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Multiple system atrophy (MSA) is a progressive neurodegenerative disease presenting
with combinations of autonomic dysfunction, parkinsonism, cerebellar ataxia and/or
pyramidal signs. Oligodendroglial cytoplasmic inclusions (GCIs) rich in α-synuclein (α-syn)
constitute the disease hallmark, accompanied by neuronal loss and activation of glial
cells which indicate neuroinflammation. Recent studies demonstrate that α-syn may be
released from degenerating neurons to mediate formation of abnormal inclusion bodies
and to induce neuroinflammation which, interestingly, might also favor the formation of
intracellular α-syn aggregates as a consequence of cytokine release and the shift to a
pro-inflammatory environment. Here, we critically review the relationships between α-syn
and astrocytic and microglial activation in MSA to explore the potential of therapeutics
which target neuroinflammation.
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INTRODUCTION: MULTIPLE SYSTEM ATROPHY AND
α-SYNUCLEIN

Multiple System Atrophy (MSA) is a complex progressive neurodegenerative disease which
affects 3.4–4.9 cases/100,000 with 0.6–0.7/100,000 new cases each year. It has no significant
gender bias with disease onset typically over the age of 60 and a mean survival of ∼7.9 years
following diagnosis (Watanabe et al., 2002; Wenning et al., 2013; Longo et al., 2015). Although
there are no strong genetic determinants, studies have associated MSA cases with the H1
haplotype of MAPT, also linked to tauopathies such as Progressive Supranuclear Palsy (PSP;
Vilariño-Güell et al., 2011), COQ2 loss of function linked mutations (Multiple-System Atrophy
Research Collaboration, 2013) and hexanucleotide repeat expansions in C9orf72 (also associated
with Amyotrophic Lateral Sclerosis and Frontotemporal Dementia; Goldman et al., 2014).

Abbreviations: α-syn, α-synuclein; CMA, Chaperone-mediated autophagy; CNP, Cyclic nucleotide
phosphodiesterase; CNS, Central nervous system; CSFs, Colony-stimulating factors; DLB, Dementia with
Lewy bodies; ER, Endoplasmic reticulum; GCI, Glial cytoplasmic inclusion; GFAP, Glial fibrillary acidic protein;
HSP, Heat shock protein; IDO, Indoleamine 2,3-dioxygenase; IL, Interleukin; iNOS, Inducible nitric oxide synthase;
LPS, Lipopolysaccharide; MBP, Myelin basic protein; MSA, Multiple system atrophy; MSC, Mesenchymal stem-cells;
NADPH, Nicotinamide adenine dinucleotide phosphate hydroxylase; NF-κB, Nuclear factor kappa B; NO, Nitric
oxide; PD, Parkinson’s disease; PET, Positron Emission Tomography; PGE2, Prostaglandin E2; PLP, Proteolipid
protein; PSP, Progressive Supranuclear Palsy; ROS, Reactive oxygen species; SNARE, Soluble NSF Attachment Protein
receptor; SNpc, Substantia nigra pars compacta; TGF, Transforming growth factor; TH, Tyrosine hydroxylase; TLR,
Toll-like receptors; TNF, Tumour necrosis factor; YFP, Yellow fluorescent protein.
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Clinically, a predominance of Parkinsonism (MSA-P) or
Cerebellar Ataxia (MSA-C) plus a heterogenous combination
of pyramidal signs, autonomic and urogenital dysfunctions
may be detected (Longo et al., 2015). Due to this complex
phenotype, definite MSA diagnosis requires autopsy to detect
glial cytoplasmic inclusions (GCIs) immunopositive for
α-synuclein (α-syn) and neurodegeneration in striatonigral or
olivopontocerebellar structures (Lantos, 1998; Trojanowski and
Revesz, 2007; Gilman et al., 2008).

Alpha-synuclein is a 14.4 kDa protein of predominant
neuronal pre-synaptic location where it is believed to chaperone
the assembly of synaptic vesicles for exocytosis via interaction
with synaptotagmin (SNARE complex component) and has
characteristic conformational plasticity. It normally exists as a
soluble monomer/tetramer in equilibrium with a membrane-
bound α-helical multimer (Narayanan and Scarlata, 2001;
Tong et al., 2009; Burré et al., 2014). However, for reasons
not yet fully elucidated, α-syn may misfold into abnormal
dimers, oligomers, or fibrils/protofibrils that aggregate and
constitute the pathological hallmark of several neurodegenerative
conditions, including Parkinson’s disease (PD) and Dementia
with Lewy Bodies (DLB), where they primarily occur in
neurons (McKeith et al., 2005; Shulman et al., 2011). As
mature human oligodendrocytes do not express α-syn normally
(Miller et al., 2005), the origin of α-syn glial aggregates
in MSA is unclear, whether as a consequence of primary
oligodendrogliopathy followed by neuronal degeneration or
a neuronal α-synucleinopathy leading to glial inclusions
(Nishie et al., 2004; Wenning et al., 2008). Thus, it has
been hypothesized that intercellular transmission of α-syn
might be occurring via mechanisms such as endocytosis,
direct penetration, micropinocytosis, pore formation, nanotube
tunneling or diffusion (Ubhi et al., 2011; Konno et al.,
2012). Nevertheless, the proposed mechanisms of release and
subsequent cellular uptake suggest that at α-syn pathology
transmission may occur in a putative prion-like manner
(Prusiner et al., 2015).

In addition to α-syn rich GCIs as the central pathological
feature, MSA also exhibits neuronal loss and strong
neuroinflammation which both correlate with the density
of inclusions and disease duration (Gai et al., 2003; Ozawa
et al., 2004; Ahmed et al., 2012) as well as expression of
inflammatory markers (Chen et al., 2015). Neuroinflammation
is a dynamic response that involves changes in glial cell
morphology, number, function and concomitant production
of signaling molecules (O’Callaghan et al., 2008; Shastri et al.,
2013). In the context of neurodegenerative diseases, persistent
intra- and extracellular imbalances (such as those caused by
misfolded proteins, oxidative stress, and neuronal death) are
known to trigger and chronically perpetuate this response,
which is dominated by microglia and astrocytes (Takeuchi,
2013). Gliosis is the term that indicates the phenotypic changes
of glia and is exemplified in Figures 1A–C, where activated
astrocytes and microglia co-localize with GCI pathology. This
manuscript explores the role of α-syn and its relationship
to neuroinflammation mediated by astrocytes and microglia
in MSA.

FIGURE 1 | Multiple system atrophy is characterized by widespread
oligodendroglial α-syn inclusion bodies, astrogliosis and microgliosis.
(A,B) MSA putamen (A) and visual (B) showing activated astrocytes
(arrowheads, GFAP, red) in close proximity to GCIs (arrows, α-syn, green).
(C) A subset of activated astrocytes are also intensely immunopositive for the
exocytic vesicle marker, munc18 (Radford et al., 2015). (D,E) Rat primary
astrocyte cells adopt activated morphology when treated with α-syn.
(E) compared to control cells (D) Scale bars, 20 µm. (F) Frequent activated
microglia (solid arrow, yellow, Iba-1) and activated astrocytes (red, GFAP)
occur near to the site of GCI injection in unilateral-lesioned mice (Radford
et al., 2015). Scale bar, 30 µm.

α-SYNUCLEIN TOXICITY AND SPREADING

That α-syn is the pathogenic root of neurodegeneration in
MSA has been given further credence by the discovery of
SNCAmutations in α-synucleinopathies (mostly PD), but where
G51D and A53E α-syn mutations have been described in
patients with atypical parkinsonism and may overlap with MSA
(Polymeropoulos et al., 1997; Krüger et al., 1998; Zarranz
et al., 2004; Lesage et al., 2013; Proukakis et al., 2013; Pasanen
et al., 2014). In MSA, it remains unclear which α-syn form/s
is the principal mediator of toxicity but their compact and
insoluble structure allows them to resist intracellular cleavage,
accumulate and disrupt otherwise normal downstream processes
(e.g., the ubiquitin-proteasome system, synaptic exocytosis,
mitochondrial metabolism and ER-Golgi transport; Burré et al.,
2015). Multiple modes of α-syn toxicity are reviewed elsewhere,
including membrane permeabilization by annular oligomers and
disrupting protein degradation pathways by inhibition of the
proteasome and autophagy (Cuervo et al., 2004; Winner et al.,
2011; Daturpalli et al., 2013; Roberts and Brown, 2015), but
it is accepted that this α-syn-induced dysfunction can lead to
the death of central nervous system (CNS) cells that defines
neurodegeneration (Radford et al., 2014).

In addition, the exchange of amorphous α-syn between
neurons and glial cells via exo- and endocytosis characterizes
the cell-to-cell transmission and uptake that may ultimately
lead to pathology spread (Reyes et al., 2014), with evidence for
unconventional exocytosis (independent from ER-Golgi) and
exosomes as mechanisms of release (Emmanouilidou et al., 2010;
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Jang et al., 2010). Key studies have recently provided evidence
for α-syn transmission to occur in a prion-like manner. Thus,
α-syn isolated post-mortem from MSA cases was transferred
to HEK cells (modified to express the A53T mutation and
tagged with yellow fluorescent protein, namely α-syn 140∗A53T-
YFP), that were then found to increase aggregate formation
and increase YFP aggregate expression from the infected single-
cells group, when compared to untransfected group (indicating
a de novo prion formation in the transfected group; Woerman
et al., 2015). In line with these findings, when brain extracts
from MSA cases were injected intracerebrally in transgenic
mice (M83 carrying the A53T mutation, namely tgM83),
phenotypic changes (e.g., dysmetria and circling behavior)
manifested 100–150 days post-inoculation in the homozygous
group and pathological aggregates of phosphorylated α-syn
and astrogliosis were detected in regions including brainstem.
Interestingly, tgM83 mice inoculated with PD homogenates
did not exhibit specific α-syn deposition or manifest clinical
alterations significantly different from those of controls (Prusiner
et al., 2015). These findings provide experimental evidence for
MSA as a possible prion disease, with different α-syn strains
being able to spread and promote tissue pathology in contrast
with those of PD.

NEUROINFLAMMATION: ASTROCYTES,
MICROGLIA AND α-SYNUCLEIN IN MSA

Astrocytes are key players in CNS homeostasis and pathology
and are involved in a wide array of functions including
modulating CNS immunity and inflammation, synaptic pruning
and degradation of neuronal organelles (De Keyser et al., 2008;
Sofroniew and Vinters, 2010; Chung et al., 2013; Hostenbach
et al., 2013; Davis et al., 2014; Ben Haim et al., 2015). In MSA, the
influence of α-syn on astrogliosis has been investigated by several
studies. Treatment of primary astrocytes with α-syn promoted
astrogliotic changes, as shown in Figures 1D,E (Radford et al.,
2015). In astrocytes transfected with an inhibitor of endocytic
vesicle formation (dominant negative dynamin-1 K44A mutant)
and co-cultured with neuron-derived cell lines expressing α-syn,
endocytosis was shown as a mechanism for direct uptake, which
strongly correlates with the production of cytokines (such as
IL-1α, -1β, -6, -18), colony-stimulating factors (CSF-1, -2, -3),
and chemokines [(CCL-3, -4, -5, -12, -20), (CXCL-1, -2, -5, -10,
-11, -12, -16)] (Lee et al., 2010). Moreover, in transgenic mice
overexpressing oligodendroglial α-syn, exposure to oxidative
stress (using the mitochondrial inhibitor 3-nitropropionic acid)
led to astrogliosis and degeneration in close proximity to GCIs
(Stefanova et al., 2005). Accordingly, the morphometric analysis
of human cases andmousemodels ofMSA reveals that the degree
of astrogliosis increased with proximity to α-syn deposits, as seen
in Figures 1A,B (Song et al., 2009; Radford et al., 2015).

Microglia account for approximately 10% of all brain cells
and derive from a primitive myeloid lineage of macrophages
that migrate to cerebral regions during intrauterine life, after
which they are distributed unevenly throughout the brain
hemispheres, mostly concentrating in the hippocampus, basal
ganglia and substantia nigra (Prinz et al., 2011). Normally, in

the healthy brain, resident microglia adopt a resting (surveillant)
phenotype, which is maintained by feedback of signaling
molecules such as neuronal fractalkine and astrocytic glial-
derived neurotropic factor, with perturbations of homeostasis
triggering microglial activation into effector phenotypes, namely
M1 and M2 (Tang and Le, 2015). This requires interaction of
the noxious stimulus with immune response receptors such as
complement factors, pattern recognition receptors and scavenger
receptors (Husemann et al., 2002; Scheffel et al., 2012). Once
activated, the M1 phenotype produces pro-inflammatory and
cytotoxic molecules, such as TNF-α, IL-6, IL-1β, superoxide,
NO, reactive oxygen species (ROS) and excitatory amino acids,
which can induce more neuronal damage and progression
of cellular dysfunction (Kettenmann et al., 2011). The other
activated state, M2, also manifests phagocytic activity, but
performs anti-inflammatory responses through release of IL-10
and transforming growth factor beta (TGF-β). It may also be
induced by anti-inflammatory cytokines (e.g., IL-13 and IL-14)
and acts in tissue repair via release of growth factors such as
major histocompatibility complex 5, monocyte chemoattractant
protein 1 and insulin-like growth factor 1 (Colton and Wilcock,
2010; Welser-Alves and Milner, 2013).

Morphologically, cellular hypertrophy and branching are
the most commonly described changes in microgliosis which,
depending on nature and intensity of the damage, may be
detected as early as minutes to hours after acute injuries, with
rapid process extension occurring in an ATP-dependent manner
through P2Y12 receptors (Jensen et al., 1999; Davalos et al., 2005;
Nimmerjahn et al., 2005; Parkhurst and Gan, 2010). In primary
mesencephalic neuron-glia culture systems, extracellular α-syn
was shown to be directly phagocytosed by microglia producing
microgliosis, upregulation of NADPH oxidase and secretion
of ROS, enhancing neurodegeneration (Zhang et al., 2005).
Microgliosis can be identified clustering around α-syn years to
decades after α-syn accumulation (Ishizawa et al., 2004; Graeber
and Streit, 2010), or colocalizing with α-syn-rich neurons after
direct stereotactic injection of α-syn ribbons or fibrils (Peelaerts
et al., 2015).

In the extracellular environment, the abnormal presence of
α-syn can be sensed and internalized by glial cells, leading
to a cascade of reactive gliosis, secretion of pro-inflammatory
cytokines and subsequent cell recruitment; characterizing the
amplification of a localized deposit of protein. Localized micro-
and astrogliosis resulted from injection of purified GCI material
into mouse medial forebrain bundle after 23 days, as shown
in Figure 1F (Radford et al., 2015). In microglia, pathogen
pattern recognition receptors in the membrane surface enable
the initial identification of foreign structural motifs on multiple
arrays of pathogens (in the case of infectious disease), but
they are also capable of recognizing changes in homeostatic
cellular conditions and endogenous molecules, such as misfolded
proteins in neurodegenerative diseases (Stefanova et al., 2005;
Block et al., 2007). In particular, the Toll-like receptors (TLRs)
2 and 4 are known to interact with α-syn. In a cellular model,
purified microglial cultures from brains of wild type (TLR4+/+)
and deficient (TLR4−/−) postnatal mice were treated with
wild-type and abnormal α-syn forms (fibrillar, truncated). The
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results revealed prolific microgliosis in the TLR4+/+ groups,
increased phagocytic activity, upregulation of nuclear factor-
kappa B (NF-κB), and increased production of CXCL1, IL-6,
and TNF-α. Furthermore, TLR4-deficient microglia showed a
reduced production of ROS upon α-syn treatments. In line with
these findings, both human cases and transgenic mouse models
of MSA also exhibit upregulation of TLRs (Béraud et al., 2011;
Brudek et al., 2013; Fellner et al., 2013).

The temporal relationship between astro- and microgliosis
in MSA is still poorly understood, as preclinical studies cannot
reproduce the long timescale of MSA pathogenesis. Clinical
radiology could overcome this limitation but, to date, tagging
neuroinflammation with specific markers (Gerhard et al., 2003)
has not been performed (Schrag et al., 1998; Schocke et al.,
2002; Ozawa et al., 2004; Watanabe et al., 2004; Brooks et al.,
2009; Chandran and Stoessl, 2014). Despite limitations related
to preclinical and clinical assessment of neuroinflammation, it
may be that, because glial cells express no or very little α-syn, glial
uptake of α-syn occurs and α-syn triggers the neuroinflammatory
process, which may then operate in waves of incremental feed-
forward damage. This process, combined with the prion-like
behavior of α-syn, implicates the role of neuroinflammation in
worsening/perpetuating MSA. Figure 2 represents schematically
the interplay between α-syn aggregation and release, astrogliosis
and microgliosis and the feedback of pro-inflammatory factors
that may in turn result in additional neuronal stress.

It is known that extracellular α-syn may directly act upon
astrocytes, microglia and oligodendrocytes. However, to date,
there is a lack of studies specifically addressing gliosis as a
trigger for α-syn misfolding and/or release (Croisier et al.,
2005). Because of their role in surveillance and in reaction
to pathogens, microglia may exert an indirect effect on α-syn
by secreting a variety of toxic factors, which disrupt basic
intracellular protein degradation systems and ultimately affect
α-syn dynamics (Fellner and Stefanova, 2013). For example, it
is known that α-syn oxidation and nitration inhibits chaperone-
mediated autophagy (CMA; Kiffin et al., 2004; Martinez-
Vicente et al., 2008; Xilouri et al., 2009, 2013) and that α-syn
phosphorylation alters macroautophagy (Tenreiro et al., 2014)
which, unlike CMA, can eliminate larger protein species, such as
oligomers and aggregates (Engelender, 2012; Tanik et al., 2013).
Moreover, neuron-glia cultures treated with lipopolysaccharide
(LPS), a potent stimulator of microgliosis, have increased H2O2-
mediated chemoattraction towards α-syn aggregates (Ejlerskov
et al., 2015), which can be enhanced by pre-injection of LPS in
an oxidative-stress (rotenone) mouse model (Tien et al., 2013).
Although a unified body of data is required to define a single
model of MSA, the overproduction of cytotoxic by-products by
microgliosis may contribute to α-syn misfolding/aggregation.

MSA may also share common pathological features with
the tauopathy PSP, although astrocytes display a degenerative
phenotype in PSP tissue rather than a reactive one (Togo and
Dickson, 2002; Radford et al., 2015). Studies with microglial
fractalkine receptor deficient hTauCx3cr1−/− mice have shown
that enhanced microglial activation led to accelerated tau
pathology and could be transferred to non-transgenic recipient
mice by adoptive microglia; which was blocked by the

interleukin1 receptor antagonist, Kineret (Bhaskar et al., 2010;
Maphis et al., 2015). Recently, microglia have been shown to be
directly linked to hTau propagation between non-synaptically
connected neuronal populations in vivo via exosome release
following phagocytosis of hTau (Asai et al., 2015). As most
experiments to date have used models of PD to address α-syn
diseases, future experiments will need to focus on specific MSA
animal and cell culture models, such as by direct injection of
purified GCI material (Radford et al., 2015), that may better
mimic the disease’s specific cellular features (Halliday and
Stevens, 2011), especially to further elucidate the role of both
astrocytes and microglia in α-syn misfolding/aggregation and
spreading.

NEUROINFLAMMATION AS
A THERAPEUTIC TARGET

Due to the possible cyclic nature of α-syn aggregation/release
and gliosis in MSA, interventions that target neuroinflammation
have the potential to slow the progression of disease and
increase quality of life. Recent studies have approached
α-synucleinopathies, including MSA, by use of immunotherapy
(Valera and Masliah, 2013). For example, short immunogenic
peptides mimicking the C-terminus of α-syn were administered
to MBP-α-syn trangenic mice, followed by measurements of
inducible anti-α-syn antibodies, cellular and tissue outcomes
over time. Interestingly, as the peptides used did not carry the
native epitope but instead a variation of it, this approach did
not produce autoimmunity reactions via T-cells, leading to a
beneficial prolonged response. Moreover, the induced antibodies
were able to cross the blood-brain barrier where they could detect
intracellular α-syn (monomer, oligomers and aggregates) after
being internalized by microglia, oligodendrocytes and astrocytes.
This reduced α-syn colocalization in oligodendrocytes and
astrocytes but not in microglia, suggesting increased microglial
uptake whilst preserving the oligodendrocyte population
and decreasing demyelination, neuronal death and motor
deficits (Mandler et al., 2015). Indeed, as in animal models
of α-synucleinopathy the microglial response occurs prior to
neuronal loss (Sanchez-Guajardo et al., 2015), strategies such
as pre-immunization with α-syn peptides or approaches aimed
at priming the CNS against α-syn immune insult may provide
a glial memory and lessen subsequent neuroinflammatory
responses to therapeutic benefit. Moreover, as activated
microglia could participate actively in the spread of α-syn
pathology, therapies that promote microgliosis to facilitate the
clearance of extracellular pathological protein aggregates may
have unwanted side effects. Furthermore, a recent study has
shown that peripheral vector administration of the protease
neurosin could degrade extracellular α-syn and thereby may
reduce microglial and astrocyte activation (Spencer et al., 2015).

Some studies also aimed at microgliosis as a therapeutic
target. For example, the inhibition of pro-inflammatory (iNOS
or NAPH oxidase) enzymes from activated microglia is followed
by decreased degeneration of neurons upon treatments with
7-nitroindazole and apocynin (Gao et al., 2003). Also, the
treatment of the PLP-α-syn mouse model with minocycline
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FIGURE 2 | MSA pathology may spread between anatomically connected regions as a result of reciprocal rounds of α-syn release and
neuroinflammation. Neuronal dysfunction can lead to α-syn aggregation and release of α-syn aggregates, which can then interact directly with astrocytes and
microglia to mediate activation. In turn, the release of pro-inflammatory factors by activated glia can act back on neurons to cause stress, thereby stimulating the
formation and release of additional α-syn aggregates.

decreased the density of activated microglia in the SNpc, reduced
iNOS and TLR4-immunoreactivity and reduced dopaminergic
degeneration (Stefanova et al., 2007).

As their differentiation capacity and immunomodulatory
properties can address both neurodegeneration and
neuroinflammation, mesenchymal stem-cells (MSCs) have
been investigated as therapeutic options. In a study using the
transgenic PLP mouse model of MSA (Stemberger et al., 2011),
intravenous transplantation of MSCs promoted neuroprotection
in the SNpc (as determined by TH+ neurons in the treated
group) and down regulation of cytokines (IL-1α, IL-2, Il-10,
TGF-β1 and TNF-α) in midbrain-brainstem lysates 4 weeks
post-injection. Similarly, in the double-toxin-induced MSA-P
mouse model, treatment with human MSC (hMSC) improved
motor behavior (pole-descending test), increased neuronal
survival (TH- and NeuN-positive markers), and decreased astro-
and microgliosis (anti-Iba1 and anti-GFAP immunostaining,
respectively) in the SNpc and striatum (Park et al., 2011). Lastly,
a clinical trial using autologous MSC transplantation in patients
with MSA-C improved symptoms severity [as observed on the

baseline unified MSA rating scale (UMSARS)], and attenuated
the declines of cerebral glucose metabolism and gray matter
density (assessed by neuroimaging) along a 360-day follow-up
(Lee et al., 2012). The immunosuppressive actions of MSC
are believed to operate in a non-MHC-restricted manner,
for example via secretion of soluble factors such as TGF-β1,
PGE2 and indoleamine 2,3-dioxygenase (IDO; Krampera et al.,
2006b). As glial cells are known to use IDO in the conversion
of tryptophan to kynurenine, the finding that interferon-γ
can upregulate the enzyme points to the kynurenine pathway
as another therapeutic target in neuroinflammation related
and non-related to MSCs (Krampera et al., 2006a). Recently,
mice lacking anti-inflammatory interferon-β were shown to
develop motor and cognitive deficits and α-syn pathology
similar to a DLB/PD phenotype (Ejlerskov et al., 2015). This
strengthens the link between dysfunctional inflammation and
α-synucleinopathies and indicates dysfunction in inflammation
can induce α-syn toxicity and vice versa.

Therapies targeting neuroinflammation in other α-syn
disease models may warrant investigation in MSA. One
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example is the induction of heat shock proteins (HSPs) which
are known to act via multiple pathways such as protein
misfolding, neuroinflammation and mitochondrial oxidative
phosphorylation. Recently, a HSP inducer, carbenoxolone, was
shown to decrease astrogliosis, pro-inflammatory cytokines and
oxidative stress in a rotenone model of PD (Thakur and
Nehru, 2015). Additionally, HSPs are intimately involved in the
degradation of α-syn by CMA (Wong et al., 2013; Vijayakumaran
et al., 2015) and their induction may provide dual benefits by
reducing neuroinflammation and toxic α-syn aggregates. The
renin-angiotensin system may also be targeted to reduce the
microglial inflammatory response via angiotensin II antagonists
(Labandeira-Garcia et al., 2011). Microglial β-nicotinamide

adenine dinucleotide phosphate oxidase 2 inhibitors may be
useful by decreasing microglial O2- generation (Zhang et al.,
2014). Other alternatives may be to combat oxidative stress, such
as by the naturally occurring Acetyl-L-Carnitine (Singh et al.,
2015). Counterbalancing neuroinflammation in glia and immune
cells with naturally occurring lipids or hormonal modulation
(Herrera et al., 2015; Skaper et al., 2015) may also be promising
therapeutic strategies for MSA.
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