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Multiple sclerosis (MS) is a chronic progressive inflammatory disease of the central

nervous system (CNS) and the major cause of non-traumatic disability in young adults.

Fatigue is a frequent symptom reported by the majority of MS patients during their

disease course and drastically affects their quality of life. Despite its significant prevalence

and impact, the underlying pathophysiological mechanisms are not well elucidated. MS

fatigue is still considered the result of multifactorial and complex constellations, and is

commonly classified into “primary” fatigue related to the pathological changes of the

disease itself, and “secondary” fatigue attributed to mimicking symptoms, comorbid

sleep and mood disorders, and medications side effects. Radiological, physiological, and

endocrine data have raised hypotheses regarding the origin of this symptom, some of

which have succeeded in identifying an association between MS fatigue and structural

or functional abnormalities within various brain networks. Hence, the aim of this work

is to reappraise the neural correlates of MS fatigue and to discuss the rationale for the

emergent use of noninvasive brain stimulation (NIBS) techniques as potential treatments.

This will include a presentation of the various NIBS modalities and a suggestion of their

potential mechanisms of action in this context. Specific issues related to the value of

transcranial direct current stimulation (tDCS) will be addressed.
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INTRODUCTION

Multiple sclerosis (MS) is a chronic progressive inflammatory disease of the central nervous system
(CNS) and represents the major cause of non-traumatic disability in young adults (Noseworthy
et al., 2000; Compston and Coles, 2008). Its estimated prevalence in Europe is 83 per 100,000, with
rates being approximately twice as high for women as for men and lower in the southern than in
the northern European countries (Pugliatti et al., 2006).

The precise etiology of MS remains obscure and involves a plethora of mechanisms. Its
clinical course is highly heterogeneous, during which patients may develop various motor, sensory,
cognitive, and behavioral symptoms. The available treatments consist of the disease-modifying
therapies (such as the immunosuppressants, immunomodulators, and monoclonal antibodies)
(Wingerchuk and Carter, 2014); in addition to several symptomatic treatments that are usually
prescribed to control disorders of strength, sensation, mood, sleep, etc.
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Among the frequently encountered symptoms in MS, fatigue
remains the most challenging one, majorly altering the quality of
life (Krupp et al., 1988; Janardhan and Bakshi, 2002; Merkelbach
et al., 2002; Giovannoni, 2006; Induruwa et al., 2012). Indeed, it
affects up to 75% of MS patients at some point in their disease
course (Bakshi et al., 2000; Lerdal et al., 2007; Kos et al., 2008),
gets exacerbated during the day (Comi et al., 2001; Morris et al.,
2002; Mills and Young, 2008; Krupp et al., 2010), and increases
with hot and humid environment (Bakshi, 2003; Bol et al., 2012;
Leavitt et al., 2012).

Although fatigue is reported by the majority of individuals
as their most common and disabling symptom (Krupp et al.,
1989, 2010; Fisk et al., 1994a,b; Colosimo et al., 1995; Bakshi,
2003; Lobentanz et al., 2004; Flensner et al., 2008), no clear
definition exists in the literature; which makes it at a time hard
to be described by patients and diagnosed by physicians. Such
a difficulty is further exacerbated by the diversity of the fatigue
assessment tools employed by scientists and researchers. In the
majority of cases, fatigue is self-reported using various subjective
scales, like Fatigue Severity Scale (FSS) or Modified Fatigue
Impact Scale (MFIS), among others.

From an etiological perspective, no single mechanism
accounts for its occurrence, and MS fatigue is rather seen
as a complex and multifactorial constellation (Bakshi, 2003;
MacAllister and Krupp, 2005; Kos et al., 2008; Braley and
Chervin, 2010; Krupp et al., 2010; Vucic et al., 2010; Induruwa
et al., 2012). In an attempt to account for its origin, many
hypotheses have been raised and include the processes of
demyelination and axonal loss that involve various cortical and
subcortical regions; the neuroimmune dysregulation supported
by the elevated levels of cytokines and other inflammatory
mediators encountered in MS patients; and the neuroendocrine
dysfunction along the hypothalamo-pituitary-adrenal (HPA)
axis, among others.

Facing this reality, various pharmacological (dopaminergic
drugs, psychostimulants, etc.) and alternative interventions
(aerobic exercises, cooling therapies, psychotherapies, etc.) have
been tried but only resulted in limited benefits (Vucic et al., 2010;
Induruwa et al., 2012). Nowadays, non-invasive brain stimulation
(NIBS) techniques have gained an important interest in the
treatment of many neuropsychiatric disorders; hence, they might
be of some help in terms of MS fatigue.

In this review, we will first revisit the definition of this
symptom, summarize its various types, and shed the light on the
central fatigue encountered in MS patients; a particular emphasis
will be given to the available data regarding the proposed
fatigue networks. A final part will be dedicated to the NIBS
techniques and their possible mechanisms in this context. The
pharmacological and other alternative therapies are beyond the
scope of this work (For reviews see Vucic et al., 2010; Induruwa
et al., 2012).

MULTIPLE SCLEROSIS FATIGUE

To start, the definition of fatigue differs widely among patients,
researchers, and physicians. From the patients’ perspective,
fatigue is usually reported as “excessive tiredness,” “malaise,” or

“weakness” (Krupp, 2003). As for researchers and physicians,
the definition varied among the available data. For instance,
Wessely observed the fatigue in terms of its origin and referred
to it as having its source at the level of the upper motor
neuron or above (Wessely, 1998). Gandevia et al. defined
it as a progressive exercise-induced reduction in voluntary
activation of a muscle (Gandevia, 2001). Chaudhuri and Behan
considered it a failure to initiate and/or sustain attention
tasks and physical activities requiring self-motivation in the
absence or not related to physical or cognitive dysfunction
(Chaudhuri and Behan, 2000). Other authors described it as
a subjective lack of physical and/or mental energy (Benedict
et al., 2005). Interestingly, a medical definition of fatigue was
proposed in one study which consisted of a qualitative phase
followed by a cross-sectional questionnaire survey in 40 MS
patients (Mills and Young, 2008). Here, the symptom was
defined as a reversible motor and cognitive impairment, with
a reduced motivation and an increased desire to rest. It can
occur either spontaneously or following various factors such
as mental or physical activity, humidity, infections, and food
ingestion.

Second, fatigue encountered in MS patients is commonly
classified into a “primary” fatigue related to the CNS pathological
changes in the context of the disease itself; and a “secondary”
fatigue attributed to MS-related comorbidities. This includes
weakness that can mimic fatigue (van der Werf et al., 1998),
mood and sleep disorders (Möller et al., 1994; Induruwa et al.,
2012), and medications side effects (Braley and Chervin, 2010). It
is noteworthy that disease-modifying therapies themselves could
have some impact on MS fatigue. For instance, MS patients
treated with Interferon-beta can experience fatigue (Braley
and Chervin, 2010). Conversely, the monoclonal antibody
Natalizumab could reduce fatigue, as shown in TYNERGY trial
(For reviews see Hoepner et al., 2014).

Primary fatigue results from a spectrum where one pole is the
inability to generate the force required to perform the task due
to a failure of force production at the muscle level (“peripheral
fatigue”); and the other pole is the inability to sustain the required
neural drive to muscle because of supraspinal, spinal, and
even peripheral nerve contribution (“central fatigue”) (Gandevia,
2001; Zwarts et al., 2008). Interestingly, “central fatigue” can be
the result of both cognitive and physical exertion (Claros-Salinas
et al., 2013) and can reflect either a subjective sensation (fatigue)
or an objective change in performance (fatigability) (Kluger et al.,
2013).

Another way to perceive MS fatigue consists of differentiating
“trait” from “state” fatigue. The “trait” fatigue was the focus of
several papers and was defined as a stable state that expresses
the global status of patients, which does not significantly change
over time, and usually assessed with fatigue scales (Sepulcre
et al., 2009; Calabrese et al., 2010; Genova et al., 2013). In
contrast, “state” fatigue was the subject of few works only; it is
a transient condition characterized by a decreased performance
during an acute but sustained effort (DeLuca et al., 2008;
Genova et al., 2013). In addition, it can fluctuate in response to
external and internal factors, and is usually tested during task
performance.
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MS FATIGUE, DISABILITY, AND DISEASE
DURATION

Most of the studies that investigated MS fatigue aimed to
understand the contributory role of clinical, demographic and
neuroimaging data. In this perspective, conflicting data were
found regarding the relationship between fatigue severity and
the level of physical disability. Although many studies have
established a positive correlation between fatigue scores and the
degree of physical disability based on the Expanded Disability
Status Scale (EDSS) (Colosimo et al., 1995; van der Werf et al.,
1998; Flachenecker et al., 2002; Niepel et al., 2006; Pellicano
et al., 2010), others have either found a weak association (Ford
et al., 1998; Pittion-Vouyovitch et al., 2006; Yaldizli et al., 2011),
or failed to detect any relationship (Krupp et al., 1988; Roelcke
et al., 1997; Sheean et al., 1997; Provinciali et al., 1999; Rocca
et al., 2009; Cruz Gómez et al., 2013; Derache et al., 2013; Gobbi
et al., 2014a; Hesse et al., 2014). Such findings might be related
to the multi-component aspect of this symptom and/or the
differences among these studies in terms of sample size, recruited
MS subtypes, EDSS cut-offs, and the subjective tools used for
reporting fatigue. Furthermore, the majority of the studies could
not correlate fatigue scores with disease duration (Roelcke et al.,
1997; Bakshi et al., 1999; Niepel et al., 2006; Pellicano et al., 2010;
Gold et al., 2011; Yaldizli et al., 2011; Derache et al., 2013).

Admitting this apparent occurrence of fatigue independently
from disease duration and disability progression, there is
a growing interest in understanding the radiological and
neurophysiological underpinnings of MS fatigue.

NEURAL CORRELATES OF MS FATIGUE

Impact of White Matter and Gray Matter
Abnormalities
Magnetic resonance imaging (MRI) studies revealed
controversial data regarding the relationship between fatigue
severity and each of the brain atrophy and lesion load. While
some studies of them have yielded positive associations, others
failed to detect any relationship. The latter finding may be
attributed in part to the small sample size selected in some
of these studies, and to the cross-sectional or short-term
longitudinal follow up design adopted by most of them. A
summary is available in Table 1.

Interestingly, a large number of works have succeeded in
establishing a link between fatigue scores and gray matter (GM)
and white matter (WM) abnormalities in specific cortical and
subcortical regions that were proposed to be major components
of the MS fatigue networks. Such networks will constitute the
main scope of this section.

Anatomical Correlates of MS Fatigue
The Fronto-striatal Network
Among the early evidences of cortico-subcortical circuit
dysfunction as a substrate for MS fatigue, the involvement of
a “fronto-striatal network” was highlighted by two studies. In
the first one, fatigued MS (F-MS) patients had a predominant

reduced cerebral metabolic rate of glucose in the frontal lobe
and basal ganglia (Roelcke et al., 1997); FSS scores were inversely
correlated with such a rate in the right dorsolateral prefrontal
cortex (DLPFC). In line with these results, Pardini et al. reported
a significant association between MFIS scores and a cluster of
voxels located in the left frontal WM, which was further found
to be involved in the fronto-striatal network, among others
(Pardini et al., 2010). In a third study, MS patients underwent
functional MRI (fMRI) during the performance of a single motor
task using the right hand (Specogna et al., 2012). Compared to
non-fatigued MS (NF-MS) patients, F-MS patients had a greater
activation of the premotor area ipsilateral to the movement,
the right putamen, and the right DLPFC. Conversely, Codella
et al. failed to demonstrate a difference in fronto-striatal GM
pathology between F-MS and NF-MS patients, or a correlation
between such findings and FSS scores. These results could be
partially attributed to the small sample size (Codella et al., 2002b).
Table 2 provides a summary of the abovementioned studies.

The Parieto-striatal Network
A parieto-striatal network was the object of one MRI study
involving 15 F-MS and 15 NF-MS patients. A significant
association was found between fatigue scores and the lesion load
in the parietal lobe, internal capsule, and periventricular trigone,
emphasizing the role of this network in MS fatigue (Colombo
et al., 2000).

Deep Gray Matter Substrates
A group of authors correlated MS fatigue with isolated deep
GM pathologies. One study assessed the involvement of caudate,
putamen, and thalamus based on the mean T1 relaxation time
(Niepel et al., 2006), an MRI parameter previously found to
correlate with the degree of disability in MS patients (Parry
et al., 2002). Compared to their non-fatigued counterparts, F-
MS patients had significantly higher median T1 values in the
thalami, which were significantly correlated to FSS scores. The
thalamic nuclei represent an essential relay center in information
integration, the dysfunction of which might contribute to
fatigue. Another work employed the proton magnetic resonance
spectroscopy to study the relationship between fatigue scores
and the N-acetyl aspartate to creatinine ratio (NAA/cr), a neural
marker of axonal damage, within the frontal cortex and basal
ganglia (Téllez et al., 2008). A correlation was only found between
the physical domain of MFIS and NAA/cr within the lentiform
nucleus complex. A third study assessed the perfusion parameters
of deep GM and MS fatigue based on the multidimensional
fatigue inventory (MFI) (Inglese et al., 2007). An association
was found between MFI scores and the cerebral blood volume
and flow in the thalamus and basal ganglia (for a summary, see
Table 3).

It is important to note that the difference in the fatigue scales
among these three studies might be behind theminor variation in
the results. In fact, the 7-item FSS has some limitations due to its
classic ordinal construct (Krupp et al., 1988); the 21-item MFIS
is a modified version of the original fatigue impact scale (FIS)
that explores the physical, psychosocial and cognitive domains of
fatigue (Fisk et al., 1994a,b); and the 20-itemMFI employed in the
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TABLE 1 | Studies evaluating the role of gray and white matter abnormalities in multiple sclerosis fatigue.

Authors (Year) Technique Parameter (s) Scale Population Correlation with fatigue

van der Werf et al., 1998 MRI Lesion load CIS-Fatigue scale 45 MS No

Brain atrophy

Bakshi et al., 1999 MRI Lesion load FSS 71 MS No

Brain atrophy

Mainero et al., 1999 MRI Gd-enhancing lesions FSS 11 MS No

Codella et al., 2002a MRI (MTI, DTI) Quantification of lesions and NABT FSS 28 MS No

Tartaglia et al., 2004 MRS Axonal damage FSS 73 MS Yes

Marrie et al., 2005 BPF Brain atrophy SIPSR 134 MS Yes

Tedeschi et al., 2007 MRI Lesion load FSS 222 MS Yes

WM and GM atrophy

Papadopoulou et al., 2013 MRI GM volume FSMC 91 MS No

Cortical volume

WM lesions

Gobbi et al., 2014a MRI GM and WM atrophy FSS 123 MS No

Lesions distribution

BPF, brain parenchymal fraction; CIS-FATIGUE, Checklist Individual Strength -fatigue questionnaire; DTI, Diffusion tensor imaging; FSMC, Fatigue Scale for Motor and Cognitive Functions;

GM, Gray matter; MRI, magnetic resonance imaging; MRS, Magnetic Resonance Spectroscopy; MS, Multiple sclerosis; MTI, Magnetization transfer imaging; NABT, normally appearing

brain tissues; SIPSR, Sickness Impact Profile’s Sleep and Rest Scale; WM, white matter.

TABLE 2 | Studies evaluating the role of fronto-striatal networks in multiple sclerosis fatigue.

Authors (Year) Technique Scales Population Outcome

Roelcke et al., 1997 PET FSS 35 MS Significant correlation between FSS and glucose reduction in the right DLPFC

Pardini et al., 2010 MRI (DTI) MFIS 40 RRMS Significant correlation between MFIS scores and deep left frontal WM, a

region found to be involved in fronto-striatal networks, among others

Specogna et al., 2012 fMRI (+single motor task) FSS 24 RRMS Significant correlation between FSS scores and activation patterns of the

premotor area

DTI, diffusion tensor imaging; FSS, Fatigue Severity Scale; fMRI, functional magnetic reasoning imaging; GM, gray matter; MFIS, Modified Fatigue Impact Scale; MTI, magnetization

transfer imaging; PET, Positron Emission Tomography; PMC, premotor cortex; RRMS, relapsing remitting multiple sclerosis; WM, white matter; SMA, supplementary motor area.

TABLE 3 | Studies supporting the role of deep gray matter substrates in multiple sclerosis fatigue.

Authors (Year) Technique Scales Population Outcome

Niepel et al., 2006 MRI FSS 52 RRMS Correlation of FSS with abnormal T1 relaxation time within the thalami

Inglese et al., 2007 MRI MFI 22 MS (11RRMS, 11 PPMS) Correlation of MFI with the cerebral blood volume and flow in the thalamus

and basal ganglia

Téllez et al., 2008 1H-MRS MFIS, FSS 41 RRMS Correlation of physical domain of MFIS with abnormal NAA/cr ratio within the

lentiform nucleus

FSS, Fatigue Severity Scale; 1H-MRS, proton magnetic reasoning imaging; MFI, Multidimensional Fatigue Inventory; MFIS, Modified Fatigue Impact Scale; NAA/cr, N-acetyl aspartate

to creatinine ratio; RRMS, relapsing remitting multiple sclerosis; PPMS, primary progressive MS.

last study evaluates five fatigue dimensions, namely the general,
physical and mental fatigue along with the reduced motivation
and activity (Smets et al., 1995).

Cortico-cortical Networks
Among the works dedicated to MS fatigue, some attention
was paid on the pathological changes affecting the cortico-
cortical networks, particularly those involving the frontal and
parietal cortices. In this setting, six studies were found to
fulfill these criteria. In one study, electroencephalography (EEG)

recording were performed during and following the performance
of a simple motor task (Leocani et al., 2001). Compared
to NF-MS patients and healthy controls, F-MS patients had
higher event-related desynchronization (ERD) over the midline
frontal structures during the movement and lower event-
related synchronization (ERS) in the contralateral central area
after the movement (Leocani et al., 2001). These are the
respective markers of cortical activation and idling. Therefore,
this altered balance between excitation (ERD) and inhibition
(ERS) might result from axonal damage and the subsequent
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loss of functional intra-cortical connections. The post-movement
loss of inhibition (ERS) seems to trigger brain activation and
might account for MS fatigue. Tartaglia et al. found that, during
the performance of a fatiguing cognitive task, MS patients
exhibited an altered pattern of activation within the left primary
sensory and premotor cortices and the supplementary motor
area, despite the lack of performance difference in comparison
to the healthy group (Tartaglia et al., 2008). In another study,
fatigue was significantly correlated with frontal GM atrophy
especially involving the superior frontal gyrus (SFG) on the
left and the middle frontal gyrus (MFG) bilaterally, and with
lesion load namely found within the left frontal and right
parieto-temporal areas (Sepulcre et al., 2009). In addition, using
DTI-based tractography, one study established a correlation
between fatigue scores and a significant cluster of voxels in
the deep WM involving fronto-frontal fibers, among others
(Pardini et al., 2010). It is noteworthy that fatigue scores were
frequently found to correlate with isolated regional metabolic
changes in the posterior parietal cortex (PPC) (Pellicano et al.,
2010), left precentral gyrus (Riccitelli et al., 2011), bilateral
frontal cortices (Huolman et al., 2011), left superior frontal
and right inferior temporal gyri (Rocca et al., 2014), and
left supplementary motor area (Cruz Gómez et al., 2013).
Other studies reported an association between fatigue and
abnormalities involving the corpus callosum and its radiating
fibers that primarily ensure the interhemispheric cortico-cortical
connections (Yaldizli et al., 2011, 2014; Gobbi et al., 2014b; Rocca
et al., 2014). The above-mentioned papers are summarized in
Table 4.

The Cortico-striato-thalamo-cortical Loop
Considering this bunch of evidence involving various brain areas
and admitting the heterogeneous nature of MS, a large neural
network should be considered in the context of MS fatigue.

First, using morphological MRI, one study has found that F-
MS patients had atrophy in the striatum, thalamus, SFG, and
intraparietal gyrus (IPG). Correlations were observed between
MFIS cognitive subscale and each of the striatal volume, and
the cortical thickness of the PPC and the MFG. The MFIS
physical subscale was also correlated with the striatal volume
and SFG cortical thickness (Calabrese et al., 2010). Andreasen
et al. used DTI and magnetization transfer imaging to study
the central motor drive during isometric contraction (Andreasen
et al., 2010). They found that F-MS patients had regional atrophy
in the DLPFC, PPC, and basal ganglia. However, no correlation
was found between these atrophies and FSS scores, a finding that
might be attributed to the small sample.

Data from fMRI studies have documented an altered pattern
of regional activation and functional connectivity (FC) in F-
MS patients at rest or during the performance of fatiguing
motor and cognitive tasks. In one study, F-MS patients showed
hypoactivation within the ipsilateral rolandic operculum and
precuneus, as well as the contralateral thalamus and MFG. FSS
scores were inversely correlated with the activation pattern of the
contralateral thalamus and the ispsilateral rolandic operculum
(Filippi et al., 2002). A second work compared the brain
activation pattern of fatigable and non-fatigable MS patients
following interferon injection (Rocca et al., 2007). Following
the injection, fatigable patients showed increased activation

TABLE 4 | Studies highlighting the impact of cortico-cortical connections in multiple sclerosis fatigue.

Authors (Year) Technique Scales Population Outcome

Leocani et al., 2001 EEG (during simple motor task) FSS 23 MS Correlation of fatigue scores with ERD over the midline frontal structures

during movement, and an inverse correlation of those scores with

contralateral central ERS post-movement

Tartaglia et al., 2008 fMRI (during PASAT) FSS 10 RRMS Correlation between fatigue scores and an altered activation pattern

within sensory and motor areas

Sepulcre et al., 2009 MRI MFIS 60 MS Correlation between fatigue scores and fronto-parietal pathologies

Pardini et al., 2010 MRI MFIS 40 RRMS Correlation between MFIS scores and deep left frontal WM, a region

found to be involved in fronto-frontal and fronto-occipital networks

Pellicano et al., 2010 MRI MFIS 20 RRMS Correlation of fatigue scores with posterior parietal cortical thickness

4 SPMS

Yaldizli et al., 2011 MRI FSS 70 RRMS Association between fatigue scores and CC atrophy

Huolman et al., 2011 fMRI (during mPVSAT) – 15 MS Hyperactivation of bilateral frontal regions

Riccitelli et al., 2011 MRI FSS 24 RRMS Correlation between fatigue scores and GM atrophy within the left

precentral gyrus

Cruz Gómez et al., 2013 fMRI FSS 60 RRMS Correlation between fatigue scores and WM atrophy within the left

supplementary motor areas

Rocca et al., 2014 MRI FSS 63 MS Correlations between fatigue scores and atrophy of the right inferior

temporal gyrus, left superior frontal gyrus, and forceps major

Yaldizli et al., 2014 MRI FSS 113 MS Association between fatigue scores and CC atrophy

Gobbi et al., 2014b MRI MFIS 147 MS Association between fatigue and CC pathology

CC, Corpus callosum; EEG, electroencephalography; ERD, event related desynchronization; ERS, event related synchronization; F, fatigued; FSS, Fatigue Severity Scale, fMRI, functional

magnetic resonance imaging, GM, gray matter; HCs, Healthy controls; MFIS, Modified Fatigue Impact Scale; mPVSAT, modified Paced Visual Serial Addition Test; PASAT, Paced Auditory

Serial Addition Test; RRMS, relapsing remitting multiple sclerosis; SPMS, secondary progressive multiple sclerosis; WM, white matter.
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of the basal ganglia, thalami, primary sensorimotor cortex,
supplementary motor area, and several frontal regions. In a third
study, kinematic and fMRI data were obtained from healthy
controls, F-MS and NF-MS patients. Compared to the other
groups, F-MS patients had an increased activation of the left
secondary somatosensory cortex and the right precuneus and
decreased activation of the right thalamus, right basal ganglia,
left inferior frontal gyrus (IFG) during in-phase and anti-phase
movements (Rocca et al., 2009). Here, the fatigue effect was
mainly located in fronto-parietal regions including the left IFG,
and left postcentral gyrus, among others. A fourth study found
an association between mental fatigue and hyperactivation in
the fronto-parietal regions, basal ganglia, and thalamus (DeLuca
et al., 2008).

It is worth noting that two other works focused on the
brain activation patterns and FC during the performance of a
mentally fatiguing cognitive task. In the first study, MS patients
had stronger cortico-cortical and subcortico-subcortical FC and
weaker cortico-subcortical FC between the left PPC and the right
caudate head compared to healthy controls (Engström et al.,
2013). Here, MS fatigue was significantly correlated with the
right substantia nigra (SN) activation and marginally with the
left PPC activation; the reported activation pattern within the SN
might have increased the thalamic inhibition and accounted for
MS fatigue. In the other study, MS patients had hyperactivation
of the caudate nucleus which was associated with state fatigue
(Genova et al., 2013). In the same work, the authors used
DTI and demonstrated a correlation between FSS scores and
reduced fraction anisotropy (FA) in the anterior internal capsule,
a structure having connections with the caudate nucleus and
the thalamus. These findings support the role of the “striatal-
thalamic-frontal” system in MS fatigue (Genova et al., 2013).

In addition, Derache et al. found that their F-MS cohort
had a significant reduction of GM density in clusters, some of
which are located in the bilateral frontal cortex and in the left
parietal cortex. Fatigue scores were negatively correlated with
each of GM density in the same involved fronto-parietal areas,
the GM density in bilateral thalamus and the rest central glucose
metabolic rate within the basal ganglia (Derache et al., 2013).
Finally, in a resting-state (rs) fMRI study conducted by Finke
et al. fatigue severity was negatively correlated with the FC
between the basal ganglia and the medial prefrontal gyrus (PFG),
precuneus, and posterior cingulate cortex; and positively with the
FC between the caudate nucleus and the motor cortex (Finke
et al., 2014).

To sum up, these studies altogether support the existence
of a cortico-striato-thalamo-cortical loop as a neural correlate
of MS fatigue. The latter seems to englobe motor and non-
motor circuits acting together to induce the symptom in question
(Table 5).

Other Neural Correlates
Apart from the above-discussed circuits, a number of reports
have linked MS fatigue to other cerebral structures. For instance,
one study has found an association between MS fatigue and
an altered integrity of the fibers that connect the posterior
hypothalamus and themesencephalon (Hanken et al., 2015). This

was in line with two previous works. In the first one, F-MS
patients exhibited a higher activity of the HPA axis than those
without fatigue (Gottschalk et al., 2005). As for the second one,
FSS scores were positively correlated with the T1 relaxation time
values within the hypothalamus of MS patients (Zellini et al.,
2009).

To note, other neural correlates were associated with fatigue,
and include the cerebellum (Roelcke et al., 1997; Filippi et al.,
2002; Rocca et al., 2009), the cingulate cortex (Roelcke et al.,
1997; Filippi et al., 2002; Rocca et al., 2007; Tartaglia et al., 2008;
Sepulcre et al., 2009; Andreasen et al., 2010; Finke et al., 2014;
Pardini et al., 2015), the right anterior thalamic radiations (Bester
et al., 2013; Gobbi et al., 2014b; Rocca et al., 2014), and the
nucleus accumbens (Rocca et al., 2014), among others.

Neuro-immune Correlates of MS Fatigue
Immunological factors have long been recognized as key factors
in the pathophysiology of MS (Rovaris et al., 1996; Khademi
et al., 2000; Baraczka et al., 2003). Hence, several studies have
looked at the potential role of the inflammatory cytokines in
MS fatigue. Interestingly, a significant correlation was found
between the level of response to Amantadine and Pemoline -
pharmacological treatments of fatigue- and the reduction in
serum levels of interleukin 1-beta (IL-1β) and interleukin 6 (IL-6)
in MS patients (Bertolone et al., 1993). Furthermore, the median
levels of tumor necrosis factor alpha (TNF-α) mRNA expression
and the serum levels of TNF-α and interferon gamma (IFN-γ)
were found to be significantly higher in F-MS patients than in NF
ones (Flachenecker et al., 2004; Heesen et al., 2006; Pokryszko-
Dragan et al., 2012). Additionally, a positive relationship was
found between IL-6 serum levels and fatigue scores in MS
patients (Malekzadeh et al., 2015). Moreover, a higher frequency
of cytokine producing CD8+ T cells was found among MS
patients and was the only significant predictor of fatigue scores
(Gold et al., 2011).

All these studies hint toward the role of inflammation in
inducing MS fatigue, which might be of potential interest for
future targeted therapies.

NIBS AND MS FATIGUE

Various pharmacological and non-pharmacological interventions
have been tried to treat MS fatigue, but showed limited benefits
andmultiple side effects (Induruwa et al., 2012; Khan et al., 2014).
As discussed above, neuroimaging studies have focused on the
neural network changes underlying MS fatigue. Hence, acting on
these networks could be of particular help in the management of
such a debilitating symptom, and thereby would support the use
of NIBS in this context.

NIBS Principles
There is a growing interest in studying the therapeutic effects
of NIBS techniques in neurological or psychiatric diseases
(Lefaucheur et al., 2014). These techniques include repetitive
transcranial magnetic stimulation (rTMS) and transcranial direct
current stimulation (tDCS).
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TABLE 5 | Studies highlighting the role of the cortico-striato-thalamo-cortical loop of fatigue in multiple sclerosis.

Authors (Year) Technique Scales Population Outcome

Filippi et al., 2002 fMRI (during simple motor task) FSS 29 MS Inverse correlation of FSS scores with the activation pattern of the

contralateral thalamus and the ipsilateral rolandic operculum

Rocca et al., 2007 fMRI (during simple motor task,

before and after IFN injection)

FSS 22 MS Post-injection fatigable patients showed increased activations of the

basal ganglia, thalami, primary sensorimotor cortex, SMA, and several

frontal regions

DeLuca et al., 2008 fMRI (during mSDMT) N/A 12 MS Association between mental fatigue and hyperactivation within the

fronto-parietal regions, basal ganglia, and thalamus

Rocca et al., 2009 MRI, fMRI (during kinematic

movement)

FSS 24 RRMS Association between fatigue and the activation pattern of the

fronto-parietal regions including the left IFG and left postcentral gyrus,

among others

Andreasen et al., 2010 MRI (during isometric

contraction)

FSS 34 MS No correlation between FSS scores and the atrophy found within the

DLPFC, PPC, and basal ganglia

Calabrese et al., 2010 MRI FSS/MFIS 152 RRMS Correlation of cognitive MFIS scores with striatal volume and the cortical

thickness of PPC and MFG

Correlation of physical MFIS scores with striatal volume and the cortical

thickness of SFG

Engström et al., 2013 fMRI (during a complex cognitive

task)

FIS 15 MS Correlation of fatigue with right substansia nigra hyperactivation

Derache et al., 2013 PET/MRI MFIS 17 RRMS Negative correlation between fatigue scores and clusters of reduced GM

density within the fronto-parietal cortices and the thalami; and with the

rest cerebral glucose metabolic rate of the basal ganglia

Genova et al., 2013 fMRI (during a sustained

cognitive task)

VAS 12 MS Association of state fatigue with caudate nucleus hyperactivation

MRI (DTI) FSS 13 MS Correlation between FSS scores and the reduced fraction anisotropy in

the anterior internal capsule

Finke et al., 2014 MRI, fMRI FSS 44 RRMS Negative correlation between fatigue severity and rc-FC of basal ganglia

and medial PFG, precuneus, posterior cingulate cortex

Positive correlation between fatigue severity and rs-FC of caudate and

motor cortex

DLPFC, dorsolateral prefrontal cortex; FSS, Fatigue Severity Scale; F, fatigued; FIS fatigue impact scale; fMRI, functional magnetic resonance imaging; HCs, Healthy controls; IFN,

interferon; IPG, intraparietal gyrus; L, left; rs-FC, resting state functional connectivity; MFG, middle frontal gyrus; MFIS, Modified Fatigue Impact Scale; mSDMT, modified Single Digit

Modalities Test; N/A, Not applicable; PET, Positron Emission Tomography; PFG, prefrontal gyrus; PPC, posterior parietal cortex; R, right; RRMS, relapsing remitting multiple sclerosis;

SFG, superior frontal gyrus; SMA, supplementary motor area; VAS, Visual Analog Scale.

rTMS consists of a transcranial delivery of an electromagnetic
field via a stimulation coil localized on the patient’s scalp. This
results in an intracortical current that is strong enough to trigger
action potentials (APs) (Lefaucheur, 2012). rTMS mainly acts by
modifying the cortical excitability, which majorly depends on the
stimulation frequency. It was shown that low frequencies (<1Hz)
and high frequencies (>5Hz) have respectively inhibitory and
excitatory effects (Pascual-Leone et al., 1994). Over the last few
years, rTMS has gained special interest in the management of
MS symptoms. For instance, rTMS over the motor cortex was
shown to provide beneficial effects on spasticity (Centonze et al.,
2007a), lower urinary tract (LUT) symptoms (Centonze et al.,
2007b), and hand dexterity (Koch et al., 2008) in MS patients.
Furthermore, intermittent theta burst stimulation (iTBS) -a
variant of TMS- ameliorated MS spasticity (Mori et al., 2010a,b)
and primed the exercise effect in MS patients (Mori et al., 2011).

As for tDCS, the idea of using electrical current stimulation
to modulate brain function dates back to more than 200 years
(Priori, 2003; Zago et al., 2008). Data from animal studies
revealed that weak direct currents delivered by intracerebral or
epidural electrodes were able to modify cortical excitability, an

effect that remains stable long after the end of stimulation. In the
last few decades, tDCS showed its reliability in changing human
cortical function by inducing focal, prolonged yet reversible shifts
in cortical excitability (Priori et al., 1998; Nitsche and Paulus,
2000, 2001; Nitsche et al., 2003; Priori, 2003). The technique
consists of localizing two electrodes over the scalp, an anode and
a cathode, in order to act on various neural circuits. The exposed
tissue is polarized and tDCS modifies spontaneous neuronal
excitability by a tonic depolarization or hyperpolarization of
resting membrane potential, obtained respectively by performing
anodal or cathodal tDCS (Creutzfeldt et al., 1962; Purpura and
McMurtry, 1965; Nitsche and Paulus, 2011; Paulus et al., 2013;
Filmer et al., 2014). tDCS effects depend on several parameters
including the electrodes size, type, polarity, and position as well
as the current strength and shape, and the stimulation duration
(Purpura andMcMurtry, 1965; Nitsche and Fregni, 2007; Nitsche
et al., 2008).

Moreover, tDCS appears to be an NIBS technique with a
good safety profile, easy implementation, good patients’ tolerance
and little or no adverse effects (Poreisz et al., 2007; Nitsche
et al., 2008; Brunoni et al., 2012). In addition, compared to
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rTMS, placebo-controlled studies are easier to be performed with
tDCS since real and sham stimulations are quite indistinguishable
(Gandiga et al., 2006). For all these reasons, tDCS would be an
important therapeutic modality for cortical dysfunction (Been
et al., 2007) constituting an interesting option in themanagement
of MS symptoms, notably fatigue.

Before reviewing NIBS data in terms of MS fatigue, we will
present the various aspects that support the specific interest of
tDCS use to treat MS-related brain dysfunction.

Specific Interests of tDCS in the
Management of MS-related Disorders
tDCS and Brain Functional Connectivity
The modulatory effects of tDCS in terms of the rs-FC of various
networks have been supported by numerous fMRI and MRS
studies. For instance, anodal tDCS over the left DLPFC increased
its connectivity with the right hemisphere (Park et al., 2013)
and modified the rs-FC in the fronto-parietal networks (Keeser
et al., 2011). In addition, the tDCS effects on brain networks
connectivity were demonstrated following motor cortex, left and
right inferior frontal gyri (IFG) stimulation. Anodal stimulation
of the former would lead to FC changes some of which occur
within the cortico-striatal and thalamo-cortical circuits (Polanía
et al., 2011a,b, 2012a,b; Sehm et al., 2012, 2013; Amadi et al., 2013;
Khan et al., 2013; Lindenberg et al., 2013). Furthermore, acting on
the left or right IFG had an important impact on the rs-FC of the
language network (Meinzer et al., 2012, 2013; Rosso et al., 2014).

Therefore, based on these data, tDCS might be beneficial in
modulatingMS-fatigue networks and restoring brain FC through
several potential mechanisms.

tDCS, Conduction Failure, and Axonal Degeneration
Major changes in axonal conduction occur in MS as a result
of the inflammatory demyelinating processes and the oxidative
stress. First, among the inflammatory mediators, nitric oxide
can cause a depolarizing conduction block (Redford et al., 1997;
Shrager et al., 1998) which may occur through the activation
of persistent Na+ channels and the subsequent increase in
intracellular Na+; or by causing a mitochondrial dysfunction
and axonal ATP depletion (Bolanos et al., 1997). The latter can
explain the documented Na+/K+ ATPase failure (Dutta et al.,
2006; Waxman, 2006; Mahad et al., 2008) and the reverse action
of Na+–Ca2+ exchanger, leading to intraaxonal calcium level
increase, activation of Ca2+-dependent apoptosis and axonal
degeneration (Bechtold and Smith, 2005; Stys, 2005; Gonsette,
2008). Interestingly, one study has shown that tDCS might act on
these mechanisms by modulating the activity of Na+ and Ca2+

channels (Nitsche et al., 2003). Furthermore, in the rat model of
Parkinson disease, tDCS was able to reduce the oxidative stress,
which resulted in a cognitive improvement (Lu et al., 2015).
Hence, anodal tDCS might enhance axonal conduction along the
demyelinated segments through a subthreshold polarizing effect.
This might be used to improve MS fatigue.

Beyond demyelination, MS can lead to axonal degeneration,
associated with irreversible deficits. Notably, two recent animal
studies have documented a positive effect of tDCS on the
activation and migration of neural stem cells (Rueger et al.,

2012; Keuters et al., 2015). Therefore, tDCS could be helpful in
promoting the regeneration processes and ameliorating various
MS symptoms in the course of the disease.

tDCS and Inflammation-induced Synaptopathy
Inflammation-induced synaptopathy is the link between
inflammation and neurodegeneration, as shown in the animal
model of MS. Inflammationmight limit the plastic compensatory
protective changes in neural networks, which can be the route
by which CNS confined inflammation shifts into irreversible
neurodegenerative disorders (Centonze et al., 2010). Glutamate
is a major excitatory neurotransmitter of the CNS, importantly
involved in MS neurodegenerative damage (Srinivasan et al.,
2005; Cianfoni et al., 2007). Altered glutamate metabolism and
the subsequent abnormal intracellular ion accumulation can lead
to excitotoxic neuronal damage (Forder and Tymianski, 2009).
MS patients were found to have increased CSF levels of glutamate
(Stover et al., 1997; Sarchielli et al., 2003; Srinivasan et al., 2005;
Cianfoni et al., 2007), upregulation of glutamate receptors
(Newcombe et al., 2008), and altered expression of glutamate
transporters (Geurts et al., 2003, 2005; Vallejo-Illarramendi et al.,
2006).

In addition, inflammation-dependent activation of the
microglia is associated with the release of TNF-α, IFN-γ, and IL-
1β (Block and Hong, 2005; Kawanokuchi et al., 2006; Schwartz
et al., 2006; Muzio et al., 2007), which can enhance the excitatory
synaptic transmission (Stellwagen et al., 2005; Lai et al., 2006;
Mizuno et al., 2008), and downregulate the inhibitory Gamma
Amino-Butyric acid (GABA) transmission (Stellwagen et al.,
2005). These facts are compatible with the case of MS patients
who are known to have increased CSF levels of TNF-α, IFN-γ,
and IL-1β, among other inflammatory mediators (Rovaris et al.,
1996; Khademi et al., 2000; Baraczka et al., 2003).

These findings altogether may explain the inflammation-
induced synaptic alterations and the subsequent
neurodegenerative processes in MS, and might in turn account
for the appearance of MS fatigue.

Knowing the interaction between tDCS and long-term
changes in neurotransmission, tDCS effects might occur through
the modulation of inflammation-induced synaptopathy in MS
patients. For instance, two pharmacological studies have found
that tDCS-induced after-effects take place via the modulation
of NDMA glutamatergic receptor activity, which are known to
be highly implicated in neuroplasticity (Liebetanz et al., 2002;
Nitsche et al., 2003). Furthermore, anodal and cathodal tDCS
were found to respectively decrease GABA and glutamate levels
(Stagg et al., 2009). Interestingly, anodal tDCS was found to
significantly increase the combined glutamate and glutamine
levels beneath the stimulating electrode (Clark et al., 2011;
Hunter et al., 2015). Finally, in one study combining MRS
and fMRI assessment, anodal tDCS over the motor cortex was
found to increase motor learning by increasing the resting motor
network FC, probably through a decrease in motor cortex GABA
levels (Stagg et al., 2014).

Along with the GABA and glutamate changes encountered in
MS, a recent work has introduced the dopamine hypothesis inMS
fatigue (Dobryakova et al., 2015). Dopamine neurotransmission
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is also likely involved in NIBS-induced cortical neuroplasticity
(Fresnoza et al., 2004, 2014; Nitsche et al., 2006, 2009, 2010; Kuo
et al., 2008; Monte-Silva et al., 2009, 2010, 2011; Tanaka et al.,
2013).

Thus, tDCS could promote various beneficial synaptic changes
whichmight be helpful in counteracting the deleterious impact of
MS on neurotransmission and possibly alleviating fatigue.

NIBS Studies in MS Fatigue
To the best of our knowledge, the effects of NIBS on MS fatigue
have been evaluated in four studies so far, three of which were
based on tDCS use in a double-blind, sham-controlled, crossover
design (Ferrucci et al., 2014; Saiote et al., 2014; Tecchio et al.,
2014) (Table 6). These studies consisted of two blocks of five
consecutive daily sessions of either real or sham tDCS.

In the first study, Ferruci et al. applied daily sessions
of sham or active anodal tDCS over M1 bilaterally, blocks
were held apart by at least 1 month (Ferrucci et al., 2014).
Two-third of the patients were found to have a significant
improvement in their fatigue scores, up to the third week
following active tDCS. Sham condition did not result in any
significant effects. Interestingly, “responder” patients were found
to be younger than their “non-responder” counterparts; no
other significant difference was found between both groups in
terms of disease duration and severity. Such a difference is
quite interesting and could partly explain the results since older
patients might be less susceptible to the neuroplasticity processes
which could render them less responsive to tDCS (Boggio et al.,
2010).

A second study assessed the effects of anodal tDCS over the
left DLPFC (Saiote et al., 2014). Fatigue scores improved in about
half of the patients following both active and sham tDCS, without
any significant difference between the two conditions. The lack of

difference between both stimulation conditions could have been
resulted from a carry-over effect since stimulation blocks were
separated by only 2 weeks which might be too short to exclude
interference.

In the third study, following navigation-guided anodal tDCS
over the bilateral somatosensory cortices, all patients significantly
improved after real but not sham stimulations (Tecchio et al.,
2014). Clinical improvement ranged from 2 to 76% and lasted
for 8 weeks. Such results can be accounted by some facts.
First, concerning stimulation target, the bilateral somatosensory
areas are quite and involve the representation areas of the
face, upper limbs and lower limbs bilaterally; which might
explain its greater efficacy compared to the stimulation of the
bilateral hand motor areas or the left DLPFC selected in the
abovementioned studies. Second, regarding the study design, the
authors stated that the stimulation blocks were not performed
in summertime to avoid the induction of fatigue by hot
temperatures. In addition, unlike the washout intervals adapted
in the other two studies (2 weeks vs. 4 weeks, respectively),
a strict washout interval was defined by the authors. In other
terms, a patient who completed the first stimulation block
was not allowed to have the second one until the MFIS score
at the follow-up evaluation satisfies the following condition:
MFIS at evaluation −MFIS preblock1

MFIS preblock1 < 0.5× MFIS postblock1−MFIS preblock1
MFIS preblock1 .

This might have minimized any possible carry-over effects that
usually add difficulties to the results interpretation. Furthermore,
the combination of neuronavigation technique with tDCS could
have optimized the outcomes, keeping in mind the superior
role of neuronavigation compared to the classical non-navigated
interventions (Lefaucheur, 2010).

Apart from tDCS, one iTBS protocol was performed to
determine its effects on spasticity, fatigue, and quality of life
in 30 RRMS patients: iTBS was applied with or without

TABLE 6 | Studies investing the effects of transcranial direct current stimulation (tDCS) on multiple sclerosis fatigue.

Ferrucci et al., 2014 Saiote et al., 2014 Tecchio et al., 2014

Design Randomized, double-blinded, sham-controlled,

crossover study (washout interval: 1 month)

Pseudo-randomized, double-blind,

sham-controlled, counterbalanced, crossover

study (washout interval: 2 weeks)

Randomized, double-blinded, sham-controlled,

counterbalanced crossover study (washout

“completed” when the percentage of MFIS

difference from baseline becomes <0.5 of

induced effect)

Brain target Bilateral M1 Left DLPFC Bilateral whole body S1

Participants 22 RRMS, 3SP 25 RRMS 7 RRMS, 2 PP, 1 SP

Inclusion criteria Fatigue for at least 6 months defined as MFIS

>45; EDSS < 6.5

Fatigue for at least 2 month defined as FSS ≥

4; EDSS ≤ 6

Experiencing fatigue defined as MFIS >38;

EDSS ≤ 3.5

Outcomes FIS MFIS, FSS, MS specific FSS MFIS

Electrodes Two anodes placed at C3–C4 (10–20 EEG

system); the 3rd electrode on the right deltoid

Anode at F3 (10–20 EEG system); cathode

placed on the contralateral forehead

Anode on the central sulcus trace; the

reference electrode at Oz (10–20 EEG system).

Parameters 1.5mA, for 15min 1mA, for 20min 1.5mA, for 15min

Results Long-term sustainable effect up to the 3rd

week. No correlation between fatigue response

and age, disease duration, and EDSS

No significant changes in fatigue scores

following stimulation. Changes in perceived

fatigue lasting up to day 30. Correlation

between lesion load and response to tDCS

Long term sustainable effects up to at least 2

months

DLPFC, dorsolateral prefrontal cortex; FIS, Fatigue impact scale, FSS, Fatigue Severity Scale; MFIS, Modified Fatigue Impact Scale; M1, primary motor cortex; PP, primary progressive;

RRMS, relapsing remitting multiple sclerosis; SP, secondary progressive; S1, primary somatosensory cortex; EDSS, Expanded Disability Status Scale.
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exercise therapy in a sham-controlled manner (Mori et al.,
2011). The stimulation coil was positioned over the M1 leg
region contralaterally to the most affected limb, for 10 sessions
(protocol duration: 2 weeks; 10 bursts; 600 pulses). iTBS
combined with exercise therapy was significantly able to reduce
spasticity and fatigue, ameliorating the quality of life. However,
iTBS alone could only decrease spasticity, without having
any effect on fatigue. Although interesting, such preliminary
results need to be replicated and further assessed in future
works.

CONCLUSION

These data altogether suggest that during the course of
the disease, the inflammation along with the demyelination,
synaptopathy and neurodegeneration might lead to several
structural and functional abnormalities in cortico-subcortical
circuits. The latter can take parts in the cortico-striato-thalamo-
cortical loop of MS fatigue. Considering MS as a spectrum
where the extreme destructive sequels of an MS-attack lie
on one pole, and the potential healing and neuroplasticity
processes on the other; the clinical manifestations do not seem

to exclusively depend on the structural damage, but rather on
the balance between restorative and inflammatory/degenerative
processes. This vision can be applied to the fatigue loop, the
breakdown of which might result in the co-occurrence of the
physical, mental, and psychosocial domains of fatigue. Facing
the pharmacological limitations in treating MS fatigue, NIBS
would pave the way for better therapeutics, especially that tDCS
has a promising role in modulating the fatigue loop. In this
perspective, optimizing the future protocols would be by acting
on several factors. For instance, knowing that tDCS effects on
MS fatigue can last for several weeks, extending the washout
intervals might clarify the effects of each stimulation blocks by
prohibiting the possibility of interference. Furthermore, in the
light of discrepancy between the frequently administered fatigue
scores and the change in the perceived fatigue on one side,
and the complexity of this symptom on the other side, future
studies might benefit from adapting better assessment tools,
such as the visual analog scale for fatigue. Lastly, combining
tDCS protocols with functional imaging would allow for a better
understanding of the fatigue loop, which would further help
in designing and tuning the ultimate therapeutic plans in MS
fatigue.
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