).

The trimethyltin (TMT)-induced model of hippocampal
neurodegeneration is suitable not only to study the neuronal
and glial responses that accompany progressive neuronal death
and the signaling pathways associated with neuronal damage
(Balaban et al., 1988; Koczyk, 1996; Geloso et al., 2011; Corvino
et al., 2013; Lattanzi et al., 2013), but also to investigate possible
neuroprotective strategies (for review, see Shin et al., 2011;
Corvino et al., 2013). In rats, a single injection of TMT causes
progressive neuronal death of CA1 and CA3/hilus pyramidal
cells, developing over 3 weeks (Balaban et al., 1988; Koczyk,
1996; Geloso et al., 2011; Corvino et al., 2013; Lattanzi et al.,

2013) and is associated with selective sparing of the GABAergic
subpopulations expressing PV and calretinin (Geloso et al., 1996,
1997, 1998), astroglial (Geloso et al., 2004; Pompili et al., 2004;
Latini et al., 2010) and microglial activation (Brabeck et al.,
2002), enhanced neurogenesis (Corvino et al., 2005), seizures and
cognitive impairment (for review, see Koczyk, 1996; Geloso et al.,
2011). Experimental findings suggest that it may also be useful to
study the interplay between neuronal death and the functional
impairment of neurotransmission (Koczyk, 1996; Ishida et al.,
1997; Kruger et al., 2005), as well as to examine cellular and
molecular events involved in hippocampal plasticity (Koczyk,
1996).

The impairment of glutamatergic neurotransmission (Koczyk,
1996; Geloso et al., 2011) and changes in the GABAergic system
(Dyer and Boyes, 1984; Nishimura et al., 2001; Kruger et al., 2005)
have been reported. The latter include an increased expression
of glutamic acid decarboxylase (GAD) 65 and GAD67, the rate-
limiting enzymes in GABA synthesis, in the early phase of
neuronal damage (Nishimura et al., 2001) and the modulation
of interneuron subpopulations expressing NPY and somatostatin
(Sadamatsu et al., 1998; Ishikura et al., 2002).

The present study was designed to investigate the effects
of E2 administration in the experimental model of TMT-
induced hippocampal neurodegeneration, and to evaluate its
effects on neuronal death and interneuron reorganization,
with the aim of adding information concerning the role
of in vivo E2 administration as a possible neuroprotective
approach.

MATERIALS AND METHODS

Animal Treatment and Experimental
Design
Two-month-old female Wistar rats (200–250 g) were bilaterally
ovariectomized under ketamine (75 mg/Kg)/medetomidine
hydrochloride (0.5 mg/Kg, intramuscular) anesthesia.
Ovariectomy was preceded by a midline dorsal skin incision,
approximately halfway between the middle of the back and the
base of the tail, as described by other groups (Khajuria et al.,
2012). Rats were then housed for 3 weeks in order to eliminate
endogenous plasma estradiol. They then received a single
intra-peritoneal (i.p.) injection of TMT chloride (Sigma, St Louis,
MO, USA) dissolved in saline at a dose of 8 mg/Kg body weight
in a volume of 1 ml/kg body weight, as previously described
(Geloso et al., 1996, 1997, 2011). A CTRL group received the
same volume of saline.

As much evidence supports the notion that estrogen
administration shows beneficial effects when delivered as a
pretreatment (Henderson, 1997; Yune et al., 2004; Brann
et al., 2007; Samantaray et al., 2010; Velisek et al., 2013),
we administered E2 in two doses (days 1 and 2 after TMT
injection) in the time frame between the initiating event
(TMT injection) and the occurrence of the first TMT-induced
structural/functional hippocampal changes. We chose this
approach in order to counteract early events involved in TMT-
induced hippocampal injury, which are known to be delayed and
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to become apparent from post-intoxication day 2 (Ishikura et al.,
2002; Geloso et al., 2011).

One hour after TMT injection (post-treatment day 0) the
rats were divided into four experimental groups (CTRL + oil,
CTRL + E2, TMT + oil, TMT + E2) and received E2 or
vehicle (sesame oil) treatment. E2-3 benzoate (Sigma, St Louis,
MO, USA) was administered at a dose of 0.2 mg/kg i.p. in
accordance with the neuroprotective effects reported in previous
studies performed by other groups in different models of brain
injury (Azcoitia et al., 1999b; Picazo et al., 2003; Gresack and
Frick, 2006; Twining et al., 2013). The same E2/vehicle dose
was administered on post-treatment day 1. After treatment the
animals were returned to their cages and housed on a 12 h
light/dark cycle with free access to food and water.

Rats were sacrificed at two time points after treatment: 48 h
after TMT/saline administration (T1, i.e., 24 h after the last E2
administration), to explore early molecular events related to E2
treatment, and 7 days after TMT/saline injection (T2, i.e., 6 days
after the last E2 administration), when neuronal loss induced by
TMT injection is clearly detectable by histological analysis (Latini
et al., 2010; Corvino et al., 2011), to explore late effects of E2
treatment.

At time point T1, E2 serum levels were checked. Heart
blood was collected from deeply anesthetized animals
(ketamine/diazepam 1:1 i.p.) immediately before they were
sacrificed, via cardiac puncture, and processed to obtain
serum (Leuner et al., 2004). Serum E2 levels were detected by
Chemiluminescent Microparticle Immunoassay (CMIA; Abbott
Laboratories, Longford, Ireland) of duplicate samples as per
the manufacturer’s protocol. Assays showed significantly higher
E2 levels in E2-treated rats (mean plasma estradiol levels in
E2-treated rats = 160 ± 76,43 pg/ml) compared with vehicle-
injected animals (mean plasma estradiol levels in oil treated
rats = 16,33± 2,9 pg/ml; Mann–Whitney test p < 0.05) (Gresack
and Frick, 2006; Twining et al., 2013).

All animal procedures were approved by the Ethics Committee
of the Catholic University and were fully compliant with the
Italian Ministry of Health guidelines (Legislative Decree No.
116/1992) and European Union (Directive No. 86/609/EEC)
legislation on animal research. Efforts were made to limit the
number of animals used and tominimize their suffering. ARRIVE
guidelines were followed.

Gene Expression Analysis
Animals intended for gene expression analysis were sacrificed by
decapitation after deep anesthesia (ketamine/diazepam 1:1 i.p.)
48 h after TMT or saline treatment (T1; CTRL + vehicle: n = 4,
CTRL + E2: n = 4, TMT + vehicle: n = 4, TMT + E2: n = 4).
The hippocampi were removed bilaterally and processed for total
RNA isolation, reverse transcription (RT)-PCR and quantitative
real time PCR (qPCR), as previously described (Corvino
et al., 2012, 2014). The following genes where amplified using
sequence-specific oligonucleotide primers (Supplementary Table
S1): B-cell CLL/lymphoma 2 (Bcl2), brain-derived neurotrophic
factor (Bdnf ), cadherin 2 (Cdh2), cyclin-dependent kinase 5
(Cdk5), glutamate decarboxylase 1 (Gad1 also known as Gad67),
neurotrophic tyrosine kinase, receptor, type 2 (Ntrk2 also known

as trkB), neuropeptide Y (Npy), parvalbumin (Pva), peroxisome
proliferator-activated receptor gamma coactivator 1 alpha (Pgc-1α,
encoded by Ppargc1a) and sirtuin 1 (Sirt1); cytochrome P450 19 or
aromatase (Cyp19a1).

The 2−��Ct method (Livak and Schmittgen, 2001) was
applied to calculate fold changes (FC) in gene expression,
using the gene encoding the glyceraldehyde-3-phosphate
dehydrogenase (Gapdh) as the housekeeping reference for data
normalization, as already described (Corvino et al., 2012, 2014).

Immunocytochemistry
Rats from the four experimental groups intended for histology
and immunocytochemistry were sacrificed at time point T2.
Under deep anesthesia (ketamine/diazepam 1:1 i.p.), the
animals were perfused with 4% phosphate-buffered saline
(PBS) paraformaldehyde, the brains were removed from
the skull and 40 μm serial sagittal sections, from 0.9 to
3.4 mm lateral to the midline, according to Paxinos and
Watson (1986) atlas, were collected in PBS. Every sixth
section was processed for Nissl or Fluoro Jade C (Chemicon,
Temecula, CA, USA) staining to detect neuronal death,
or stained for immunocytochemistry with anti-GAD67, -PV,
and -NPY antibodies to study their expression in different
interneuronal subpopulations. Sections were incubated overnight
with mouse monoclonal anti-GAD67 (Millipore, Temecula, CA,
USA; 1:2000), mouse monoclonal anti-PV (Swant, Bellinzona,
Switzerland; 1:10000), rabbit polyclonal anti-NPY (AbCam,
Cambridge, UK; 1:2000) antibodies. The reaction was developed
using the avidin–biotin peroxidase complex (ABC method,
Vector Burlingame, CA). 3,3′-diaminobenzidine (Sigma, St.
Louis, MO, USA) was used as a chromogen.

Co-expression of the GABAergic interneuron marker GAD67
(Freund and Buzsáki, 1996; Rudy et al., 2011) and PV or NPY
was identified by fluorescent double-labeling using mouse
monoclonal anti-GAD67, rabbit polyclonal anti-PV (AbCam,
Cambridge, UK; 1:2000) or rabbit polyclonal anti-NPY antibody,
revealed using secondary cyanine-3-conjugated antibody
(donkey anti-mouse Cy3, 1:400, 1 h at room temperature
(Jackson Immunoresearch Laboratories, West Grove, PA, USA),
or secondary FITC-conjugated antibody (goat anti-rabbit FITC,
Vector, Burlingame, CA, USA 1:200, 1 h at room temperature).
Controls were prepared by omitting the primary antibody.
Co-localization of the different markers was examined with a
LSM 510 META confocal laser scanning microscopy system
(Zeiss, Oberkochen, Germany).

Quantitative Analysis
Stereological Estimations
The optical fractionator stereological design (West et al., 1991)
was used to obtain unbiased estimates of total Nissl-stained,
Fluoro Jade C-stained, GAD67-, PV-, or NPY-immunoreactive
(IR) neurons in the regions of interest, using the Stereo
Investigator system (Stereo Investigator software, Version 9,
MicroBrightField Europe, Magdeburg, Germany), essentially as
previously described (Corvino et al., 2012). A stack of MAC 6000
controller modules (MBF Bioscience, Williston, VT, USA) was
configured to interface with a Nikon Eclipse 80i microscope with
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a motorized stage and a digital color camera (MBF Bioscience q
imaging) with a Pentium II PC workstation.

To detect the extent of TMT-induced neuronal death, Nissl-
stained neurons located in the CA1 and CA3 pyramidal layer
and in the hilus, which are the main sites of TMT-induced
neuronal loss (Geloso et al., 2011), were counted. Only cells
showing unambiguous neuronal morphology, with regularly
shaped nuclei showing clearly detectable nucleoli and with no
signs of nuclear fragmentation were counted in the hippocampi
of the four experimental groups (CTRL + oil n = 5; CTRL + E2
n = 6; TMT + oil n = 8; TMT + E2 n = 8). A three-
dimensional optical dissector counting probe (x, y, z dimension
of 30 μm × 30 μm × 10 μm, respectively) was applied to a
systematic random sample of sites in the region of interest at
a magnification of 100×. Quantitative analysis of Fluoro Jade-
C positive degenerating neurons was performed in the same
conditions in the CA1 and CA3 subfields.

GAD67-IR interneurons were counted in the stratum oriens,
radiatum and pyramidal layer of the CA1 and CA3 subfields,
in the hilus and in the dentate gyrus (DG) (counting probe: x,
y, z dimension of 200 μm × 200 μm × 10 μm, respectively,
magnification of 40×; CTRL + oil n = 6, CTRL + E2 n = 5,
TMT + oil n = 5, TMT + E2 n = 6).

The quantification of PV- and NPY-IR neurons was restricted
to those hippocampal layers containing a higher cell density
of IR cells, since the stereological approach requires that in
each sampling area 1–2 cells should be counted on average.
Accordingly, PV-IR interneurons were counted only in the
stratum oriens and in the pyramidal layer of the CA1 and CA3
subfields and in the granular layer of the DG (Andressen et al.,
1993). A three-dimensional optical dissector counting probe
(counting probe: x, y, z dimension of 200μm× 200μm× 10μm,
respectively) was applied to a systematic random sample of sites
in the region of interest at a magnification of 40× (CTRL + oil
n = 8, CTRL + E2 n = 7, TMT + oil n = 9, TMT + E2
n = 9).

NPY-IR interneurons were counted in the stratum oriens
and pyramidal layer of the CA1 subfield and in the hilus,
which are the hippocampal regions exhibiting the highest cell
density, in line with previous observations (Deller and Leranth,
1990; Sperk et al., 2007), (counting probe: x, y, z dimension of
200 μm × 200 μm × 10 μm, respectively, magnification of 40×;
CTRL + oil: n = 5, CTRL + E2: n = 5, TMT + oil: n = 7,
TMT + E2: n = 7).

Confocal Microscope Double-staining Quantitative
Analysis
Double-stained PV/GAD67 (CTRL+ vehicle: n= 4, CTRL+ E2:
n = 4, TMT+ vehicle: n = 4, TMT+ E2: n = 4) or NPY/GAD67
(CTRL + vehicle: n = 3, CTRL + E2: n = 3, TMT + vehicle:
n = 4, TMT + E2: n = 4) interneurons were quantified in the
four experimental groups using z-scan confocal microscopy at
40× magnification. The entire length of the above regions of
interest (CA1 stratum oriens, CA1 pyramidal layer, CA3 stratum
oriens, CA3 pyramidal layer, and hilus) was evaluated through
the septo-temporal axis of the hippocampus in 1-in-12 series of
sections, as previously described (Corvino et al., 2012, 2014).

Analysis of co-localization of markers was performed on well-
stained cells with clearly visible neuronal bodies. The number of
double-labeled cells was counted manually by an experimenter
who was unaware of the group assignment. Estimates of the total
number of cells positive for each marker were obtained using
the following formula: E = k

∑
N, where E is the estimate of the

total number of stained cells in each case,
∑

N is the sum of
n-values in the n sections considered, and k indicates that every
kth section was considered (k = 12). N was corrected according
to Abercrombie’s formula:N = n t/(t +D), where n is the number
of cells counted in each section, t is the section thickness, and D
is the mean diameter of the cells (Abercrombie, 1946).

The quantification of double-stained cells was expressed as the
percentage of PV/GAD67 or NPY/GAD67 double-labeled cells in
relation to the total number of PV-IR or NPY-IR cells.

Statistical Analysis
Three-way Repeated-Measures (RM) ANOVA with TMT and
E2 treatments as the between-subjects factors and hippocampal
subfields as the within-subjects factor or two-way ANOVA with
TMT and E2 treatment as main factors were performed to
analyze statistically significant differences between the groups,
as previously described (Geloso et al., 1996, 1997, 1998). When
appropriate, post hoc comparisons were made using Tukey’s HSD
test, with a significance level of p < 0.05. Results are expressed as
mean ± SE.

In order to assess the statistical significance of the gene
expression changes for each gene in each experimental group,
an unpaired t-test was used to compare the �Ct-values across
the replicates, setting the p-value cut-off at 0.05, as previously
described (Corvino et al., 2012, 2014). Comparisons were made
across all four experimental groups.

RESULTS

Early Molecular Events Induced by E2
Administration
In order to explore possible early neuroprotective events induced
by E2 administration in TMT-treated rats, qPCR was used
to amplify the following genes: the anti-apoptotic Bcl2, the
neurotrophic factor Bdnf and the corresponding receptor trkB.
A significant upregulation of Bcl2 was detected in TMT + E2-
treated rats compared with CTRL + oil- (p < 0.001) and with
TMT+ oil- (p< 0.05) treated groups (Figure 1A, Supplementary
Table S2), while no significant difference could be detected in
TMT + oil-treated animals when compared with both CTRL
groups (p > 0.05). Bdnf appeared significantly increased in both
groups of TMT-treated animals compared with the CTRL + oil-
treated group (TMT + oil vs CTRL + oil p < 0.001; TMT + E2
vs CTRL + oil p < 0.05). The expression of trkB also appeared
upregulated in both groups of TMT-treated animals compared
with CTRL + oil-treated rats (p < 0.05), although its expression
was significantly higher in the TMT+ E2-treated animals than in
all other groups (p < 0.05; Figure 1A, Supplementary Table S2).

Since the potential beneficial role of E2 may also be
mediated by its effects on synaptic remodeling (Spencer et al.,
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FIGURE 1 | Expression levels of genes modulated by E2 administration in the hippocampus of TMT-treated rats. Bar graphs represent results of
quantitative real time-PCR obtained using the DDCt method for the calculation of relative quantity (RQ) of the following genes: (A) Genes involved in neuroprotection
(Bcl2, Bdnf, and trkB); (B) Genes involved in synaptogenesis (Cdh2 and Cdk5); (C) Markers of interneurons (Gad67, Pva, Npy). (D) Genes involved in PV transcription
(Pgc-1α and Sirt 1). (E) Gene related to local E2 biosynthesis: aromatase (Cyp19a1). ∗p < 0.05, ∗∗p < 0.001, calculated on mean �Ct across biological replicates.

2008; McEwen et al., 2012), the expression of two genes
involved in synaptic plasticity, namely Cdh2 (Tai et al., 2008;
Bozdagi et al., 2010) and Cdk5 (Lai and Ip, 2009) was also
evaluated by qPCR. Results showed that E2 treatment induced
a significant upregulation of Cdk5 in TMT + E2 -treated
rats compared with CTRL + oil- and TMT + oil-treated
rats (p < 0.05); Cdh2 was also significantly up-regulated in
TMT + E2-treated rats compared with the CTRL + oil-
treated group (p < 0.05; Figure 1B, Supplementary Table
S2).

Expression of the interneuron markers GAD67, NPY and
PV was also analyzed. qPCR analysis showed a significant
increase in Gad67 and Pva expression in TMT + E2-
treated rats compared with both CTRL groups (p < 0.05 for
Gad67; p < 0.001 for Pva); Pva was also up-regulated in
the CTRL + E2-treated group compared with CTRL + oil-
treated animals (p < 0.001), while no significant differences
in Gad67 and Pva gene expression were detectable between
TMT + oil-treated animals and both CTRL groups or between
TMT + E2- and TMT + oil-treated rats (p > 0.05). In

addition, a significantly higher expression of the Npy gene
was evident in TMT + E2- and in CTRL + E2-treated rats
compared with the CTRL + oil group (p < 0.05; Figure 1C,
Supplementary Table S2). Also in this case no significant
difference in Npy gene expression was detectable between
TMT + oil-treated animals and both control groups or
between the TMT + E2- and the TMT + oil-treated group
(p > 0.05).

The PGC-1α/Sirt 1 pathway, which is involved in PV
transcription (Lucas et al., 2010), was upregulated by E2
treatment. In particular, the expression of Pgc-1αwas significantly
increased only in the TMT + E2-treated group compared with
CTRL+ oil-treated rats (p < 0.05); the Sirt 1 gene expression was
also significantly increased only in the TMT + E2-treated group
compared with both control groups (p < 0.05). No significant
difference in the Pgc-1α and Sirt 1 gene expression was detectable
between TMT + E2 and TMT + oil treated groups (p > 0.05;
Figure 1D, Supplementary Table S2).

The possible modulation of hippocampal local E2 production
was also explored through the analysis of the expression
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levels of aromatase (Cyp19a1), the key enzyme involved in E2
biosynthesis, highly expressed in the rodent hippocampus (Hojo
et al., 2004). qPCR analysis showed no significant differences

in hippocampal aromatase expression levels among the four
experimental groups (p > 0.05; Figure 1E, Supplementary
Table S2).

FIGURE 2 | Trimethyltin-induced hippocampal damage. (A–L) Representative micrographs of Nissl-stained rat hippocampal sagittal sections from CA1
(A–D,I,J) and CA3 subfields (E–H,K,L) of CTRL + oil- (A,E), CTRL + E2- (B,F), TMT + oil- (C,G,I,K), TMT + E2- (D,H,J,L) treated rats. Neuronal loss and
apoptotic bodies are clearly detectable in CA3 and CA1 pyramidal neurons (arrows in I–L) of both TMT + oil- (C,G,I,K) and TMT + E2- (D,H,J,L) treated animals.
Scale bar: 80 μm in (A–H), 40 μm in (I–L). (M) Bar graphs indicate quantitative analysis of Nissl-stained neurons in CA1 and CA3 pyramidal cell layer and hilus of the
different experimental groups. A significant reduction in the number of Nissl-stained cells is evident in CA1 and CA3 pyramidal layers of both TMT-treated-groups
compared with control groups. No differences are detectable between the two groups of TMT-treated rats. The values are given as means ± SE (∗∗p < 0.001).
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Persistent Effects Induced by E2
Administration
Effects of E2 Administration on TMT-induced
Neuronal Death
To assess the characteristics of TMT-induced neurodegeneration
and to evaluate the effects of E2 administration on TMT-induced
neuronal death, we analyzed Nissl- and Fluoro Jade C-stained
hippocampal sections from animals of the four experimental
groups sacrificed 7 days after TMT or saline treatment, also
performing unbiased quantitative analysis.

Consistently with previous observations (Latini et al., 2010;
Corvino et al., 2011, 2014), light microscope analysis of
Nissl-stained samples showed mild to moderate neuronal
death, selectively localized in the pyramidal layer of the CA1
(Figures 2A–D,I,J) and CA3 (Figures 2E–H,K,L) hippocampal
subfields and in the hilus of both TMT-treated groups.

Unbiased stereological analysis followed by three-way RM
ANOVA revealed a significant effect of TMT treatment
(F1,23 = 50,3), hippocampal subfields (F2,46 = 320,5) and
TMT∗hippocampal subfields interaction (F2,46 = 10,2). Tukey’s
HSD post hoc test showed that a significantly lower number

of surviving neurons was detectable in the CA1 and CA3
pyramidal layers of both TMT-treated groups compared with
CTRL groups (p < 0.05). Despite the lower number of surviving
neurons observed in the hilus of both TMT-treated groups,
no significant differences were detectable compared with CTRL
groups (p > 0.05; Figure 2M; Supplementary Table S3).

Fluorescent microscopy analysis of Fluoro Jade C-stained
sections showed no stained neurons in the hippocampi of the
two CTRL groups (not shown), as expected. Many stained
degenerating neurons were evident in the CA1 (Figures 3A,B)
and CA3 (Figures 3C,D) hippocampal regions of both TMT-
treated groups, as expected (Corvino et al., 2012). Only a few
scattered Fluoro Jade C-positive neurons were detectable in
the hilus, without appreciable differences between TMT + E2-
and TMT + oil-treated groups (not shown). In order to
fulfill the requirements of the stereological approach, unbiased
stereological analysis was performed only in the CA1 and CA3
subfields, which exhibited the higher density of stained cells.
Three-way RM ANOVA revealed a significant effect of TMT
treatment (F1,31 = 90,3). Tukey’s HSD post hoc test showed a
significantly higher number of degenerating neurons in the CA1

FIGURE 3 | Fluoro Jade C-stained degenerating neurons in the trimethyltin (TMT)-injured hippocampus. Representative micrographs of Fluoro Jade
C-stained rat hippocampal sagittal sections from CA1 (A,B) and CA3 subfields (C,D; as indicated in the box) of TMT + oil- (A,C), TMT + E2- (B,D) treated rats.
Degenerating neurons are evident in both TMT + oil- and TMT + E2-treated animals. Scale bar: 60 μm in (A–D). (E) Bar graphs indicate quantitative analysis of
Fluoro Jade C-stained neurons in CA1 and CA3 pyramidal cell layer of both TMT-treated groups. A significant difference in the number of Fluoro Jade C-stained cells
is evident between TMT-treated rats and CTRL groups in both the CA1 and the CA3 regions, while no differences are detectable between TMT + oil- and
TMT + E2-treated animals. The values are given as means ± SE (∗p < 0.05, ∗∗p < 0.001).
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and CA3 pyramidal layers of both TMT-treated groups compared
both with CTRL + oil- (p < 0.001) and CTR + E2-treated group
(p < 0.001); no differences were present between TMT + oil-
and TMT + E2-treated animals in both CA1 and CA3 subfields
(p > 0.05; Figure 3E; Supplementary Table S3).

Effects of E2 Administration on Hippocampal
GAD67-Expression
Possible TMT- and/or E2-induced changes in the total
number of GABAergic interneurons were explored through
immunolabeling for the GABAergic marker GAD67. Light
microscopy analysis of GAD67-stained hippocampal sections
showed that, as described elsewhere (Hart et al., 2001), GAD67
immunoreactivity was detectable in all layers and subregions of
the Cornu Ammonis, as well as in the hilus and in the granular
layer of the DG; a GAD67-positive fiber plexus was also evident
around the pyramidal cell somata located in the pyramidal layer

of the whole Cornu Ammonis of animals from all experimental
groups. A clear increase in the number of GAD67-IR cell bodies
was appreciable in the hippocampi of both TMT-treated groups,
more marked in the TMT + E2-treated group than in CTRL
groups, associated with a darker immunostaining of positive cells
(Figure 4).

Consistently, unbiased stereology followed by three-way RM
ANOVA evidenced a significant effect of both TMT treatment
(F1,18 = 81,6) and E2 administration (F1,18 = 4,5) on GAD67
expression. The effects of hippocampal subfields (F7,126 = 71,2),
TMT∗E2 interaction (F1,18 = 5,8), TMT∗hippocampal subfields
interaction (F7,126 = 13,1) and E2*hippocampal subfields
interaction (F7,126 = 4,64) were also significant. Tukey’sHSD post
hoc test evidenced the presence of a significantly higher number
of GAD67-IR cells in the CA1 pyramidal layer of TMT + oil-
treated animals compared with both control groups (p < 0.001
for TMT+ oil-treated group vs CTRL+ oil-treated rats, p< 0.05

FIGURE 4 | Hippocampal distribution of glutamic acid decarboxylase 67 (GAD67)-immunoreactive interneurons in the different experimental groups.
Representative micrographs of GAD67-stained hippocampal sagittal sections from the whole hippocampus (A,E,I,M), CA1 (B,F,G,N), CA3 (C,G,K,O) and hilus
(D,H,L,P) of CTRL + oil- (A–D), CTRL + E2- (E–H), TMT + oil- (I–L), and TMT + E2- (M–P) treated rats. A higher number of GAD67-IR cells is evident in the CA1
pyramidal layer (J,N) and in the hilus (L,P) of both TMT-treated groups. GAD67 expression also appears markedly increased in the CA1 stratum oriens (N), in the
CA3 pyramidal layer (O), in the DG and in the hilus (P) of TMT + E2-treated animals compared with all other groups. A darker staining of GAD67-IR neurons is
evident in both groups of TMT-treated animals (I,L,M,P). Scale bar: 200 μm in (A,E,I,M); 50 μm in (B–D,F–H,J–L,N–P).
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FIGURE 5 | Quantitative analysis of glutamic acid decarboxylase 67 (GAD67)-immunoreactive (IR) neurons in the hippocampus of animals of the
different experimental groups. Bar graphs indicate that a significantly higher number of GAD67-IR cells is present in the CA1 pyramidal layer and in the hilus of
both TMT-treated groups. A further significant increase in the number of GAD67-IR neurons localized in the CA1 and CA3 pyramidal cell layers and in CA1 stratum
oriens is evident in the TMT + E2-treated rats compared with both control groups and in the DG and hilus of the same group compared with all other groups. The
values are given as means ± SE (∗p < 0.05, ∗∗p < 0.001).

for TMT + oil-treated group vs CTRL + E2-treated rats),
and in the hilus of TMT + oil-treated animals compared with
CTRL + oil-treated rats (p < 0.001; Figure 5, Supplementary
Table S3).

E2 administration induced a further enhancement of
GAD67 immunoreactivity in TMT-treated animals, with
the TMT + E2-treated group showing a significantly higher
number of GAD67-IR cells in the CA1 (p < 0.001) and CA3
(p < 0.05) pyramidal cell layers and in the CA1 stratum oriens
(p < 0.05) compared with both control groups. In addition,
the TMT+ E2-treated animals also exhibited a higher number
of GAD67-IR neurons in the DG and in the hilus than all
other groups (p < 0.001 for TMT + E2-treated rats vs both
control groups and p < 0.05 for TMT + E2-treated rats vs
TMT + oil-treated rats; Figure 5, Supplementary Table S3).

Effects of E2 Administration on Hippocampal NPY
and PV Expression
The distribution pattern of PV- and NPY-IR subpopulations was
also evaluated in the light of data reporting that E2 administration
could modulate their expression at the hippocampal level
(Nakamura and McEwen, 2005; Rewal et al., 2005; Wu et al.,
2014).

Light microscopy analysis showed that, in both groups
of CTRL animals, lightly stained NPY-positive neurons were
detectable mainly in the CA1 stratum oriens and in the
hilus; they were also present, albeit to a lesser extent, in the
pyramidal layer of CA1, while only scattered NPY-IR cells
were present in CA3 and in the DG, mainly localized in
the subgranular zone, in line with previous reports (Deller
and Leranth, 1990; Milner and Veznedaroglu, 1992). Both
groups of TMT-treated animals exhibited a higher number
of darkly stained NPY-IR neurons in the whole Cornu
Ammonis and in the hilus, as expected (Ishida et al., 1997;
Tsunashima et al., 1998; Ishikura et al., 2002); these findings

were even more prominent in the TMT + E2-treated group
(Figure 6).

Unbiased stereological cell counts were performed only in
the hippocampal layers and subfields exhibiting a higher NPY-
positive cell density, in order to fulfill the requirements of
the stereological approach (namely the CA1 stratum oriens,
pyramidal layer and hilus). Although in the CA3 subfield and
in the DG NPY-IR cell density was higher in both TMT-treated
groups than in controls (Figures 6C,D,G,H,K,L,O,P), unbiased
stereology showed that the coefficient of error for estimations
performed in these regions was>0.1 (Gundersen et al., 1999) and
they were excluded.

Three-way RM ANOVA statistical analysis evidenced a
significant effect of both TMT administration (F1,20 = 45.16)
and E2 treatment (F1,20 = 22.3) on NPY expression. The effects
of hippocampal subfields (F2,40 = 66.3), as well as TMT∗E2
interaction (F1,20 = 6,28), were also present. Tukey’s HSD post
hoc test showed a significant increase in the number of NPY-IR
cells in the hilus of TMT + oil-treated animals compared with
CTRL + oil-treated rats (p < 0.05) as expected (Ishida et al.,
1997; Tsunashima et al., 1998; Ishikura et al., 2002) (Figure 7,
Supplementary Table S3).

E2 administration resulted in a further enhancement of NPY
expression in TMT-treated rats. Indeed, Tukey’s HSD post hoc
test revealed a significant increase in the number of NPY-IR
cells in the CA1 stratum oriens, the CA1 pyramidal layer and
the hilus of TMT + E2-treated rats compared with TMT + oil-
treated animals (p < 0.05 in the hilus and in CA1 stratum oriens;
p < 0.001 in CA1 pyramidal layer), CTRL + oil-treated rats
(p < 0.001 in the hilus and in CA1 pyramidal layer; p < 0.05 in
CA1 stratum oriens), and CTRL + E2-treated animals (p < 0.001
in CA1 pyramidal layer and in CA1 stratum oriens; p < 0.05 in
the hilus; Figure 7, Supplementary Table S3).

Light microscope analysis of PV immunoreactivity in both
TMT-treated and CTRL groups revealed the presence of PV-IR
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FIGURE 6 | Hippocampal distribution of neuropeptide Y (NPY)-immunoreactive interneurons in the different experimental groups. Representative
micrographs of NPY-stained hippocampal sagittal sections from the the whole hippocampus (A,E,I,M), CA1 (B,F,J,N), CA3 (C,G,K,O) and hilus (D,H,L,P) from
CTRL + oil- (A–D), CTRL + E2- (E–H), TMT + oil- (I–L) and TMT + E2- (M–P)-treated rats. A higher number of darkly stained NPY-IR neurons is evident in CA1,
CA3, and hilus of both TMT-treated groups compared with CTRL groups, being also more pronounced in the TMT + E2-treated animals. Scale bar: 200 μm in
(A,E,I,M); 50 μm in (B–D,F–H,J–L,N–P).

cell bodies located in all hippocampal layers, mainly localized
in the stratum oriens and pyramidal cell layers of the Cornu
Ammonis and in the granule cell layer of the DG, as well as
the presence of a PV-IR fiber plexus in the pyramidal layer,
reflecting the cell distribution described elsewhere (Andressen
et al., 1993; Geloso et al., 1996, 1998). No differences in the
number or distribution pattern of PV-IR cells were detectable
by light microscopy examination between TMT + oil-treated
animals and both CTRL groups, as expected (Geloso et al.,
1996), while an increased number of PV-IR neurons was
detectable in the CA1 pyramidal cell layer of TMT + E2-
treated animals compared with all other groups (Figures 8A–D).
In particular, stereological cell counts followed by three-way
RM ANOVA statistical analysis indicated significant factors:
TMT (F1,29 = 8,4), E2 (F1,29 = 5,5), hippocampal subfields
(F4,116 = 92,5), TMT∗hippocampal subfields (F4,116 = 3,5).
Tukey’s HSD post hoc test evidenced a significant increase in the
number of PV-IR cells in the CA1 pyramidal layer of TMT+ E2-
treated rats compared with both control groups (p < 0.001 for
TMT+ E2-treated rats vs CTRL+ oil-treated group; p < 0.05 for

TMT + E2-treated rats vs CTRL + E2-treated group; Figure 8E,
Supplementary Table S3).

Confocal microscope quantitative analysis of NPY/GAD67
and PV/GAD67 double-labeled cells was performed in the
specific hippocampal subfields exhibiting significant changes in
the expression of NPY or PV immunoreactivity, to analyze
possible differences in GAD67 expression in these interneuron
subpopulations among the four experimental groups. In
particular, quantitative analysis of PV/GAD67 double-labeled
cells performed in CA1 (stratum oriens and pyramidal layer)
revealed a significantly higher percentage of PV/GAD67 double-
labeled cells in the CA1 pyramidal layer of TMT + E2-treated
rats compared with both control groups (Two-way ANOVA
F1,14 = 14,1 for TMT vs CTRL and F1,14 = 7,9 for interaction;
Tukey’sHSD post hoc test p< 0.05; Figures 9A–D). No significant
differences in the percentage of PV/GAD67 double-labeled cells
were evident in the CA1 stratum oriens (Two-way ANOVA
p > 0.05; Figure 9E).

Quantitative analysis of NPY/GAD67 double-labeled cells
performed in the CA1 stratum oriens, CA1 pyramidal layer and
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FIGURE 7 | Quantitative analysis of neuropeptide Y (NPY)-positive
neurons in CA1 stratum oriens, CA1 pyramidal layer and hilus of the
different experimental groups. Bar graphs indicate that a significantly
higher number of NPY-IR cells is evident in the hilus of the TMT + oil-treated
group compared with CTRL + oil-treated animals. The TMT + E2-treated
group shows a significant increase in the number of NPY-IR cells in CA1
stratum oriens, CA1 pyramidal layer and in the hilus compared with
TMT + oil-treated animals and both control groups. The values are given as
means ± SE (∗p < 0.05, ∗∗p < 0.001).

in the hilus showed no significant differences among groups
(Two-way ANOVA p > 0.05; Supplementary Figure S1).

DISCUSSION

Modulation of the GABAergic system is a remarkable aspect
of neuroprotective strategies, including those based on E2
administration (Iuvone et al., 1996; Dell’Anna et al., 1997; Hart
et al., 2001; Czeh et al., 2005; Velísková and Velísek, 2007;
Ledoux et al., 2009; Ohira et al., 2013), due to the major
role exerted by interneurons in maintaining the appropriate
excitatory/inhibitory synaptic balance, which is critical for
hippocampal information processing (Buzsáki and Chrobak,
1995; Evstratova and Tóth, 2014).

In this regard, the present study shows that E2 administration
during hippocampal neurodegeneration induced by the
neurotoxicant TMT causes the early activation of genes involved
in neuroprotection and synaptogenesis, as well as persistent
regionally restricted changes in GAD67-IR interneuron
subpopulation size, which also involve NPY- and PV-expressing
cells. In line with the notion that one of the mechanisms through
which estrogens exert neuroprotection involves the control
of cell death (Amantea et al., 2005; Arevalo et al., 2015), we
observed that E2 administration causes an early and significant
upregulation of the anti-apoptotic gene Bcl2 (Sastry and Rao,
2000) in the hippocampi of TMT-treated animals. The BDNF
pathway, which is crucially involved in neuroprotection in
different pathological conditions (Reibel et al., 2001; Almeida
et al., 2005), including seizures (Binder et al., 2001), appears to

be modulated following TMT-treatment, in line with previous
observations (Andersson et al., 1997), possibly as a result of the
activation of endogenous protective mechanisms. Interestingly,
E2 administration induced, in TMT-treated rats, significantly
higher levels of trkB. This is consistent with evidence indicating
that the BDNF pathway is one of the molecular mediators of
E2-induced effects in the hippocampus. However, although
it has been considered principally involved in E2-mediated
neuroprotective and homeostatic functions (Arevalo et al.,
2015), a dual role of this neurotrophin has also been proposed.
Some findings suggest that BDNF may also increase neuronal
excitability, even contributing to epileptogenesis (Binder
et al., 2001), and a possible detrimental effect cannot be
excluded.

Although our findings suggest that E2 administration results
in the early activation of molecular pathways possibly aimed
at preventing TMT-induced neuronal damage, we found no
significant differences in the extent of neuronal death between the
two groups of TMT-treated animals, as evidenced by unbiased
stereology on both Nissl and Fluoro Jade C staining performed
at the later time point. Previous observations by other groups
indicate that scheduled treatment based on high doses of E2, as
in the present study, are effective in reducing neuronal death
in different experimental conditions, including ischemia and
kainic acid-induced seizures (Azcoitia et al., 1998; Picazo et al.,
2003; Inagaki and Etgen, 2013). Although the reason for this
discrepancy remains uncertain, differences in the pathogenic
events that characterize the different experimental models may
account for the ineffectiveness of E2-induced neuroprotective
pathways on neuronal survival in TMT intoxication. Since
specific features of the microenvironment, including changes
in neural activity, can reverse the neuroprotective properties of
some neurotrophic agents, including also BDNF (Guo et al.,
2014), we may speculate that the persistence of cellular stress
(Fulda et al., 2010) could explain our results.

The BDNF pathway is also believed to play a relevant role in
E2-induced synaptogenesis (Spencer et al., 2008) at hippocampal
level (Scharfman and MacLusky, 2006; Spencer et al., 2008).

In this regard, TMT + E2-treated animals also show an
upregulation of other relevant players in the molecular cascade
leading to morphological plasticity, namely Cdk5, which plays
a role in the regulation of dendritic spine formation (Fischer
et al., 2003; Lai and Ip, 2009), and the Cdh2 gene, a synaptic
adhesion molecule involved in the formation and maintenance
of synaptic structure and function (Tai et al., 2008; Bozdagi
et al., 2010; Mendez et al., 2010). Both molecules are also
known to interact with the BDNF signaling cascade. Indeed,
Cdk5-mediated phosphorylation of TrkB has been proposed
to be essential in BDNF-induced dendritic growth (Cheung
et al., 2007) and the involvement of Cdh2 in the molecular
pathways activated during the BDNF/TrkB-induced effects on
synaptogenesis has also been described (Bamji et al., 2006).

E2-mediated plastic phenomena, may be also regulated by
locally synthetized estrogens (Hojo et al., 2004, 2008; Rune
and Frotcher, 2005; for review, see Fester and Rune, 2015),
which, at the hippocampal level, are produced by neurons and,
under pathological conditions, also by reactive astroglial cells
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FIGURE 8 | Distribution and quantitative analysis of parvalbumin (PV)-immunoreactive (IR) neurons in the CA1 hippocampal region of the different
experimental groups. (A–D) Representative micrographs of PV-stained hippocampal sagittal sections from CA1 region of CTRL + oil- (A), CTRL + E2- (B),
TMT + oil- (C), and TMT + E2- (D) treated rats. A higher number of PV-IR cells is detectable in the CA1 pyramidal layer of TMT + E2-treated rats compared with
both control groups. Scale bar: 50 μm. (E) Number of PV-IR neurons in different hippocampal subfields of the different experimental groups. A significantly higher
number of PV-IR cells is evident in the CA1 pyramidal layer of TMT + E2-treated rats compared with both control groups. The values are given as means ± S.E.
(∗p < 0.05, ∗∗p < 0.001).

(Naftolin et al., 1996; Garcia-Segura et al., 1999; Wehrenberg
et al., 2001; Prange-Kiel et al., 2003). Since possible interactions
between the pathways of locally produced and exogenous E2
have been suggested (Iivonen et al., 2006; Pietranera et al.,
2008), basal levels of local E2 production were evaluated,
through the analysis of the expression levels of aromatase,
key player in hippocampal E2 production (Hojo et al., 2004).
Our results indicate that aromatase expression is unaffected by
the neurotoxicant administration in the early phases of TMT-
induced hippocampal injury, as well as by the concomitant
E2 treatment. Since basal levels of endogenous E2 have
been suggested to exert a relevant role on exogenous E2-
mediated effects (Chamniansawat and Chongthammakun, 2012),
an interaction between the two pathways cannot be excluded.

A large body of evidence shows that, through genomic and
non-genomic mechanisms (Wong and Moss, 1992; Foy et al.,
1999; Liu et al., 2012), one of the main effects of E2 on the
hippocampus is the modulation of neuronal excitability, exerted
through the activation of NMDA receptors, especially in the CA1
subfield (Woolley et al., 1997; McEwen et al., 2012), which is
also believed to underlie synaptogenesis (Woolley et al., 1997;
McEwen et al., 2012).

Enhanced E2-induced excitability is accompanied by
increased GABAergic transmission (Murphy et al., 1998), which
results in the modulation of GAD67 expression (Weiland, 1992;
Nakamura et al., 2004; Spencer et al., 2008). Moreover, the
presence of estrogen receptors in the hippocampal GABAergic
interneurons (McEwen and Alves, 1999; Hart et al., 2001;
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FIGURE 9 | Co-expression of the interneuronal markers parvalbumin (PV) and glutamic acid decarboxylase (GAD) 67 in the CA1 hippocampal region
of the different experimental groups. Representative confocal reconstructed orthogonal images, as viewed in the x-z (top) and y-z (right) planes, of hippocampal
sagittal sections from the CA1 subfield of CTRL + oil- (A), CTRL + E2- (B), TMT + oil- (C), TMT + E2- (D) treated rats double-labeled for GAD67 (red) and PV
(green). The colocalization of the two markers is considerably more evident in TMT + E2 treated animals. Scale bar: 40 μm. (E) Bar graphs indicating the percentage
of PV/GAD67-double-stained cells in CA1 oriens and pyramidal layers. The percentage of PV/GAD67-double-stained cells in CA1 pyramidal layer is higher in
TMT + E2-treated rats compared with both control groups. The values are given as means ± SE (∗p < 0.05).

Blurton-Jones and Tuszynski, 2002; Waters et al., 2015) enables
them to play a pivotal role in estrogen-mediated plastic events in
the adult hippocampus (Spencer et al., 2008).

Although TMT does not appear to be excitatory in nature
(Allen and Fonnum, 1984; Koczyk, 1996), it has been suggested
that excitotoxicity may be involved in TMT-induced neuronal
death (Koczyk, 1996; Nishimura et al., 2001; Geloso et al.,
2011). The involvement of the GABAergic system has also been
reported (Wilson et al., 1986; Nishimura et al., 2001). Our
results indicate that TMT + oil-treated animals exhibit a marked
increase in GAD67 expression in selected hippocampal subfields
(namely the CA1 pyramidal cell layer and the hilus), in line
with previous reports (Nishimura et al., 2001). Interestingly,
E2 administration induced, in the TMT-injured hippocampus,
not only an early upregulation of the Gad67 gene, but also a
further increase in GAD67 immunoreactivity, likely suggesting
an E2-mediated increase in GAD67 levels. GAD67 levels have
been directly related to the efficacy of synaptic transmission
in GABAergic interneurons (Lazarus et al., 2015). Increased
GAD67 expression may thus reflect a general cellular response
to injury and/or it may represent an attempt to increase the
production and, possibly, the release of GABA (Czeh et al., 2005).
The increased GAD67 immunoreactivity appears as a persistent

and regionally specific effect. In particular, TMT + E2-treated
animals show a significantly higher number of GAD67-IR cells in
the CA1 stratum oriens, where dendrite-projecting interneurons
are located, which are known to control the input of principal
cells and the propagation of calcium currents from the dendrite
to the soma (Sik et al., 1995; Cossart et al., 2001), and in
the CA3 pyramidal layer, one of the principal sites where the
neurotoxicant exerts its earliest and most severe effects (Koczyk,
1996; Geloso et al., 2011) and where GABAergic basket cells are
located (Sik et al., 1995). In the same group, the enhancement
of GAD67 expression was also detectable in the hilus, in which
both interneurons (Mott et al., 1997) and mossy cells (Jinde
et al., 2013) are involved in the control of dentate granule
cell excitability, and in the DG, commonly considered a gate
structure controlling incoming inputs to the hippocampus (Hsu,
2007).

In line with previous evidence (Velísková and Velísek, 2007;
Velisek et al., 2013), our data indicate that E2 administration
also increases Npy gene expression levels in both CTRL + E2-
and TMT + E2-treated groups, which results, in TMT-treated
animals, in a further and more extensive enhancement of NPY
immunoreactivity. It is known that the NPY system undergoes
profound changes during many neurodegenerative diseases,
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as well as in experimental models of temporal lobe epilepsy
(Decressac and Barker, 2012; Malva et al., 2012), including the
TMT-induced model of hippocampal injury (Ishida et al., 1997;
Tsunashima et al., 1998; Ishikura et al., 2002). This feature
has also been confirmed by the present study. In this regard,
E2 administration results in a further enhancement of NPY
expression in TMT-treated rats, with a regional distribution that
parallels the increased expression of GAD67 observed in the same
group, involving, in addition, also the CA1 pyramidal layer, the
particular site of estrogen activity (Nakamura andMcEwen, 2005;
Brann et al., 2007). We may hypothesize that the two findings are
part of the same phenomenon, as also indicated by the lack of
significant differences in the percentage of NPY/GAD67 double-
labeled cells detected in the same regions among the different
experimental groups.

Together with an impairment in neurotransmission, the
occurrence of seizures has also been described in TMT-treated
rats, mainly in the time frame between 4 and 16 days after
administration of the neurotoxicant (for review, see Koczyk,
1996; Geloso et al., 2011; Corvino et al., 2013; Lattanzi
et al., 2013). Therefore, taking into account the suggestion
that estrogens exert their neuroprotective effects by enhancing,
possibly through BDNF induction, the expression of NPY,
whose anticonvulsant and antiapoptotic properties are widely
recognized (Wu and Li, 2005; Smialowska et al., 2009; Corvino
et al., 2012), a possible homeostatic and reparative role of this
phenomenon may be speculated.

Our findings also point to the involvement of the
PV-expressing subpopulation in the changes induced by
E2 administration in the TMT-injured hippocampus. E2
administration induces the early and significant upregulation
of the Pva gene both in CTRL and in TMT-treated animals. In
the latter group, interestingly, this finding is further supported
by the upregulation of molecular pathways involved in PV
expression, such as Pgc-1α, required for both mRNA and
protein expression of PV in the hippocampus (Lucas et al.,
2010; Jinde et al., 2013) and a master regulator of mitochondrial
biogenesis (St-Pierre et al., 2006), and Sirt 1, a histone deacetylase
that directly regulates the activity of PGC-1α (Rodgers et al.,
2008; Aquilano et al., 2010). This is not surprising, since PV-
expressing interneurons are known to express estrogen receptors
(Blurton-Jones and Tuszynski, 2002; Higaki et al., 2012) and
changes in size of the PV-expressing subpopulation following
E2 treatment have previously been reported in different brain
regions (Rewal et al., 2005; Macrì et al., 2010; Sotonyi et al.,
2010; Koh, 2014), as well as in non-neural tissues (Wirakiat et al.,
2012).

In this regard, a putative link between this effect and
the observed modulation of the BDNF/TrkB pathway cannot
be excluded, due to the described influence exerted by the
neurotrophin on the transcription of proteins involved in
GABAergic transmission, including PV and NPY (Glorioso et al.,
2006).

Upregulation of the Pva gene and related pathways results, in
TMT-treated animals, in increased PV immunoreactivity, which,
also in this case, selectively involves the CA1 pyramidal cell
layer. Changes in size of the PV-expressing subpopulation may

reflect variations in the cellular content of this calcium-binding
protein (Scotti et al., 1997), which in turn have been related
to variations in the activity state of these interneurons (Scotti
et al., 1997; Vreugdenhilm et al., 2003; Donato et al., 2013;
Urakawa et al., 2013). Interestingly, a higher percentage of PV-IR
cells co-expressing the GABAergic marker GAD67 is detectable
in the CA1 pyramidal cell layer of the same experimental
group.

GAD67 levels are thought to reflect cellular and vesicular
GABA contents, as well as changes in the activity state of
GABAergic interneurons (Esclapez and Houser, 1999; Ramirez
and Gutierrez, 2001; Lazarus et al., 2015). GAD67 also
regulates axon branching and perisomatic bouton formation in
PV-expressing basket neurons (Chattopadhyaya et al., 2007),
contributing to the functional state and plasticity in these
cells (Lazarus et al., 2015). Our findings therefore suggest the
occurrence of molecular events possibly related to functional
changes in PV-positive hippocampal cells.

Taken together, our results indicate that although E2
administration fails to counteract TMT-induced neuronal death,
it mediates the expression of molecules related to neuronal
plasticity and to inhibitory neurotransmission, and that this is
associated with persistent phenotypic changes in the size of
different GABAergic subpopulations. Among the latter, NPY-
and PV-IR neurons, in particular, can be selectively affected
in many pathologic conditions, including Angelman syndrome
(Godavarthi et al., 2014), Alzheimer’s disease (Ramos et al.,
2006), schizophrenia (Stansfield et al., 2015), aging (Pugliese
et al., 2004; Kuruba et al., 2011), and seizures (Sun et al., 2007).
Neuroprotective strategies that lead eventually to a modulation
of the neurochemical features of these interneurons may be
potentially relevant for new therapeutic approaches in brain
disease.
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