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Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic
orofacial pain. However, the relationship between critical cortex excitability and orofacial
pain maintenance has not been fully elucidated. We recently demonstrated a top-down
corticospinal descending pain modulation pathway from the anterior cingulate cortex
(ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission.
Thus, we aimed to investigate possible corticotrigeminal connections that directly
influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-
CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative
emotions such as anxiety/depression in rats. By combining retrograde and anterograde
tract tracing, we found powerful evidence that the trigeminal caudal subnucleus
(Vc), especially the superficial laminae (I/II), received direct descending projections
from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-
regulated kinase (ERK), an important signaling molecule involved in neuroplasticity,
was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from
IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude
and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and
reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also
reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-
IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied
by the alleviation of both nociceptive behavior and negative emotions. Thus, the
corticotrigeminal descending pathway from the IC to the Vc could directly regulate
orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain
as well as pain-related negative emotions in IoN-CCI rats, probably through this top–
down pathway. These findings may help researchers and clinicians to better understand
the underlying modulation mechanisms of orofacial neuropathic pain and indicate a
novel mechanism of ERK inhibitor-induced analgesia.

Keywords: insular cortex (IC), trigeminal caudal subnucleus (Vc), extracellular signal-regulated kinase (ERK),
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INTRODUCTION

The orofacial region is often affected by chronic neuropathic
pain conditions. Following orofacial surgical treatment such
as third molar extraction, neuropathic pain, in addition to
trigeminal neuralgia, sometimes occurs in the orofacial region
and is difficult to diagnose and treat (Truelove, 2004; Zakharov
et al., 2015). Additionally, chronic orofacial pain can induce
anxiety/depression-like negative emotions, which in turn further
exaggerate patients’ pain sensations (Logan et al., 2003; Eboli
et al., 2009). Although significant progress has been made,
the currently available therapies for orofacial neuropathic pain
remain inadequate, and the underlying mechanisms have not
been completely elucidated.

Orofacial nociceptive information is preliminarily transmitted
to the trigeminal caudal subnucleus (Vc) in the brainstem
and then ascends to higher brain regions (Dubner and
Bennett, 1983). Similar to that in the spinal cord, orofacial
nociceptive transmission in the Vc of the brainstem also
receives descending inhibitory and facilitatory modulations from
supraspinal structures such as the periaqueductal grey (PAG)
and rostral ventromedial medulla (RVM) (Dubner and Bennett,
1983; Okubo et al., 2013; Wang et al., 2014; Feng et al., 2015).
Our group previously reported a direct top-down corticospinal
pathway in which neurons in the anterior cingulate cortex (ACC)
sent descending projections to the spinal cord and regulated pain
transmission (Chen et al., 2014a,b). Thus, in addition to PAG-
RVM-Vc descending modulation pathways, a top-down pathway
that originates from higher brain regions such as the cortex may
directly regulate neurons of the Vc.

Recently, the insular cortex (IC) has been increasingly
reported to play important roles in several major brain functions,
including awareness, fear memory, and pain (Craig et al., 2000;
Henderson et al., 2007; Zhuo, 2008). According to in vivo or
in vitro electrophysiological recordings, IC neurons are activated
under acute and chronic pain conditions (Liu et al., 2013; Qiu
et al., 2013). Brain lesion studies show that inhibiting IC activity
produces analgesia (Wei et al., 2001; Coffeen et al., 2011).
Moreover, human brain imaging data suggest that the IC is
activated by noxious stimuli, and direct electrical stimulation
of the IC elicits painful sensations; these findings support the
critical roles of the IC in pain perception (Mazzola et al., 2009,
2012). Long-term potentiation (LTP) in synaptic transmission
is widely accepted as the key cellular mechanism for not only
learning and memory but also storing pain information in the
brain (Kandel, 2001; Li et al., 2010). LTP of the IC is protein
synthesis dependent and requires the activation of N-methyl-
d-aspartate (NMDA) receptors (Kandel, 2001). Furthermore,
activity-dependent plasticity occurs in the IC under nerve injury-
induced neuropathic pain conditions (Qiu et al., 2013).

Extracellular signal-regulated kinase (ERK) belongs to the
mitogen-activated protein kinase (MAPK) family and transduces
extracellular stimuli into intracellular responses in a wide variety
of circumstances (Widmann et al., 1999). Neural ERK plays
important roles in synaptic plasticity and remodeling during LTP,
learning, andmemory consolidation (Sweatt, 2001). According to
previous studies, inflammation or nerve injury activates the ERK

pathway not only in the spinal dorsal horn but also in supraspinal
structures such as the medial prefrontal cortex (mPFC), ACC,
and IC (Ji et al., 1999; Wei and Zhuo, 2008; Alvarez et al., 2009;
Xu et al., 2014). Thus, ERK activity is important for synaptic
plasticity in the brain during the induction and expression of
various types of pain.

Given the importance of ERK activity in the synaptic
plasticity under pain conditions and the possible existence of
a direct corticotrigeminal descending modulation pathway, in
the current study, we hypothesized that ERK activity in the
IC contributed to infraorbital nerve chronic constriction injury
(IoN-CCI)-induced orofacial pain in rats. In the present study,
we demonstrated that IoN-CCI-induced neuropathic pain led
to the long-term activation of phosphorylated ERK (p-ERK) in
the IC. Moreover, the IC could send direct projections primarily
to the contralateral Vc. More importantly, ERK inhibition via
U0126 perfusion of IC slices in vitro not only inhibited the
spontaneous activity of Vc-projecting neurons in the IC but
also reduced their excitability. Finally, intra-IC microinjection
of U0126 significantly decreased Fos expression in the Vc and
effectively alleviated established nociceptive behaviors as well as
pain-related negative emotions in IoN-CCI rats.

MATERIALS AND METHODS

Animals
Adult male Sprague-Dawley (SD) rats (weighing 250–300 g)
were housed in standard plastic cages with a 12: 12-h
light/dark cycle (light on at 08:00 a.m.) under 22–25◦C ambient
temperature and were provided food and water ad libitum.
The Ethics Committee for Animal Experiments of the Fourth
Military Medical University (Xi’an, China) approved the animal
experiments (Permit number: 10071). All procedures were in
agreement with the IASP guidelines (Zimmermann, 1983).
Efforts were made to minimize the number of animals used and
their suffering.

Establishment of IoN–CCI Model
IoN-CCI was performed following a previously established
surgical procedure (Wei et al., 2008). Briefly, rats were
anesthetized with pentobarbital sodium (45 mg/kg, i.p.), and
loose ligatures of the right IoN were performed via an
intraoral approach. An 8-10-mm-long incision was made along
the gingivobuccal margin in the buccal mucosa, beginning
immediately next to the first molar. The IoN was loosely tied
with two chromic gut (5-0) ligatures, 2 mm apart, 3–4 mm from
the nerve, where it emerges from the infraorbital foramen, to
induce minor constriction of the IoN; the superficial vasculature
was minimally disturbed. The incision was closed using 4-0 silk
sutures. The surgical procedures for the sham-operated group
were identical to those for the IoN-CCI group, except that the
nerves were not ligatured. In all cases, an anesthetic agent of 0.5%
lidocaine was injected at the incision sites three times per day for
2 days after CCI or sham surgery to block local nociceptive inputs
induced by acute tissue injury.
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Behavioral Tests
All the behavioral tests were conducted in a quiet room under
dim light (30 lux) during the early light phase (9 a.m.–1 a.m.) of
the light cycle by an observer who was blinded to the treatment
groups.

Nociceptive Behavioral Tests
Mechanical allodynia, as a behavioral sign of IoN-CCI-induced
neuropathic pain, was assessed by measuring the 50% head
withdrawal threshold (HWT), as previously described (Geng
et al., 2010). Rats were habituated to the testing for 3 days before
baseline testing andwere then placed in a small handmade porous
metal mesh cage to habituate for 30 min prior to the threshold
test. The 50% HWT in response to von Frey filaments (Stoelting,
Kiel, WI, USA) was determined by a previously reported method
(Okubo et al., 2013). Briefly, when the rat’s head was steadily
resting or in alert status, a series of ascending von Frey filaments
were inserted through the mesh wells from the lateral side. The
von Frey filaments were delivered to the skin near the center of
the vibrissa pad within the infraorbital territory for 2–3 s. Brisk
or active withdrawal of the head from the probing filament was
defined as a positive response.

Open Field Test
The open field (OF) test was conducted as described in previous
studies (Sun et al., 2013; Wu et al., 2014). Rats were placed at
the center of a cubic chamber (100 cm × 100 cm × 60 cm).
The locomotion of rats in 10 min was monitored by
an automated analyzing system (Shanghai Mobile Datum
Information Technology, Shanghai, China). The total distance
traveled was used as a parameter for evaluating locomotion, and
the percentage of time spent in the center area (center time%) was
used as a parameter for evaluating anxiety/depression levels (Prut
and Belzung, 2003; Campos et al., 2013) by off-line analysis. All
animals were habituated to the testing room for 30min before the
OF test.

Elevated Plus Maze Test
The elevated plus maze (EPM) comprised two open arms
(OAs; 50 cm × 10 cm) and two enclosed arms (CAs;
50 cm × 10 cm × 40 cm) that extended from a common
central platform (10 cm × 10 cm). The plus-shaped platform was
50 cm above the floor. Generally, rats were placed individually
into the center area of the maze facing one of the OAs and
were allowed to explore for 5 min. The numbers of OA and
CA entries and the times spent in the OAs and CAs were
recorded by an automated analyzing system (Shanghai Mobile
Datum Information Technology). The animal was considered
to be in an OA or CA only when all four paws crossed
out of the central zone (Zhai et al., 2015). The EPM test
relies on the animal’s natural fear of open spaces, and the
percent of time spent in OAs (OA time%) and the percent
of OA entries (OA entries%) are considered measurements
of general anxiety/depression levels (Rainer et al., 2014). OA
time% = OA time/(OA time + CA time). OA entries% = OA
entries/(OA entries + CA entries) (Rainer et al., 2014; Wu et al.,
2014).

Retrograde and Anterograde Tract
Tracing
To investigate the fiber connections between the Vc and the IC
in rats, we performed retrograde and anterograde tract tracing
experiments. Fluoro-Gold (FG) was used as a retrograde tracer
to label the IC neurons that project to the Vc. In addition,
in the electrophysiological study, tetramethylrhodamine-dextran
(TMR) was used to label Vc-projecting neurons in the IC. The
procedures for FG/TMR injection were identical to those of our
previous study (Wang et al., 2014). Briefly, after the cisternal
cavity of the caudal medulla oblongata was exposed, 0.1 μl of a
4% (w/v) solution of FG (dissolved in 0.9% saline; Fluorochrome,
Denver, CO, USA) or a 10% (w/v) solution of TMR (dissolved
in 0.1 M citrate-NaOH, pH 3.0; Molecular Probes, Eugene,
OR, USA) was stereotaxically pressure-injected into the right
Vc through a glass micropipette, which was attached to a 1-μl
Hamilton microsyringe. The rats were allowed to recover for
6 days before they were perfused.

For the anterograde tract tracing, the anterograde tracer
Phaseolus vulgaris-leukoagglutinin (PHA-L) was used to identify
the Vc-projecting fibers and the terminals originating from the
IC. The procedures for PHA-L injection were essentially the same
as previously described by our group (Li et al., 1993; Chen et al.,
2014a). Briefly, PHA-L (Vector Laboratories, Burlingame, CA,
USA) was dissolved in a mixture of 0.05 M Tris-HCl buffer and
0.5 M KCl (pH 7.6) to a final concentration of 2.5% (w/v). PHA-
L was iontophoretically (positive, 3–5 μA, 7 s on/off, 25 min)
injected into unilateral deep layers of the IC according to the
rat brain atlas (0.36 mm posterior to bregma, 6.2 mm lateral to
the midline and 4.1 mm deep from the cerebral surface). After
injection, the surgical wounds were carefully sutured. Rats were
allowed to survive for approximately 2 weeks before perfusion.

Cannula Implantation and Microinjection
into the IC
After the rats were anesthetized with pentobarbital (45 mg/kg,
i.p.), a 26-gage stainless steel guide cannula was stereotaxically
implanted into a site above the bilateral IC. The rats were
allowed to recover for 1 week following cannula implantation.
Intra-IC microinjections were delivered via a 33-gage injector
needle cannula that was lowered 0.5 mm deeper into the
brain than the guide cannula. The microinjection apparatus
comprised a Hamilton syringe (10 μl) connected to an injector
(33-gage) by a thin polyethylene tube and a motorized syringe
pump. 1,4-Diamino-2,3-dicyano-1,4-bis (2-aminophenylthio)
butadiene (U0126; Tocris Bioscience, Minneapolis, MN, USA)
was selected to inhibit ERK activation, based on previous reports
(Carrasquillo and Gereau, 2007). U0126 was first dissolved in
100% dimethylsulfoxide (DMSO) to a final stock concentration
of 10 mM. On the day of the experiment, U0126 was diluted
1:1 in 0.9% saline to a final concentration of 5 mM in 50%
DMSO/saline. For all experiments, 50% DMSO/saline was used
as a vehicle control. A total volume of 0.5 μl drug or vehicle was
infused into the IC at a rate of 0.1 μl/min. After injection, the
microinjection needle was left in place for at least 2 min. The
injection sites were verified at the end of all of the experiments by
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Nissl staining; injection sites outside the IC region were excluded
from the study. A total of 32 rats showed successful implantation
in the target.

To demonstrate whether U0126 could prevent IoN-CCI-
induced neuropathic pain, the effects of U0126 on mechanical
thresholds were measured before IoN-CCI (Pre-CCI), 13 days
after IoN-CCI (CCI-D13), and 1 h after intra-IC drug or
vehicle infusion 14 days after IoN-CCI (CCI-D14) (Figure 6A).
We also investigated the effects of U0126 on the OF
and EPM tests to assess changes in anxiety/depression-
like behaviors 1 h after intra-IC U0126 injection on CCI-
D14.

Immunohistochemical Staining and
Observation
The rats were transcardially perfused with 150 ml of 0.01 M
phosphate-buffered saline (PBS, pH 7.4), followed by 500 ml of
4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH 7.4).
The brains and/or brainstems were transversely sliced into 25-
mm-thick coronal sections using a freezing microtome (CM1950,
Leica, Heidelberg, Germany).

Sections of the FG injection group were observed for the FG
injection site in the Vc and for the distribution of retrogradely
labeled neurons in the IC by using an epifluorescence microscope
(BX-60; Olympus, Tokyo, Japan).

Immunohistochemical staining for FG, PHA-L, p-ERK, and
Fos was performed with standard protocols. Briefly, after
incubation with 3% H2O2 for 10 min, sections were washed
with 0.01 M PBS three times for 10 min each and then
incubated with 10% normal donkey serum (NDS) for 30 min.
For different purposes, sections containing the IC or Vc
regions were sequentially incubated with the following: primary
antibodies in 0.01 M PBS containing 5% NDS, 0.3% Triton
X-100, 0.05% NaN3, and 0.25% carrageenan (PBS-NDS, pH
7.4) for 24 h; biotinylated secondary antibodies in PBS-NDS
at room temperature for 6 h; and avidin-biotin-peroxidase
complex (ABC) (ABC Elite Kit; 1:200; Vector Laboratories) or
fluorophore-conjugated avidin D in PBS at room temperature for
another 2 h.

The following antibodies were used in the current study:
guinea pig anti-FG (1:200; Protos Biotech, New York, NY,
USA); rabbit anti-PHA-L (1:500; E-Y Laboratories, San Mateo,
CA, USA); rabbit anti-p-ERK (1:200; Cell Signaling Technology,
Danvers, MA, USA); mouse anti-Fos (1:500; Abcam, Cambridge,
MA, USA); biotinylated donkey anti-guinea pig IgG (1:500,
Vector Laboratories, Burlingame, CA, USA); biotinylated donkey
anti-rabbit IgG (1:500; Vector Laboratories); biotinylated donkey
anti-mouse IgG (1:500; Vector Laboratories); ABC Elite Kit
(1:200; Vector Laboratories); and FITC-avidin D (1:1000; Vector
Laboratories).

The PHA-L injection sites and the distributions of
anterogradely PHA-L-labeled fibers and terminals, FG-
retrogradely labeled neurons, and p-ERK-immunoreactive
(IR) neurons were processed by using the ABC method. They
were then visualized with diaminobenzidine (DAB) chromogen.
Sections were then observed under a light microscope (AH-3;
Olympus, Tokyo, Japan).

For the immunofluorescent staining of Fos, the sections were
observed, and images were captured using a confocal laser-
scanning microscope (CLSM, FV1000, Olympus). Digital images
were captured using FLUOVIEW software (Olympus).

The negative control experiment, performed by replacing the
primary antibody with 1% NDS in the protocol, exhibited no
staining.

We randomly selected five 25-μm-thick sections from each rat
(n = 4 rats; total 20 sections) and then counted the number of
cells within the targeted brain regions. The p-ERK-IR neurons in
the IC and Fos-IR neurons in the Vc were manually counted by
an observer who was blinded to the treatment conditions, and the
numbers of counted cells were corrected by using Abercrombie’s
equation: number of cells= number of cells counted×T/(T+ h),
where T = thickness of the sections and h = the mean diameter
of the nuclei of the large or small cells (Guillery, 2002).

Western Blot Assay
According to the standard Western blot protocol, rats were
anesthetized with an overdose of pentobarbital (60 mg/kg, i.p.),
and the IC regions were carefully dissected and harvested for
Western blotting. To obtain total protein extracts, the tissues
were lysed in 300 μl lysis buffer containing 10 mM Tris, 150 mM
NaCl, 1% Triton X-100, 0.5% NP-40, and 1 mM EDTA at pH 7.4.
The samples were adequately mixed at a with protease inhibitor
cocktail and phosphatase inhibitor cocktail (Roche, Tucson, AZ,
USA) at a 100:1 (v/v) ratio. Subsequently, 30 μg of cell lysis
material (quantitatively measured using the BCA protein assay;
Thermo Scientific; Rockford, IL, USA) was resolved by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to polyvinylidene fluoride (PVDF) membranes
(Immobilon-P, Millipore, Temecula, CA, USA). After blocking
in non-fat milk for 1 h, the membranes were incubated
overnight at 4◦C with the following primary antibodies: rabbit
anti-ERK (1:1000, Cell Signaling Technology); rabbit anti-p-
ERK (1:1000, Cell Signaling Technology); rabbit anti-CREB
(1:1000, Cell Signaling Technology); rabbit anti-p-CREB (1:1000,
Cell Signaling Technology); and mouse anti-β-actin (1:5000,
Sigma, St. Louis, MO, USA). The immunoblots were then
reacted with the corresponding horseradish peroxidase (HRP)-
conjugated secondary antibodies (goat anti-rabbit 1:5000 goat
anti-mouse 1:5000; Amersham Pharmacia Biotech, Piscataway,
NJ, USA). All of the reactions were detected by the enhanced
chemiluminescence (ECL) detection method (Amersham
Pharmacia Biotech) and exposure to film. The scanned images
were quantified and analyzed with ImageJ software. Target
protein levels were normalized against β-actin levels and
expressed as fold changes relative to those of the naive control
group.

Electrophysiology
Ten days after the IoN-CCI surgery, the rats were injected with
TMR into the Vc ipsilateral to the side of nerve injury and allowed
to recover for 4 days before the electrophysiological experiments
were performed. The rats were decapitated, and coronal slices
(400 mm) containing the contralateral IC were cut at 0◦C on
a vibrating microtome (VT1200s, Leica) in a sucrose cutting
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solution that was bubbled with carbogen gas (95% O2/5% CO2)
and contained the following (in mM): 2.5 KCl, 1.2 NaH2PO4,
26 NaHCO3, 252 sucrose, 6 MgSO4, 0.5 CaCl2, and 10 glucose,
pH 7.4). Then, the brain slices were transferred to a submerged
recovery chamber with oxygenated artificial cerebrospinal fluid
(ACSF) containing the following (in mM): 124 NaCl, 2.5 KCl,
2 MgSO4, 1 NaH2PO4, 25 NaHCO3, 2 CaCl2, and 37 glucose.
The slices were incubated for 2 h at room temperature before
recording.

The slices were transferred to a recording chamber (volume:
0.5 ml) that was mounted on a fixed-stage upright microscope
(BX51W1, Olympus). Whole-cell patch-clamp recordings were
made from TMR-containing Vc-projecting neurons that were
visualized under epifluorescence using a tetramethyl rhodamine
isothiocyanate (TRITC) filter set (U-HGLGPS, Olympus) with
a monochrome CCD camera (IR-1000E, DAGE-MTI, Michigan,
USA) and monitor. The patch pipette was filled with intracellular
solution containing the following (in mM): 130 K-gluconate, 5
NaCl, 15 KCl, 0.4 EGTA, 10 HEPES, 4Mg-ATP, and 0.2 Tris-GTP,
pH 7.25–7.35, with an osmotic pressure of 290–300 mOsm/L. To
visualize the recorded neurons, 0.2% biocytin (Sigma, USA) was
added to the recording pipette solution. The pipette resistance,
as measured in the bath, was typically 4 ± 0.5 M�. The voltage
was held at −70 mV, and neurons were given at least 3 min
to stabilize before data were collected. Spontaneous excitatory
postsynaptic currents (sEPSCs), the paired-pulse ratio (PPR), and
the number of action potentials (APs) were used to examine
synaptic plasticity changes in the TMR-containing Vc-projecting
neurons.

Spontaneous Discharge
Spontaneous excitatory postsynaptic currents were recorded at
−70 mV in the presence of picrotoxin (100 mM, Sigma), a
GABAA receptor antagonist.

Paired-Pulse Ratio
To examine the PPR of EPSCs, paired pulses with an interval of
50 ms were delivered every 20 s. The PPR was defined as the ratio
of the averaged amplitude of the second EPSC (EPSC2) to that of
the first EPSC (EPSC1).

Spike Number
The membrane excitability of the recorded neurons was
measured in current-clamp mode by determining the number
of APs elicited by intracellular injection of 0-, 10-, 20-, 30-, 40-
, 50-, and 60-pA depolarizing currents for 400 ms. The spike
number was determined to estimate the influence of U0126 on
the recorded neurons.

The access resistance was 15–30 M� initially and was
monitored throughout the experiment. Data were filtered at
1 kHz and digitized at 10 kHz. The neurons were recorded
using a Multiclamp 700B amplifier (Axon Instruments, Foster
City, CA, USA). pCLAMP software (v. 10.02, Axon Instruments)
was used to acquire and analyze the data. The signals were
filtered at 2.6 kHz, digitized at 10 kHz (DigiData 1322A,
Axon Instruments), and saved on a computer for offline
analysis.

Statistical Analysis
Statistical data were analyzed using GraphPad Prism 5 software.
The results are expressed as the mean ± standard error of
the mean (SEM). Two-way analysis of variance (ANOVA) with
Bonferroni’s multiple comparison tests or one-way ANOVA
with Tukey’s multiple comparison post hoc tests were used
for between-group comparisons (for example, the analysis of
Western blot data with IoN-CCI surgery and drug administration
as main effects). Student’s paired t-test was used to analyze the
differences between two groups (for example, the difference in
the 50%HWTbetween the IoN-CCID14+ vehicle group and the
IoN-CCI D14 + U0126 group). P-values < 0.05 were considered
significant.

RESULTS

IoN-CCI Produced Significant
Mechanical Allodynia in Rats
IoN-CCI rats showed significant mechanical allodynia from day
3 to day 21 after surgery compared with baseline and with the
sham group (P < 0.05) (Figure 1A). However, animals in the
sham group displayed no obvious changes in their responses to
mechanical stimuli after surgery compared to baseline (P > 0.05)
(Figure 1A).

IoN-CCI Rats Showed Obvious
Anxiety/Depression-Like Behaviors
Chronic pain, especially neuropathic pain, is always accompanied
by increased negative emotions, including anxiety and/or
depression (Zhuo, 2008). These negative emotions usually
emerge in the late phase following nerve or tissue injury (Zhuo,
2008; Dai et al., 2011); therefore, we selected post-CCI-D14 to
assess anxiety and/or depression by using the OF and EPM
tests. No significant between-group difference in locomotion
was revealed by assessing the total distance traveled during the
10-min recording time in the OF test (Figure 1B; P > 0.05).
However, compared with the sham group, the IoN-CCI group
showed significantly reduced center time% (Figure 1B; P < 0.01)
in the OF test and OA Time% (Figure 1C; P < 0.01) and OA
Entries% (Figure 1C; P < 0.05) in the EPM test; thus, the IoN-
CCI rats exhibited obvious anxiety/depression-like behaviors.

The IC Sent Direct Projections to the
Contralateral Vc in Rats
With the aim of identifying cortical regions projecting to the
brainstem areas containing orofacial nociceptive neurons, the
retrograde tracer FG was injected into the Vc (Figure 2A). FG
injections into the superficial laminae (I/II) of the Vc produced
dense retrograde labeling of a band of pyramidal cells located in
layer V of all caudal but not rostral levels of the granular insular
cortex (GI) and dysgranular insular cortex (DI). However, no FG-
labeled neurons were observed in the agranular insular cortex
(AI). These projections are bilateral, with obvious predominance
in the contralateral side (Figures 2B–D).
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FIGURE 1 | Infraorbital nerve chronic constriction injury (IoN-CCI)
produced significant nociceptive behaviors and negative emotions in
rats. (A) The 50% HWT assessed by von Frey filaments after IoN-CCI and
sham surgery (n = 8/group); (B,C) IoN-CCI induced obvious negative
emotions on day 14 after IoN-CCI surgery, as indicated by the open field (OF)
(B) and EPM tests (C). (∗P < 0.05, ∗∗P < 0.01 compared with the sham
control at the same time point).

To precisely determine the organization and distribution
of IC afferents in the Vc, the anterograde tracer PHA-L was
iontophoretically injected into the GI and DI regions based on
our retrograde FG tract tracing results. PHA-L injections into
the caudal GI/DI (Figure 2E) resulted in dense labeling in the
contralateral Vc. Descending fibers from the IC were observed
in the pyramidal tract; these fibers then crossed the rostral
ventromedial medulla and terminated in the Vc (Figures 2F–H).

A detailed view showed that the PHA-L-labeled fibers and
terminals were scattered throughout the superficial (I/II) as well
as the deeper laminae (V) of the Vc (Figure 2G).

The p-ERK Signaling Pathway in the IC
was Significantly Activated After IoN-CCI
According to previous studies, p-ERK expression in the spinal
cord and supraspinal structures is highly correlated with
neuroplasticity (Ji et al., 1999; Alvarez et al., 2009). Therefore,
we explored p-ERK expression in the IC after the induction of
neuropathic pain by IoN-CCI. The number of p-ERK-IR neurons
was significantly increased in the IC from day 3 through day 21
in the IoN-CCI group compared with that in the sham group
(Figures 3A,B), indicating that ERK activation in the IC may
contribute to IoN-CCI-induced neuropathic pain. Moreover,
consistent with previous work (Wei et al., 2008), increased
p-ERK expression was also observed in the apical dendrites of
neurons in the IC, especially in the late phase of neuropathic pain
(Figure 3A).

cAMP response element binding protein (CREB), a main
downstream plasticity-related protein activated by ERK, is
involved in several intracellular processes, including neuronal
plasticity and long-term memory (Zhuo, 2008). Therefore, we
used Western blot analysis to further evaluate ERK signaling
pathway members, including ERK and CREB, in the contralateral
IC after IoN-CCI surgery. Compared with naive control rats,
the expression of both phosphorylated ERK and phosphorylated
CREB (p-ERK and p-CREB) was not significantly altered in
the sham rats (Figures 3C,D,F). As indicated in Figures 3C,D,
p-ERK and p-CREB were significantly elevated in the IC
3 days after IoN-CCI compared with their levels in the control
group, and phosphorylation was maintained for at least 21 days
(Figure 3; p-ERK1: IoN-CCI D7: 1.94 ± 0.21; IoN-CCI D14:
2.26 ± 0.19; IoN-CCI D21: 2.49 ± 0.48-fold of naive control,
∗P < 0.05, ∗∗P < 0.01; p-ERK2: IoN-CCI D3: 1.72 ± 0.35;
IoN-CCI D7: 2.63 ± 0.42; IoN-CCI D14: 3.14 ± 0.48; IoN-CCI
D21: 3.47 ± 0.52-fold of naive control,#P < 0.05, ##P < 0.01,
###P < 0.0001; p-CREB: IoN-CCI D3: 1.75 ± 0.23; IoN-CCI
D7: 2.16 ± 0.37; IoN-CCI D14: 2.51 ± 0.20; IoN-CCI D21:
2.81 ± 0.32-fold of naïve control, ∗P < 0.05,∗∗P < 0.01, n = 4).
The change in p-CREB was similar to that in p-ERK, indicating
that the ERK signaling pathway in the IC was activated by
IoN-CCI 3 days after surgery. Total ERK and CREB levels
were not changed in any of the groups in the present study
(Figures 3C,E,G). In summary, the ERK signaling pathway,
including ERK and CREB, was activated in the IC, perhaps
indicating the occurrence of new protein synthesis and resulting
in changes in neuroplasticity.

Infusion of U0126 Rapidly Decreased the
Upregulation of p-ERK in the IC and the
Expression of Fos in the Vc in IoN-CCI
Rats
Because ERK is activated after IoN-CCI in the IC, we
microinjected the inhibitor of ERK activation U0126 into the
bilateral IC (Figure 4A) to test whether p-ERK expression
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FIGURE 2 | Projections from the IC to the Vc. (A–D) Photomicrographs showing FG injection sites in the Vc (A) of the brainstem and the resultant FG-labeled
neurons in the IC (B,C). (B) The retrogradely FG-labeled neurons were mainly distributed in the layer V of the GI and DI of the contralateral IC. (C) The rectangular
area in (B) was enlarged and displayed in (C). (D) Drawings of the distribution of retrogradely FG-labeled neurons in the IC after FG injection into the unilateral Vc.
Retrogradely FG-labeled neurons, indicated by dots, were predominantly observed on the contralateral (left) side to the FG injection site. (E–G) Photomicrographs
showing PHA-L injection sites (E) and the resultant PHA-L-labeled axonal fibers and terminals in the Vc of the brainstem (F,G). (F) Anterogradely PHA-L-labeled
axonal fibers and terminals originated from the GI/DI of the IC were observed on the contralateral side of laminae I-V of the Vc. (G) The rectangular area in (F) was
enlarged and displayed in (G). (F) Drawings of the distribution of anterogradely PHA-L-labeled axonal fibers and terminals in the Vc and other regions in the
brainstem. Scale bar = 500 μm in (A,F), 200 μm in (B), 50 μm in (C,G), and 1 mm in (E). The numbers (D,H) correspond to the distance in millimeters (mm)
posterior to bregma in the brain. CC, central canal; py, pyramidal tract; Vc, trigeminal caudal subnucleus; IC, insular cortex; GI, granular insular cortex; DI, dysgranular
insular cortex; AI, agranular insular cortex; CPu, caudate putamen; Cl, claustrum; Vp, trigeminal principal nucleus; 7N, facial nerve; RMg, raphe magnus nucleus.

could be reduced. One hour after microinjection, the IC
regions were collected and assessed by Western blotting. IoN-
CCI significantly increased the expression of both p-ERK and
its downstream molecule, p-CREB (Figures 4C–G, p-ERK1:
IoN-CCI D14 + vehicle: 2.23 ± 0.18-fold of naïve control,

∗∗P < 0.01; p-ERK2: IoN-CCI D14 + vehicle: 3.08 ± 0.34-fold
of naïve control, ###P < 0.001; p-CREB: IoN-CCI D14 + vehicle:
1.94 ± 0.47-fold of naive control, n = 4, ∗∗P < 0.01), which
is consistent with previous Western blot data (Figure 3).
Moreover, U0126 significantly reversed the upregulation of
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FIGURE 3 | Continued
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FIGURE 3 | Continued
The ERK pathway was remarkably activated in the IC after IoN-CCI.
(A,B) Phosphorylated ERK (p-ERK) expression was significantly increased
from 3 through 21 days after IoN-CCI surgery (∗P < 0.05, ∗∗P < 0.01
compared with the sham control group). Scale bars = 200 μm or 30 μm, as
indicated in the figures. Notably, the rectangular area in (A) was enlarged; the
black arrows indicate the increased p-ERK expression within apical dendrites
of the IC neurons 21 days after IoN-CCI. (C–G) Total and phosphorylated ERK
(C,D,E) and CREB (C,F,G) expression was revealed by Western blotting.
Three days after IoN-CCI, p-ERK (including p-ERK1 and p-ERK2) and
p-CREB expression in the IC was significantly increased. Total ERK (t-ERK,
including t-ERK1 and t-ERK2) and t-CREB expression was not changed after
IoN-CCI (∗P < 0.05, ∗∗P < 0.01 compared with the p-ERK1 naïve control
group; #P < 0.05,##P < 0.01, ###P < 0.0001 compared with the p-ERK2
naïve control group in (D); ∗P < 0.05, ∗∗P < 0.01 compared with the p-CREB
naïve control group in F, n = 4).

p-ERK and p-CREB after 1 h of drug infusion (p-ERK1: IoN-
CCI D14 + U0126: 1.16 ± 0.17-fold of naive control vs. IoN-CCI
D14 + vehicle: 2.23 ± 0.18-fold of naive control, P < 0.05;
p-ERK2: IoN-CCI D14 + U0126: 1.21 ± 0.29-fold of naive
control vs. IoN-CCI D14 + vehicle: 3.08 ± 0.34-fold of naive

control, P< 0.05; p-CREB: IoN-CCID14d+U0126: 1.17± 0.13-
fold of naive control vs. IoN-CCI D14 + vehicle 1.94 ± 0.47-
fold of naive control, n = 4, P < 0.05), indicating that U0126
could effectively inhibit ERK activation in the IC after IoN-CCI
in vivo.

Based on our observation that the IC could send direct
projections to the contralateral Vc, we thus investigated the
nuclear expression of Fos, a neuronal activation marker, in the
Vc after the bilateral intra-IC injection of U0126 in rats with
IoN-CCI-induced neuropathic pain. Neuronal activation was
significantly increased, as indicated by the number of nuclei
expressing Fos on day 14 after IoN-CCI surgery (Figures 4H,I;
IoN-CCI D14 + vehicle vs. sham + vehicle, ∗∗P < 0.01,
##P < 0.01). Moreover, these Fos-IR neurons were located
within both laminae I/II and III-V in vehicle-treated IoN-CCI
rats. However, the number of Fos-IR neurons was significantly
reduced following intra-IC U0126 administration compared
with that following vehicle treatment (Figures 4H,I; IoN-
CCI D14 + U0126 vs. IoN-CCI D14 + vehicle, ∗P < 0.05,
#P < 0.05), which indicated that intra-IC U0126 administration
could decrease the elevated neuronal activation in the Vc after
IoN-CCI. Nonetheless, the number of Fos-IR neurons after

FIGURE 4 | Intra-IC U0126 microinjection reduced ERK pathway activity in the IC and decreased Fos expression in the Vc. (A) Representative
Nissl-stained section showing injection sites within the IC. Scale bar = 1 mm. (B) Camera lucida drawings showing cannula tip placements in rats injected with
U0126 (blue circles, n = 16) or vehicle (red circles, n = 16) in the IC. The numbers correspond to the distance in millimeters (mm) posterior to bregma in the brain.
(C–G) Intra-IC U0126 infusion effectively inhibited ERK activation in IoN-CCI rats. In the absence of U0126, IoN-CCI produced a significant increase in the levels of
phosphorylated ERK (p-ERK1/2) and CREB (∗∗P < 0.01; ###P < 0.001 compared to the sham + vehicle group, n = 4). U0126 treatment remarkably decreased the
upregulation of p-ERK (p-ERK1/2) and p-CREB expression in the IC of IoN-CCI rats. (H,I) Intra-IC U0126 administration partially reversed the elevated Fos
expression in both laminae I/II and III-V of the Vc after IoN-CCI (∗∗P < 0.01 ##P < 0.01 CCI + vehicle compared with the sham + vehicle group; ∗P < 0.05
#P < 0.05 CCI + vehicle compared with the CCI + U0126 group; P < 0.05 CCI + U0126 compared with the sham + vehicle group, n = 4).
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U0126 microinjection remained higher than the sham + vehicle
group (Figures 4H, I; IoN-CCI D14 +U0126 vs. sham+ vehicle,
P < 0.05), suggesting that the reduction of Fos expression
by intra-IC U0126 occurs partially but not completely in
the Vc.

U0126 Decreased Both the Frequency
and Amplitude of sEPSCs and Reduced
the PPR and Excitability of Vc-Projecting
Neurons in IoN-CCI Rat Slices In Vitro
Consistent with our FG retrograde labeling results, TMR-labeled
Vc-projecting neurons were mainly found in layer V of the GI/DI
portions of the IC (data not shown). To further investigate the
effect of U0126 on the excitability of Vc-projecting neurons in the
IC, we made whole-cell patch-clamp recordings from the TMR-
labeled Vc-projecting neurons (Figure 5A). The effects of U0126
on sEPSCs were studied in 15 Vc-projecting neurons. Perfusion
of U0126 (5 mM) for 1 h considerably reduced the frequency and
amplitude of sEPSCs (Figures 5B–D). Overall sEPSC frequency
was significantly reduced from 3.28 ± 0.35 Hz in the vehicle
control to 1.51 ± 0.54 Hz in the presence of U0126 (P < 0.01,
n = 15; Figure 5D). sEPSC amplitude was also reduced from
18.26 ± 0.72 pA in the vehicle control to 15.05 ± 0.64 pA in
the presence of U0126 (P < 0.05, n = 15; Figure 5D). These
results suggested that U0126 could decrease sEPSCs in IC slices
of IoN-CCI rats via both pre- and postsynaptic mechanisms.

Due to the notable decrease in the frequency of sEPSCs, we
subsequently compared the EPSC PPR to measure presynaptic
transmitter release changes in response to U0126 and vehicle.
One hour after U0126 (5 mM) perfusion, the PPR was
significantly increased (n = 10, P < 0.05) (Figures 5E,F),
suggesting that presynaptic release of glutamate onto the Vc-
projecting neurons was likely decreased by U0126 administration
in the IoN-CCI rat slices.

We next tested the effects of U0126 on the APs of the Vc-
projecting neurons. The spike numbers of the recorded neurons
in the IC slices of IoN-CCI rats were significantly reduced in
the presence of U0126 (5 mM) compared to vehicle (n = 15,
∗P< 0.05, ∗∗P< 0.01) (Figures 5G,H). These results indicate that
U0126 inhibited the excitability of the Vc-projecting neurons in
the IC under neuropathic pain conditions.

Taken together, these results suggest that U0126 inhibited the
Vc-projecting neurons in the IC via both pre- and postsynaptic
mechanisms after IoN-CCI.

The Microinjection of U0126 into the
Bilateral IC not only Alleviated
Nociceptive Behaviors but also
Decreased Negative Emotions in
IoN-CCI Rats
To determine whether U0126 could alleviate IoN-CCI-induced
nociceptive behaviors as well as negative emotions in rats, U0126
was microinjected via a cannula implanted into the bilateral IC
(Figures 4A,B) on day 14 after IoN-CCI, and behavioral testing
was conducted 1 h later. On day 13 after IoN-CCI, the rats

demonstrated typical increased nociceptive responses to non-
noxious mechanical stimulation (Figure 6B). Compared with
the vehicle control group, the mechanical allodynia revealed by
50% HWT was significantly reduced after U0126 microinjection
into the IC on day 14 after IoN-CCI (Figure 6B, ∗∗P < 0.01).
Thus, evoked nociceptive behaviors were significantly reduced
following the intra-IC microinjection of U0126 in IoN-CCI
rats.

To investigate the effect of intra-IC U0126 microinjection
on negative emotions in IoN-CCI rats, we subsequently
conducted the OF and EPM tests. Because rats showed
obvious anxiety/depression-like behaviors on day 14 after IoN-
CCI (Figure 1), we performed behavioral tests on IoN-CCI
D14. No significant difference was found between the IoN-
CCI D14 + U0126 and IoN-CCI D14 + vehicle groups in
locomotion based on the total distance traveled during the 10-
min recording time in the OF test (Figure 6C; P > 0.05).
However, compared with vehicle, U0126 significantly increased
the center time% (Figure 6C; P < 0.01) in the OF test as well
as the OA Entries% (Figure 6D; P < 0.05) and OA Time%
(Figure 6D; P < 0.01) in the EPM test, indicating that intra-IC
U0126microinjection improved anxiety/depression-like negative
emotions.

DISCUSSION

Our present study demonstrates for the first time that direct
corticotrigeminal projections from the IC to Vc are involved in
IoN-CCI-induced orofacial neuropathic pain. Specifically, this
descending projection may regulate Vc sensory neurons, thus
exasperating neuropathic pain. Moreover, perfusion of IC slices
of the IoN-CCI rats with the ERK inhibitor U0126 significantly
reduced the activity of Vc-projecting neurons. Finally, intra-
IC microinjection of U0126 effectively alleviated not only
nociceptive behaviors but also accompanied negative emotions in
IoN-CCI rats.

IoN-CCI Induced Neuropathic Pain and
Related Negative Emotions
In this study, IoN-CCI led to significant changes in responses
evoked by mechanical stimulation of the face. Additionally,
consistent with previously reports that tissue or nerve injury
could induce anxiety/depression-like behaviors in rodents (Dai
et al., 2011; Lyons et al., 2015), our results also demonstrated
that IoN-CCI could produce pain-related negative emotional
behaviors such as anxiety/depression, as revealed by the OF and
EPM tests.

ERK Pathway Activation in the IC After
IoN-CCI
Extracellular signal-regulated kinase, one important MAPK
superfamily member, has been extensively studied in tumors
(Deschenes-Simard et al., 2014), cardiovascular diseases (Lorenz
et al., 2009), and regeneration (Sellers et al., 2015). Recent
emerging evidence indicates that ERK plays a significant role
in pain processing, and ERK is important in the regulation
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FIGURE 5 | The activity of Vc-projecting neurons in the IC of IoN-CCI rats was effectively impaired by U0126 (5 mM) perfusion. (A) A representative
retrogradely TMR-labeled neuron (red) in the IC was recorded and injected with biocytin (labeled with Alexa 488 (green). The white rectangle area in the first panel is
enlarged in the following three panels. (GI, granular insular cortex; DI, dysgranular insular cortex; AI, agranular insular cortex). Scale bar = 200 μm (left) and 10 μm
(right). (B–D) Superimposed samples and cumulative fraction results showing that U0126 significantly inhibited both the frequency and amplitude of the sEPSCs of
Vc-projecting neurons in the IC of IoN-CCI rats. (B,C) Bath application of U0126 (5 mM, 1 h) inhibited the frequency and amplitude of sEPSCs in rats with IoN-CCI.
(D) Summary of the effects of U0126 on the sEPSCs of Vc-projecting neurons in IoN-CCI rats (U0126 vs. vehicle, ∗P < 0.05, ∗∗P < 0.01; n = 15). (E,F) Effects of
U0126 on the PPR of paired EPSCs in IoN-CCI rats. Paired EPSCs were evoked by the delivery of paired pulses with an inter-pulse interval of 50 ms, and the PPR
was measured as the ratio of the averaged amplitude of the second EPSC to that of the first EPSC. (E) Traces of paired EPSCs in representative neurons that were
perfused with vehicle or U0126. (F) The averaged PPR recorded in the presence of vehicle or U0126 (U0126 vs. vehicle, ∗P < 0.05; n = 10). (G,H) Sample traces
and average results showing that the number of action potentials (APs) in a train induced by the injection of step currents (400 ms, 0–90 pA) was significantly
reduced by U0126 in IoN-CCI rats (n = 15, P < 0.05, two-way repeated measures ANOVA). The Holm-Sidak post hoc test indicated that U0126 decreased the
spike number when currents of 10 pA (t = 2.50, ∗P < 0.05), 20 pA (t = 2.62, ∗P < 0.05), 30 pA (t = 2.34, ∗P < 0.05), 40 pA (t = 3.34, ∗∗P < 0.01), 50 pA (t = 2.50,
∗∗P < 0.01), 60 pA (t = 3.34, ∗∗P < 0.01), 70 pA (t = 3.62, ∗∗P < 0.01), 80 pA (t = 2.57, ∗P < 0.05), and 90 pA (t = 5.07, ∗∗P < 0.01) were applied.

of nociception at both the spinal cord and supraspinal levels.
In the spinal cord, ERK activation in dorsal horn neurons is
essential for the development of central sensitization, which is
responsible for the generation and maintenance of persistent
pain (Ji et al., 2009). In the amygdala, studies have confirmed
an important role of ERK in the CeA for pain-related synaptic
plasticity and behavior (Fu et al., 2008). Moreover, ERK activation
in the ACC is involved in formalin-induced inflammation-related
pain (Wei et al., 2008), and IC ERK phosphorylation contributes
to the mechanisms underlying abnormal pain perception under

nerve injury induced neuropathic pain conditions (Alvarez et al.,
2009).

Once activated, p-ERK can be translocated into the nucleus,
thus activating several transcriptional factors such as CREB,
which is required for the transcription of several neuronal genes
and for long-term synaptic plasticity (Ji and Rupp, 1997). The
ERK-CREB pathway likely increases the activity as well as the
membrane insertion of excitatory glutamate receptors (AMPA
and NMDA) (Kawasaki et al., 2004) and suppresses inhibitory
potassium channel (Kv4.2) activity (Sutton et al., 2004), thus
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FIGURE 6 | Intra-IC U0126 microinjection improved nociceptive behaviors as well as pain-related negative emotions. (A) Experimental schedule. The
behavioral tests, cannula implantation, microinjection, and IoN-CCI surgery were conducted as indicated in the schedule. (B) The 50% HWT were significantly
improved by bilateral intra-IC U0126 microinjection following IoN-CCI (∗∗P < 0.01, CCI + U0126 compared with CCI + vehicle group, n = 4 rats/group). (C,D)
Pain-related negative emotions such as anxiety/depression-like behaviors, as revealed by the OF (C) and EPM (D) tests, were significantly improved after intra-IC
U0126 microinjection on day 14 after IoN-CCI (∗P < 0.05; ∗∗P < 0.01, CCI + U0126 compared with CCI + vehicle group, n = 4 rats/group).

producing the LTP of neurons in many pain perception regions
under chronic pain conditions.

In the current study, we demonstrated that the ERK pathway
was significantly activated in the IC from 7 to 21 days after IoN-
CCI surgery. Intra-IC microinjection of U0126, a potent and
selective MEK/ERK inhibitor (Favata et al., 1998) that does not
affect other major signal transduction pathways (Roberson et al.,
1999), effectively alleviated established mechanical allodynia.
Our data here support previous reports showing that the IC
is a critical cortical region in pain regulation (Coffeen et al.,
2011; Qiu et al., 2013); additionally, the ERK pathway is indeed
involved in neuropathic pain in cortical regions (Cao et al.,
2009). More importantly, we demonstrated why the deactivation
of IC neurons via the inhibition of ERK phosphorylation could
produce an obvious amelioration of orofacial neuropathic pain
induced by IoN-CCI.

A Direct Corticotrigeminal Descending
Modulation Pathway from the IC to the
Vc
According to previous studies, the IC could send projecting
fibers to the trigeminal complex, including the Vc (Noseda
et al., 2010; Sato et al., 2013). However, in contrast, several
studies reported the opposite negative results (Jasmin et al.,
2004; Benison et al., 2011). Consequently, the connections
between the IC and the Vc remain quite controversial. In

the present study, by using anterograde and retrograde tract
tracing methods, we clearly demonstrated that the deep layer
(V) of the GI and DI sent direct descending projections to the
contralateral Vc, especially to the superficial laminae (I/II) in the
brainstem. Our data support earlier studies showing the existence
of direct projections from the GI/DI to the contralateral Vc
(Noseda et al., 2010; Sato et al., 2013). As orofacial nociceptive
primary afferents terminate in laminae I/II of the Vc (Dubner
and Bennett, 1983), this top–down corticotrigeminal projection
from the GI/DI to laminae I/II of the Vc are likely involved
in orofacial nociceptive processing. Notably, according to the
current results, the Vc received no projections from the AI, which
received much attention as a cortical center of nociception in
previous reports (Jasmin et al., 2004; Alvarez et al., 2009; Coffeen
et al., 2011); thus, the AI may not be involved in orofacial
pain processing, at least in this top–down direct modulation
pathway.

Decreased Activity of Vc-Projecting
Neurons in the IC through the
Deactivation of ERK
We explored the effects of U0126 on the Vc-projecting neurons
of IoN-CCI rats by whole-cell patch-clamp recording in vitro
and found that U0126 could inhibit the activity of these neurons
through both pre- and postsynaptic mechanisms. Specifically,
U0126 decreased not only the amplitude but also the frequency of
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sEPSCs. Furthermore, the PPR, which depends on the calcium-
dependent presynaptic release machinery, was significantly
increased after U0126 perfusion. These data indicate that the
inhibition of ERK leads to both pre- and postsynaptic plasticity
changes in Vc-projecting neurons. Similar results were reported
in previous studies in the amygdala (Fu et al., 2008) and
somatosensory cortex (Arendt et al., 2004). Additionally, the
number of APs was also significantly reduced in the presence of
U0126, suggesting a decrease in the excitability of IC neurons in
the IoN-CCI rats. According to our morphological data, p-ERK
is expressed throughout the IC, from layer II to V, in IoN-CCI
rats. Moreover, neurons in cortical layer II/III are thought to
receive sensory inputs from other brain regions and to send
projections to layer V neurons, which are the main output region
and project to subcortical areas. Consequently, U0126 perfusion
could affect p-ERK-containing neurons in both layers II/III and
V in the IC slices. As a result, ERK deactivation-induced pre-
and postsynaptic plasticity alterations were observed in the Vc-
projecting neurons that were recorded in the present study.

Reduced Nociception and Negative
Emotions via ERK Deactivation in the IC
The deactivation of ERK in the IC through intra-IC U0126
administration resulted in decreased Fos expression in the Vc
in IoN-CCI-induced neuropathic pain, indicating the inhibition
of activated Vc sensory neurons. Together with the tract tracing
data, these data indicate that that projection neurons of the
IC may send excitatory projecting fibers (glutamatergic) and
terminate in the Vc, especially in the superficial laminae (I/II),
to regulate local orofacial nociceptive transmission. IoN-CCI
surgery ultimately exerts a facilitatory effect on this pathway,
which in turn further exaggerates nociceptive transmission and
leads to chronic orofacial pain. In the present study, intra-
IC U0126 microinjection could inhibit ERK pathway activation
and limit the subsequent synaptic plasticity that occurred
under neuropathic pain conditions. As a result, the top–down
corticotrigeminal descending excitatory projections from the IC
to the Vc were prevented, and pain facilitation was diminished.

Based on the findings of the current study, not only
nociceptive behaviors but also anxiety/depression-like negative
emotions were improved by intra-IC ERK inhibition in IoN-
CCI rats. Indeed, similar to the ACC, the IC is a complicated
integration site for sensations and affections (Zhuo, 2008). The
IC receives afferent projections from thalamic nuclei and forms
reciprocal connections with the amygdala, mPFC, and limbic
system (Jasmin et al., 2004), all of which are related to emotions
and affections in animals and human. Therefore, targeting the IC
is promising for the achievement of multiple purposes, including
the regulation of pain sensation as well as pain-related affections.
In a previous study, the intra-ACC administration of an ERK
inhibitor attenuated pain-related anxiety in a postoperative

pain model (Dai et al., 2011). Furthermore, our group has
previously demonstrated that inhibiting ERK phosphorylation by
the microinjection of U0126 into the mPFC attenuated stress-
induced anxiety/depression-like behaviors (Qi et al., 2014). These
results are in line with those of the present study, indicating
that anxiety/depression-like negative emotions are improved
following intra-IC U0126 microinjections in IoN-CCI rats.

Our study also has some limitations. Conditioned place
preference test should be further utilized to validate the
effects of U0126 on the spontaneous/ongoing pain of IoN-
CCI rats. Due to the lack of a specific ERK activator,
reverse experiments involving ERK activation in the IC,
which should exaggerate orofacial neuropathic pain, are
difficult to conduct. Moreover, optogenetic methods as
well as transgenic animals should be further employed to
confirm the role of ERK in the corticotrigeminal descending
modulation pathway in both neuropathic and inflammatory
pain.

CONCLUSION

In summary, our present study offers powerful evidence
that a novel direct corticotrigeminal descending modulation
pathway from the IC to the Vc regulates IoN-CCI-induced
orofacial neuropathic pain. Because ERK deactivation in the
IC weakens descending pain facilitation, specifically targeting
ERK activation in the IC represents a promising avenue for the
management of neuropathic pain as well as pain-related negative
emotions.
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