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Alzheimer’s disease (AD) is a progressive disorder in which the most noticeable
symptoms are cognitive impairment and memory loss. However, the precise mechanism
by which those symptoms develop remains unknown. Of note, neuronal loss occurs at
sites where synaptic dysfunction is observed earlier, suggesting that altered synaptic
connections precede neuronal loss. The abnormal accumulation of amyloid-β (Aβ)
and tau protein is the main histopathological feature of the disease. Several lines of
evidence suggest that the small oligomeric forms of Aβ and tau may act synergistically
to promote synaptic dysfunction in AD. Remarkably, tau pathology correlates better
with the progression of the disease than Aβ. Recently, a growing number of studies
have begun to suggest that missorting of tau protein from the axon to the dendrites
is required to mediate the detrimental effects of Aβ. In this review we discuss the
novel findings regarding the potential mechanisms by which tau oligomers contribute
to synaptic dysfunction in AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a devastating progressive neurodegenerative condition and the most
common cause of dementia among the elderly. The disease is characterized by memory loss
and cognitive impairment, and eventually the inability to perform daily life activities. Currently,
available treatments for AD only provide relief of symptoms with no effect on the course of the
disease. As the longevity of the worldwide population increases, the amount of people susceptible to
ADwill continue to rise (Reitz andMayeux, 2014). After decades of research, the precise underlying
cause or causes of sporadic AD remain unknown. Therefore, there is an urgent need to understand
the pathological mechanisms involved in AD to develop effective treatments.

The profound neuropathological changes to synaptic communication seem to be responsible for
cognitive decline and memory dysfunction, the most striking symptoms of AD. However, a great
deal of research is needed to come to a complete understanding of the mechanism by which these
symptoms develop. Analysis of AD brain cases have revealed synaptic degeneration, neuronal loss
and accumulation of extracellular amyloid plaques and intracellular neurofibrillary tangles (NFTs)
composed mainly of fibrillar amyloid β peptide (Aβ) and tau protein, respectively (Serrano-Pozo
et al., 2011a). For over two decades amyloid plaques were considered to be the primary cause of AD
(Hardy and Allsop, 1991). However, amyloid plaque deposition does not correlate with cognitive
impairment observed in AD patients.

While amyloid pathology lies upstream of tau pathology (Oddo et al., 2003; Small and Duff,
2008), growing evidence indicates that tau pathology drives cognitive decline in AD (Murray et al.,
2015), providing an explanation for the lack of connection between the staging of amyloid plaques
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and disease symptoms. Tau pathology has thus been considered
a secondary amyloidosis in the progression of AD, but the
relationship between Aβ and tau is still contentious. The main
function of tau is to stabilize microtubules within the neurons. In
AD, tau undergoes post-translational modifications that affect the
affinity of tau to the microtubule, leading to tau self-association
and the eventual formation of NFTs. It has been established
that soluble forms of Aβ, but not fibrils (Kayed et al., 2003;
Baglioni et al., 2006; Haass and Selkoe, 2007; Shankar et al., 2007;
Walsh and Selkoe, 2007), correlate with the onset of the disease
only in the presence of tau, suggesting that the latter mediates
Aβ toxicity (Lue et al., 1999; McLean et al., 1999; Wang et al.,
1999). However, though NFTs correlate better with cognitive
decline and neuronal loss (Braak and Braak, 1991b; Arriagada
et al., 1992; Gomez-Isla et al., 1997; Giannakopoulos et al.,
2003) than amyloid deposits, they do not seem to be the most
toxic tau aggregates in disease, with many studies supporting
the hypothesis that soluble oligomers drive tau toxicity (Maeda
et al., 2006, 2007; Patterson et al., 2011; Lasagna-Reeves et al.,
2012b). The deleterious effects of tau pathology may be partly
due to a gain of toxic function. The discovery that mutations
in the gene encoding tau (MAPT) lead to neurodegeneration
strongly supports this hypothesis. Although no mutations in
the MAPT gene have been found in AD, they are associated
with familial frontotemporal dementia (FTDP-17) reviewed
by Goedert et al. (1999), resulting in tau’s inability to bind
microtubules and subsequent aggregation into oligomers and
NFT’s. Since microtubules are important components of axonal
processes, the loss of tau function affects neuronal stability and
impairs axonal transport. However ablation of tau in mice does
not induce neurological deficits or cell death but instead makes
the tau knockout more resistant to seizures (Roberson et al.,
2007), suggesting that the pathogenesis of tau is not due solely
to a loss of function.

Whether or not the loss of tau function leads to neuronal
dysfunction is still in debate. However, there is a large body
of evidence demonstrating that aggregated tau acquires a toxic
function in which tau oligomers are clearly implicated as driving
the mechanism.

In this review, we summarize novel findings regarding the role
of tau oligomers at the synapse and their interaction with other
amyloid proteins in mediating cognitive decline in AD.

SYNAPTIC EFFECTS OF INSOLUBLE
AGGREGATES IN AD

Synaptic plasticity is thought to be the route by which learning
and the acquisition of new memories occurs. In AD, marked
synapse loss underlies cognitive deficits that appear to depend
upon neurodegenerative processes induced by Aβ and tau.
Postmortem human brain samples have been found to show
gliosis and oxidative stress in the vicinity of amyloid plaques
and NFT’s that may contribute to synaptic changes (McLellan
et al., 2003; Ingelsson et al., 2004; Serrano-Pozo et al., 2011b).
The overexpression of Aβ in mice revealed neurite degeneration
after plaque formation (Meyer-Luehmann et al., 2008). However,

therapeutic approaches in AD mouse models suggested that
plaques are inert and an increase in this metastable aggregate
is not associated with neurological deficits (Cheng et al., 2007),
but rather is beneficial since cognitive function was improved in
mice (Jankowsky et al., 2003, 2005; Lesne et al., 2008). Using the
Tg2576 mouse model, we found that removal of tau oligomers by
immunotherapy shifted the Aβ aggregation pathway to amyloid
plaques, while improving cognition in mice (Castillo-Carranza
et al., 2015). These findings could explain the presence of amyloid
plaques in individuals without clinical symptoms of AD, thus
termed high pathology controls or non-demented with AD
neuropathology (NDAN) subjects (Bjorklund et al., 2012) and
unsuccessful clinical trials even after removing amyloid plaques
(Cappai and Barnham, 2008; Hardy, 2009).

Neurites surrounding plaques often contain phosphorylated
tau aggregates (Woodhouse et al., 2005; Serrano-Pozo et al.,
2011a). During the course of AD, tau is hyperphosphorylated
and accumulates into fibrillar aggregates in the somatodendritic
compartment (Spillantini and Goedert, 2013). NFTs have
historically been considered the main hallmark in tauopathies,
including AD (Braak and Braak, 1991a,b, 1996). However, NFT-
containing neurons have been shown to be functionally intact
in vivo (Kuchibhotla et al., 2014). A comparative analysis of
AD cases versus high-pathology control or NDAN subjects
revealed no significant differences in levels of NFTs, rather
showing that increased levels of phosphorylated tau in the
synaptic compartment were associated with dementia (Perez-
Nievas et al., 2013). While signaling cascades involved in
long-term potentiation and memory are not affected by NFTs
(Kuchibhotla et al., 2014) postmortem analysis of brains from
people with mild cognitive impairment showed that cognitive
symptoms correlate with pre-fibrillar tau rather thanNFT’s (Vana
et al., 2011; Mufson et al., 2014). Further supporting ex vivo
evidence for the importance of a tau aggregation intermediate
in neurodegeneration, tau transgenic animal models acquire
behavioral deficits, synaptic dysfunction, and cell death in the
absence of NFT formation (Wittmann et al., 2001; Andorfer et al.,
2003; SantaCruz et al., 2005; Spires et al., 2006; Berger et al.,
2007; Yoshiyama et al., 2007; Cowan et al., 2010). Furthermore,
upon suppression of tau in tauopathy transgenic models, mice
show cognitive improvement in spite of continued presence of
NFTs (SantaCruz et al., 2005; Sydow et al., 2011). Moreover,
electrophysiological impairment and structural degeneration to
neurons do not depend on the presence of NFTs (Rocher et al.,
2010; Crimins et al., 2012). The observation that cell death
occurs in disease prior to the formation of NFTs, suggests that
pre-filamentous forms of tau confer toxicity before fibrillization
(Gomez-Isla et al., 1997; Terry, 2000; van de Nes et al., 2008).

TAU OLIGOMERS AS THE TOXIC
PROTEIN SPECIES IN DISEASE

Protein misfolding is the initial step in the aggregation pathway
of both Aβ and tau. Post-translational modifications and the
formation of disulfide bridges increase the ability of both proteins
to self-aggregate into oligomers (Chirita et al., 2005; Sahara et al.,
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2007). Evidence suggests that tau monomer is first converted to
an oligomeric state prior to the formation of fibrils (Ruschak and
Miranker, 2009; Lasagna-Reeves et al., 2010; Lee et al., 2011).
In vitro, tau aggregation does not occur spontaneously but the
addition of polyanionic compounds and free fatty acids induce
fibril formation (King et al., 2000; Barghorn and Mandelkow,
2002; Chirita et al., 2003; von Bergen et al., 2005). These various
structures differ not only in aggregation state, but also in their
toxic effects.

Growing data suggest that prefilamentous forms of tau,
specifically oligomers, are neurotoxic (Patterson et al., 2011;
Lasagna-Reeves et al., 2012a). Tau oligomers have been isolated
at very early stages of the disease, prior to the onset of the clinical
symptoms (Maeda et al., 2006; Lasagna-Reeves et al., 2012b).
By atomic force microscopy (AFM), tau oligomers display
a spherical morphology that corresponds with two or more
molecules of tau, ranging between 6 and 20 nm (Sahara et al.,
2008). These are dynamic structures that become β-sheet rich
(Lasagna-Reeves et al., 2010). In brain samples from AD cases,
tau oligomers were found at a fourfold higher concentration
compared to healthy control samples (Himmelstein et al., 2012).
In AD, tau is abnormally phosphorylated at multiple positions.
However this may not be a requirement for tau to be able to form
oligomers and become toxic.

In addition to AD, tau oligomers were identified in progressive
supranuclear palsy (PSP), dementia with Lewy bodies (DLB) as
well as Huntington’s diseases cases (Gerson et al., 2014; Sengupta
et al., 2015; Vuono et al., 2015). Thus, the presence of tau
oligomers in several tauopathies prompted the hypothesis that
tau oligomers follow a common mechanism of toxicity between
diseases. However, little is known about the properties of tau
oligomers and the mechanism by which they lead to cell loss.

Many studies have demonstrated the toxicity of tau oligomers
when applied extracellularly to cultured neuronal cells, leading to
tau uptake into the cell and increased intracellular calcium levels.
In mice, the injection of tau oligomers induces mitochondrial
abnormalities and synaptic dysfunction (Berger et al., 2007;
Lasagna-Reeves et al., 2011).

CROSS-TALK OF TAU OLIGOMERS AND
OTHER AMYLOIDS AT THE SYNAPSE

Growing evidence suggests that the accumulation of tau
oligomers at the synapse may be critical for neurodegeneration.
We have shown that recombinant tau oligomers display
amnesic effects and synaptic dysfunction when administered
intracranially to wild-type mice (Lasagna-Reeves et al., 2011,
2012b). It appears as though a redistribution of pathological
tau from the axon to the cell body and dendrites is responsible
for spine loss observed in disease (Zempel et al., 2010). In
AD patients, Aβ binds preferentially to neuronal dendrites
promoting tau missorting (Zempel and Mandelkow, 2012).
It is well-established that aggregated Aβ contributes to tau
phosphorylation and mislocalization (Gotz et al., 2001; Ferrari
et al., 2003; De Felice et al., 2008; Ittner et al., 2010; Chabrier
et al., 2012). However, a growing body of evidence suggests

that Aβ induces tau pathology by direct interaction in a prion-
like manner. In the prion field, the acquisition of β-sheet
conformation by a prion protein allows it to seed the misfolding
and aggregation of other prion molecules, reviewed by Jucker and
Walker (2011). The pathologic similarities between prion disease
and AD suggest that it might also be inducible in a prion-like
manner. In vitro assays have shown that Aβ oligomers can seed
tau oligomerization, providing evidence that this phenomenon
may occur in vivo (Lasagna-Reeves et al., 2010). The induction
of tau misfolding in transgenic mice overexpressing amyloid
precursor protein (APP) (Castillo-Carranza et al., 2015) and
mice infused with brain extract from aged APP23 transgenic
mice (Bolmont et al., 2007), suggest that Aβ can seed tau
oligomerization in vivo as well (Figure 1). Importantly, it is
possible that a direct interaction between the two proteins may be
involved in the induction of synaptic dysfunction as tau and Aβ

coexist within synaptic compartments in AD brain (Hoover et al.,
2010; Ittner et al., 2010; Zempel et al., 2010; Tai et al., 2012; Miller
et al., 2014). However, the complexity and diversity of amyloid
aggregates has made the elucidation of the interaction between
the two proteins difficult. In humans, a 56-kDa Aβ aggregate,
called Aβ∗56 seems to have a pathogenic role specifically during
the asymptomatic phase of AD (Handoko et al., 2013). Notably,
Aβ∗56 correlates with the pathological form of tau (Lesne, 2013)
whereas Aβ dimers isolated fromAD samples trigger endogenous
tau hyperphosphorylation followed by neuritic degeneration of
cells in culture (Jin et al., 2011). Different Aβ assemblies including
Aβ∗56 are prominent in the synaptic terminals of AD patients
(Sokolow et al., 2012). Recently, we provided evidence for the
interaction of tau oligomers and Aβ peptide in the Tg2576mouse.
The reduction of tau oligomers by immunotherapy ameliorated
memory deficits, implying a role for tau in mediating cognitive
decline in aged mice overexpressing APP. Moreover, a marked
reduction of Aβ∗56 and increase of trimers suggest that the
removal of tau oligomers modulates Aβ levels (Castillo-Carranza
et al., 2015). It seems likely that the increase in trimers in treated
mice may be a consequence of Aβ∗56 disassembly which has
been suggested to be comprised of four Aβ trimers (Lesne et al.,
2006). However, reduction of Aβ alone by immunotherapeutic
approaches was not sufficient to improve cognition in mice
displaying tau pathology, whereas reduction of both pathologies
did confer benefits (Oddo et al., 2006) providing support for a
synergistic relationship between Aβ and tau in which tau induces
toxicity downstream of Aβ.

While Aβ and tau aggregates are the two main pathological
hallmarks of AD, Lewy bodies comprised of α-synuclein protein
are found in more than half of sporadic AD cases studied
(Hamilton, 2000). Importantly, a recent study showed that toxic,
non-fibrillar α-synuclein is significantly elevated in AD cases
absent Lewy body pathology (Larson et al., 2012). In its native
state, α-synuclein is found at the synapse where it promotes
neurotransmitter release (Burré et al., 2010), highlighting its
potential importance in synaptotoxicity in AD. Moreover,
elevated soluble α-synuclein was associated with a decrease in
presynaptic vesicle proteins in AD brains (Larson et al., 2012).
These results combined with evidence that oligomeric tau and
α-synuclein interact and co-aggregate in disease (Sengupta et al.,
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FIGURE 1 | Schematic illustrating the pathological role of tau at dendritic spines. ß-amyloid (Aβ) oligomers directly or indirectly lead to the
dystrophic changes in neurites mediated by tau. Hyperphosphorylated tau targets the kinase, Fyn, to the postsynaptic compartment. Fyn phosphorylates
NR2B, a subunit of the N-methyl-D-aspartate receptor (NMDAR), resulting in the over-activation of NMDAR, followed by increased concentration of Ca2+ in the
cytoplasmic compartment. Aβ oligomers (Aβo) seed tau misfolding and aggregation by direct interaction resulting in tau oligomer formation at dendritic spines. All of
these pathways converge in the aggregation of tau protein, spine loss, and consequently, cognitive impairment.

2015) suggests that the two proteins may act in a toxic synergistic
mechanism at the synapse in AD.

ROLE OF TAU IN SYNAPTOGENESIS

Tau protein promotes neurite outgrowth and is differentially
expressed and phosphorylated in the developing brain. During
periods of neurite growth, high levels of tau phosphorylated
at Ser202 and Thr205 (recognized by AT8 antibody) are
seen similarly to during Alzheimer’s conditions, while levels
are dramatically reduced when neurites are stabilized and
synaptogenesis occurs, corresponding to tau levels and
phosphorylation state in healthy adult brain (Brion et al.,
1994; Rösner et al., 1995; Riederer, 2001). Collectively, these
results suggest that study into the normal function of tau protein
may be critical to understanding the synaptic dysfunction
due to tau abnormalities in AD. The decrease in synaptic
function may be due partially to an overall decrease in
synaptogenesis in AD. Cell adhesion molecules such as Nectin-3
are important for both synaptic plasticity and synaptogenesis.
Expression of human tau protein as well as tau injections in
mice were shown to be associated with a decrease in levels
of Nectin-3 in brain regions of importance to memory and
cognition (Maurin et al., 2013). Moreover, neurons expressing
neuronal nitric oxide synthase that acts as a messenger for
synaptogenesis are particularly prone to neurodegeneration in
AD brains and the protein was found to colocalize with NFTs
(Thorns et al., 1998). A recent study showed that levels of
neurogenesis are significantly lowered in the Htau mouse model
overexpressing human wild-type tau in a mouse tau knockout
background, providing evidence that tau aggregation alone

may decrease neurogenesis and synaptogenesis (Komuro et al.,
2015).

TAU OLIGOMERS AND SYNAPTIC
DYSFUNCTION

The characterization of tau aggregates and potential routes of
tau spreading has led to important results indicating that tau
oligomers can be found in a large percentage of pre-synaptic
and post-synaptic compartments in AD, suggesting a toxic role
for tau oligomers in synaptic transmission (Tai et al., 2014).
Synaptic communication occurs at dendritic spines. Thereby,
reductions in spine number or morphological changes would
be expected to contribute to synaptic dysfunction and cognitive
deficits. Studies have shown that Aβ oligomers interact with
tau, inducing its translocation to synaptic spines (Frandemiche
et al., 2014). Dendritic spines present with various morphologies
can drastically affect their functionality. Spines found to have
particularly large post-synaptic densities are believed to provide
for stable synaptic connections for memory formation. We
have found that a reduction of tau oligomers in the Tg2576
AD mouse model is associated with a significant increase
in mushroom-shaped spines with large postsynaptic densities
(Castillo-Carranza et al., 2015). Moreover, in Htau mice the levels
of tau correlate with cognitive deficits, decrease in long term
potentiation, lowering of synaptic proteins, and a reduction in
the level of mushroom-shaped spines as well as an increase in
amount of thin spines (Polydoro et al., 2009; Dickstein et al., 2010;
Alldred et al., 2012). A mouse model overexpressing both Aβ and
wildtype tau exhibited a synergistic toxic effect to dendritic spines
that was greater than effects of the expression of either protein
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alone (Chabrier et al., 2014). While these results highlight the
toxic effect of tau pathology at the synapse, some studies have
shown that Aβ can induce synaptic dysfunction, spine loss, and
changes to spine morphology independently of tau (Shahani et al.,
2006; Tackenberg and Brandt, 2009; Tackenberg et al., 2013).
On the other hand, tau aggregation alone has been shown to be
sufficient to cause synaptic detriment. The injection of human
tau blocked synaptic transmission of squid axons (Moreno
et al., 2011). A comparative analysis of synapses showed that
only AD brains but not controls, contained tau phosphorylated
at serines 396/404 in a greater number of postsynaptic than
presynaptic sites (Tai et al., 2012). In contrast, this type of tau
is accumulated in the presynapse of the entorhinal cortex from
aged P301L mice, a transgenic overexpressing human mutant
tau (Harris et al., 2012). The accumulation of phosphorylated
P301L mutated tau is accompanied by disruption of synaptic
transmission and impaired glutamate receptor subunit GluA1,
GluA2/3, andNR1 trafficking to the postsynaptic density (Hoover
et al., 2010). Overexpression of P301L tau in rTg4510 mice
causes synaptic dysfunction and loss of synapses (Rocher et al.,
2010; Crimins et al., 2011, 2012, 2013; Kopeikina et al., 2011,
2013). A recent study by Decker et al., showed that pre-
NFTs—likely comprised largely of tau oligomers—cause pre- and
postsynaptic morphological changes (a gain of toxic function) at
the mossy fibers located in the CA3 brain region in transgenic
mice expressing the aggregation prone �K280 (TauRD�) mutant
human Tau (Decker et al., 2015). Interestingly, examination of
tau knockout mice revealed normal synaptic plasticity, but weak
synaptic transmission comparable to mice TauRD�. Previous
studies have shown that missorting of tau to the somatodendritic
compartment leads to retraction of mossy fibers from CA3 in
hibernating ground squirrels, in a process which seems to be
reversible suggesting a physiological role of Tau in mossy fiber
plasticity (Arendt et al., 2003).

Taken together, these studies suggest an important role for tau
within both the pre- and postsynapse, suggesting that when tau
misfolds and aggregates into oligomers in disease it may cause
synaptic dysfunction.

TAU OLIGOMERS INDUCE ABNORMAL
SYNAPTIC PLASTICITY

Recently, the function of tau has been expanded to include
a role in synaptic plasticity. Studies showed that knocking
out tau in vivo eliminates long term depression (LTD) in
the CA1 of the hippocampus. LTD describes an activity-
dependent reduction or weakening of synaptic contacts. Tau
phosphorylation induced by Aβ-mediated NMDA receptor
activation is associated with an increase in LTD (Mondragón-
Rodríguez et al., 2012; Kimura et al., 2014), likely dependent
upon AMPA receptor internalization mediated by tau (Regan
et al., 2015). These results suggest a physiologically important
role for tau in synaptic transmission, as well as highlight a
potential route of toxicity if the misprocessing of tau leads to
signaling cascades inducing increased LTD in the hippocampus
in AD. Furthermore, mutated tau was found to be associated

with misprocessing of glutamate signaling and excitotoxicity
in vivo, further supporting a role for tau in regulation of synaptic
transmission (Hunsberger et al., 2015). Tau transgenic mice
show alterations in spine and post-synaptic density volume, as
well as basal plasticity changes measured by electrophysiology.
The detection of defective myelination in axons from tauopathy
mice suggests that signaling detriments may also be partially
dependent on myelination errors (Maurin et al., 2014).

It is postulated that tau mediates the NMDA receptor through
the tyrosine kinase, Fyn, a member of the Src family (Larson
et al., 2012). The function of Fyn is to phosphorylate NR2B,
a subunit of the NMDA receptor. Tau seems to have a crucial
function at dendrites by targeting the kinase Fyn to postsynaptic
compartments, resulting in the over-activation of NMDA
receptors (Lee et al., 1998; Reynolds et al., 2008; Ittner et al.,
2010). Tau or Aβ stabilization of NR2B with PSD95 enhances
glutamatergic toxicity. This interaction seems to be mediated
by phosphorylation of tau (Bhaskar et al., 2005; Reynolds et al.,
2008; Usardi et al., 2011). However, dephosphorylated tau is
able to cause cell death by activating muscarinic acetylcholine
receptors with a higher affinity than acetylcholine (Gomez-
Ramos et al., 2008, 2009; Diaz-Hernandez et al., 2010). In
APP mice, reduction of Fyn prevented Aβ-mediated toxicity
(Chin et al., 2004, 2005). The absence of tau or tau lacking the
microtubule binding domain abolished Fyn targeting to dendritic
spines, thus preventing memory deficits associated with Aβ.
Moreover, inhibiting Fyn in a mouse model of AD led to a
decrease in tau phosphorylation and reversal of memory deficits
associated with a restoration of synapse density (Kaufman et al.,
2015). Further, a double transgenic mouse generated by crossing
mice overexpressing human APP (hAPP) and Htau mice exhibit
accelerated cognitive impairment, enhanced aggregation of
soluble and insoluble tau, as well as reduction of dendritic spines.
Interestingly Fyn is upregulated only in the double transgenic
but not in single transgenic Htau or hAPP, suggesting that the
presence of Aβ and tau is required in order for Fyn to promote
dendritic abnormalities(Chabrier et al., 2014). We have recently
shown that reduction of tau oligomers by immunotherapy does
not affect Fyn protein levels after treatment, but it does have
effects on spine plasticity, suggesting that tau oligomers mediate
a different pathway in dendritic spines (Castillo-Carranza et al.,
2015). This may be true for tau oligomers specifically since it
was previously reported that tau binding to Fyn is increased
upon phosphorylation of tau (Mondragón-Rodríguez et al., 2012)
particularly at AT8 or PHF1 sites, markers of NFTs, that seem
to enhance Fyn SH3 binding to the proline-rich domain of tau
(Bhaskar et al., 2005).

SPREAD OF TAU OLIGOMERS ACROSS
THE SYNAPSE

Functional tau has been detected in small concentrations at
dendrites (Ittner et al., 2010). Under physiological conditions a
small proportion of full-length tau is secreted to the extracellular
space (Yamada et al., 2011) raising the question of whether
extracellular tau has a physiological function. Tau has been found
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in cerebrospinal fluid (CSF) from healthy people (Ittner
et al., 2010). In AD the levels of hyperphosphorylated tau
in CSF correlated well with the progression of the disease.
Moreover, tau was found in subcellular compartments
responsible for protein trafficking and secretion such as
autophagic vacuoles, endoplasmic reticulum, and Golgi
apparatus (Tang et al., 2015). Microvesicle shedding and
exosome release are some of the possible mechanisms that
have been proposed to involve tau secretion from neurons.
Exosomes refer to vesicles formed through budding of the
endosomal membrane into larger vesicles termed multivesicular
bodies (MVBs). Thus it is possible that once released
from neurons, tau can eventually misfold, acquire a toxic
function and become a potential source of seeds that can
propagate throughout the brain. Extracellular tau released
from ghost tangles or damaged neurons may become toxic
to neighboring cells. However, recently Pooler et al. (2013)
showed that propagation of tau pathology is an active
process associated with synapses rather than release due to
cell death. In vivo, microdialysis of mouse brains suggests
that increasing neuronal and synaptic activity correlates
with higher levels of extracellular tau (Yamada et al., 2011).
Therefore, trans-synaptic communication is a possible avenue
by which misfolded tau oligomers spread and compromise
functional tau.

One of the most critical mechanisms under investigation in
the field of neurodegeneration today is how tau pathology spreads
from affected to unaffected brain regions. Many studies have
suggested that oligomeric tau may be capable of propagating in
the brain, inducing the misfolding of functional tau, reviewed
by Gerson and Kayed (2013). While the mechanism is currently
unknown and many different hypotheses exist, there has been
some reported evidence for the spread of tau oligomers through
the synapse. In combination with stereotypic staging of NFT
pathology in AD that follows a transsynaptic pattern of spreading
of pathology (Braak and Braak, 1991b), studies in animal models
have provided direct evidence for this pathway.

Using a transgenic mouse that conditionally expresses tau in
the area of the brain where Alzheimer’s disease pathology first
arises—the entorhinal cortex—researchers have shown that tau
appears to spread between synaptically connected brain regions,
suggesting a potential role of the synapse in pathological tau
transport (de Calignon et al., 2012; Liu et al., 2012). After
thorough analysis of mice injected with tau aggregates in the
hippocampus, it was found that tau spreading occurred in
none of 20 neighboring brain regions analyzed and was only
found in synaptically connected areas (Ahmed et al., 2014).
In order to determine whether tau oligomeric aggregates are
capable of transporting between the axonal and somatodendritic
compartments of the neuron to allow for synaptic transport

of tau taken up in the cell in disease, neurons were cultured
in microfluidic chambers and treated with tau oligomers.
Researchers found that oligomeric tau was able to spread both
anterogradely and retrogradely between cellular compartments,
though tau monomers and fibrils were not able to enter
the cell when administered in the media (Wu et al., 2013).
Further evidence of the trans-synaptic mechanism for the spread
of tau aggregates is the presence of phosphorylated tau at
the synapse in AD brain that correlates with dysfunction of
the ubiquitin proteasome system. This accumulation of tau
unable to be degraded may account for the spread of tau
through the synapse (Tai et al., 2012). Moreover, stimulation
of neuronal firing through the activation of AMPA receptors
led to an increase in extracellular tau in cultured cells, while
levels were decreased when pharmacological agents reducing
synaptic vesicle release and neuronal activity were applied (Pooler
et al., 2013). In order to confirm the importance of synaptic
contacts in the transfer of tau aggregates between cells, neurons
expressing synaptogenic adhesion proteins were cultured to
induce the formation of synapses. When compared to control
cells, neurons with heightened synaptic formation also increased
the uptake and spreading of tau aggregates after treatment.
Moreover, inhibiting the formation of synapses, as well as
neuronal activity led to a decrease in the ability of tau aggregates
administered to cells to transport between neurons (Calafate
et al., 2015).

CONCLUSION

In spite of all the evidence suggesting a toxic role of tau,
therapeutic interventions have been focused on targeting Aβ

in preclinical and clinical studies. Although preclinical studies
showed very exciting results, clinical trials did not prevent the
progression of cognitive decline. It seems likely that Aβ initiates
a cascade of events that at a certain stage becomes irreversible,
thereby making Aβ removal insufficient to avert cognitive
decline. A secondary pathological event that causes dementia
and has the potential to become independent of Aβ pathology
is the formation of toxic tau oligomers. These structures are able
to self-propagate, spread through synapses and induce synaptic
dysfunction. Thus, understanding the mechanisms by which tau
oligomers spread throughout the synapse may be critical for the
design of novel therapeutic strategies to treat AD.
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